SI EXPERIMENTAL PROCEDURES

Table S1. Strains used in this study

Table S2. Plasmids used in this study

Table S3. Oligonucleotides used in this study

Table S4. Strains used in each figure

Regulation of DNA replication initiation by ParA is independent of parS location in Bacillus subtilis

Supplementary material

Supplementary Figures

Figure S1: Intracellular level of ParB remains unchanged in cells harbouring extra *parS* **sites. (A)** Schematic diagram showing the location of *B. subtilis* endogenous chromosomal *parS* (grey circles) and the *parS*¹⁶ arrays (green circles). **(B)** Fluorescent image of a representative cell used for the intensity profile plot. Dotted lines represent the area measured to generate the intensity profile of individual cells. Scale bar, 1 μm. **(C)** The average fluorescent intensity for ParB-

GFP in strains containing chromosomal *parS*¹⁶ arrays was measured for 150 individual cells. Pvalue of 0.9462. **(D)** Intracellular ParB level in strains containing chromosomal *parS*¹⁶ arrays was detected by immunoblot using an α -ParB antibody (top panel) and α -DivIVA antibody as a loading control (bottom panel). **(E)** Schematic diagram showing the location of *B. subtilis* endogenous chromosomal *parS* (grey circles) and plasmid containing a single *parS* (red circles). **(F)** The average fluorescent intensity for ParB-GFP in strains containing extrachromosomal *parS* was measured for 150 individual cells. P-value of 0.1377. **(G)** Intracellular ParB level in strains containing extrachromosomal *parS* was detected by Western blot using an α -ParB antibody (top panel) and α -DivIVA antibody as a loading control (bottom panel).

Figure S2: Chromosome organization was disrupted when *parS* **was located away from the origin.** DAPI staining of chromosomal DNA in strains that differ in the location of *parS*. Phase contrast (top panel) and membrane dye FM 5-95 combined with DNA stain DAPI (bottom panel). Scale bar, 3μm.

Figure S3: A single *parS* **redistribute ParB to disrupt chromosome origin segregation. (A)** Origin localization in a wild-type strain and strains that differ in the location of *parS*. The *oriC*

region was labelled using an array of *tetO* operators bound by TetR-GFP. Phase contrast (left panel), and membrane dye FM 5-95 combined with TetR-GFP (right panel). **(B)** ParB dependent decrease when *parS* was located away from the origin. Scale bar, 3µm.

CONFIDENTIAL

Supplementary Table 1: Strains used in this study

Strains	Genotype ^a	Construction ^b	Source
B. subtilis 168CA	trpC2 wild type	-	[1]
B. subtilis 168CA AK47	trpC2 tetR-gfp(spc)/tetO ⁻⁷ (ery)	-	[2]
B. subtilis 168CA AK83	trpC2 cotS::parS ¹⁶ array cat	$PSL23 \rightarrow 168CA$	this work
B. subtilis 168CA AK87	trpC2 parA-parB∷neo tetR-gfp/tetO⁻7 parS¹6 arrays	$AK83 \rightarrow AK99$	this work
B. subtilis 168CA AK89	trpC2 ΔparA::neo tetR-gfp/tetO ⁻⁷ parS ¹⁶ arrays	$\rm HM766 \rightarrow AK97$	this work
B. subtilis 168CA AK91	trpC2 yheH::parS ¹⁶ array cat	$PSL25 \rightarrow 168CA$	this work
B. subtilis 168CA AK93	trpC2 yheH::parS ¹⁶ array tet	pcat::tet \rightarrow AK91	this work
B. subtilis 168CA AK95	trpC2 tetR-gfp/tetO ⁻⁷ yheH::parS ¹⁶ array tet	$AK93 \to AK47$	this work
B. subtilis 168CA AK97	trpC2 tetR-gfp/tetO ⁻⁷ parS ¹⁶ arrays	$AK83 \rightarrow AK95$	this work
B. subtilis 168CA AK99	trpC2 parA-parB::neo tetR-gfp/tetO ⁻⁷ yheH::parS ¹⁶ array tet	$\rm HM765 \rightarrow AK95$	this work
B. subtilis 168CA AK123	trpC2 ΔparB::neo tetR-gfp/tetO ⁻⁷ parS ¹⁶ arrays	HM907 → AK97	this work
B. subtilis 168CA AK150	trpC2 parS ¹⁶ arrays	$AK83 \rightarrow AK93$	this work
B. subtilis 168CA AK153	trpC2 parB-gfp::neo parS ¹⁶ arrays	HM756 \rightarrow AK150	this work
B. subtilis PY79 AK169	tetR-gfp/tetO ⁻⁷	BKM865 → BKM918	this work
B. subtilis PY79 AK171	Δ 8parS tetR-gfp/tetO ⁻⁷	AK47°→ BNS1657	this work
B. subtilis PY79 AK177	Δ 8parS parA-parB::neo tetR-gfp/tetO ⁻⁷	pHM142 \rightarrow AK171	this work
B. subtilis PY79 AK179	Δ8parS ΔparB::neo tetR-gfp/tetO ⁻⁷	pHM456 \rightarrow AK171	this work
B. subtilis PY79 AK181	parA-parB::neo tetR-gfp/tetO ⁻⁷	pHM48 \rightarrow AK169	this work
B. subtilis PY79 AK183	ΔparB::neo tetR-gfp/tetO ⁻⁷	HM907 \rightarrow AK169	this work
B. subtilis PY79 AK187	ΔparA::neo tetR-gfp/tetO ⁻⁷	$pAK98 \rightarrow AK169$	this work
B. subtilis 168CA AK199	trpC2 gfp-parA::neo parS ¹⁶ arrays	HM740 \rightarrow AK150	this work
B. subtilis PY79 AK205	Δ 9parS (native parS ⁹⁰)	-	[3]
B. subtilis PY79 AK207	Δ 9parS parA-parB::neo tetR-gfp/tetO ⁻⁷	$pAK09 \rightarrow AK177$	this work
B. subtilis PY79 AK209	Δ 9parS Δ parB::neo tetR-gfp/tetO ⁻⁷	$pAK09 \rightarrow AK179$	this work
B. subtilis PY79 AK213	Δ 9parS (native parS ²⁰⁶)	$pAK23 \to BNS1657$	this work
B. subtilis PY79 AK215	Δ 10parS	-	[3]
B. subtilis PY79 AK225	Δ 10parS parA-parB::neo tetR-gfp/tetO ⁻⁷	$pAK23 \to AK207$	this work
B. subtilis PY79 AK227	Δ 10parS Δ parB::neo tetR-gfp/tetO ⁻⁷	$pAK23 \to AK209$	this work
B. subtilis PY79 AK239	parA-parB::neo	$pAK26 \to PY79$	this work
B. subtilis PY79 AK241	∆parB::neo	-	[3]
B. subtilis PY79 AK243	Δ 10parS parA-parB::neo	-	[3]
B. subtilis PY79 AK245	∆10parS ∆parB::neo	$pAK30 \to AK215$	this work
B. subtilis PY79 AK259	Δ 9parS ⁺³⁵⁹ parA-parB::neo	$pAK26 \to AK215$	this work
B. subtilis PY79 AK261	Δ 9parS ⁺³⁵⁹ Δ parB::neo	$\text{pAK28} \rightarrow \text{AK215}$	this work
B. subtilis PY79 AK277	gfp-parA::neo	$\text{pHM23} \rightarrow \text{PY79}$	this work
B. subtilis PY79 AK281	Δ 10parS gfp-parA::neo	pAK48 \rightarrow AK215	this work

B. subtilis PY79 AK305	∆9parS ⁺³⁵⁹ gfp-parA::neo	pHM23 \rightarrow AK215	this work
B. subtilis PY79 AK315	Δ 9parS ⁺⁹⁰	pAK56 \rightarrow AK205	this work
B. subtilis PY79 AK323	∆9parS ⁺⁹⁰ parA-parB::neo	pAK32 \rightarrow AK315	this work
B. subtilis PY79 AK325	∆9parS ⁺⁹⁰ ∆parB::neo	pAK30 \rightarrow AK315	this work
B. subtilis PY79 AK367	parB-gfp::neo	$pAK82 \to PY79$	this work
B. subtilis PY79 AK369	∆10parS parB-gfp∷neo	pAK83 \rightarrow AK215	this work
B. subtilis PY79 AK373	∆9parS ⁺⁹⁰ parB-gfp∷neo	pAK83 \rightarrow AK315	this work
B. subtilis PY79 AK399	∆9parS ⁺⁹⁰ gfp-parA::neo	pAK48 \rightarrow AK315	this work
B. subtilis PY79 AK405	Δ 9parS ⁺⁹⁰ tetR-gfp/tetO ⁻⁷	pAK56 \rightarrow AK207	this work
B. subtilis PY79 AK519	Δ 9parS tetR-gfp/tetO ⁻⁷	pAK23 \rightarrow AK171	this work
B. subtilis PY79 AK521	Δ 10parS tetR-gfp/tetO ⁻⁷	$pAK09 \rightarrow AK519$	this work
B. subtilis 168CA AK547	trpC2 ∆spo0J gfp-parA::neo	$\rm HM13 \rightarrow 168CA$	this work
B. subtilis PY79 AK553	Δ 9parS ⁺⁹⁰ Δ (parA-parB)::neo	pAK100 → AK315	this work
B. subtilis PY79 AK555	∆9parS ⁺⁹⁰ ∆parA::neo	pAK101 → AK315	this work
B. subtilis PY79 AK557	∆parA::neo	$pAK98 \rightarrow PY79$	this work
B. subtilis PY79 AK559	∆(parA-parB)::neo	$pAK99 \rightarrow PY79$	this work
B. subtilis PY79 AK561	Δ 9parS ⁺³⁵⁹ Δ (parA-parB)::neo	pAK99 \rightarrow AK215	this work
B. subtilis PY79 AK563	∆10parS ∆(parA-parB)::neo	pAK100 \rightarrow AK215	this work
B. subtilis 168CA AK569	trpC2 Δspo0J gfp-soj::neo plasmid ^{-parS}	pHM430 \rightarrow AK547	this work
B. subtilis 168CA AK571	trpC2 Δspo0J gfp-soj::neo plasmid ^{+parS}	pHM432 \rightarrow AK547	this work
B. subtilis 168CA AK573	trpC2 Δ(parA-parB) tetR-gfp/tetO ⁻⁷	$HM749 \rightarrow AK47$	this work
B. subtilis 168CA AK575	trpC2 Δ (parA-parB)::neo tetR-gfp/tetO ⁻⁷ parS ¹⁶ arrays	$HM749 \rightarrow AK97$	this work
B. subtilis 168CA AK577	trpC2 ∆parB gfp-parA::neo parS ¹⁶ arrays	$AK547 \rightarrow AK150$	this work
B. subtilis 168CA AK585	trpC2 ∆soj ∆spo0J tetR-yfp/tetO ⁻¹⁵⁰	$HM194 \rightarrow 168CA$	this work
B. subtilis 168CA AK587	trpC2 Δsoj Δspo0J tetR-yfp/tetO ⁻¹⁵⁰ plasmid ^{-parS}	pHM430 \rightarrow AK585	this work
B. subtilis 168CA AK589	trpC2 ∆soj ∆spo0J tetR-yfp/tetO ⁻¹⁵⁰ plasmid ^{+parS}	pHM432 \rightarrow AK585	this work
B. subtilis PY79 AK591	Δ 9parS ⁺³⁵⁹ tetR-gfp/tetO ⁻⁷	pAK26 \rightarrow AK521	this work
B. subtilis PY79 AK593	∆9parS ⁺³⁵⁹ parB-gfp::neo	pAK82 \rightarrow AK215	this work
B. subtilis PY79 AK597	∆9parS ⁺²⁷⁰ parB-gfp::neo	pAK180 → AK369	this work
B. subtilis PY79 AK599	∆9parS ⁺²⁷⁰ gfp-parA::neo	pAK180 \rightarrow AK281	this work
B. subtilis PY79 AK603	∆9parS ⁺²⁷⁰ soj-parB::neo	pAK180 \rightarrow AK243	this work
B. subtilis PY79 AK605	∆9parS ⁺²⁷⁰ ∆parB∷neo	pAK180 \rightarrow AK245	this work
B. subtilis PY79 AK607	Δ 9parS ⁺²⁷⁰ Δ (parA-parB)::neo	pAK180 \rightarrow AK563	this work
B. subtilis PY79 AK615	Δ9parS ⁺⁹⁰ ΔparB∷neo tetR-gfp/tetO ⁻⁷	pAK56 \rightarrow AK209	this work
B. subtilis PY79 AK617	Δ10parS ΔparA::neo	pAK101 \rightarrow AK215	this work
B. subtilis PY79 AK639	Δ9parS ⁺³⁵⁹ ΔparB∷neo tetR-gfp/tetO ⁻⁷	pAK28 \rightarrow AK521	this work
B. subtilis PY79 AK649	∆9parS ⁺²⁷⁰ ∆parA∷neo	pAK180 \rightarrow AK617	this work
B. subtilis PY79 AK667	∆8parS ⁺³⁵⁹ ∆parA∷neo	pHM160 \rightarrow AK205	this work
B. subtilis PY79 AK669	∆9parS ⁺³⁵⁹ ∆parA∷neo	$AK213 \rightarrow AK667$	this work

B. subtilis PY79 AK673	Δ 9parS ⁺⁹⁰ Δ parA::neo tetR-gfp	$AK171 \rightarrow AK555$	this work
B. subtilis PY79 AK675	Δ10parS ΔparA::neo tetR-gfp	$AK171 \rightarrow AK617$	this work
B. subtilis PY79 AK677	Δ 9parS ⁺³⁵⁹ Δ parA::neo tetR-gfp	$AK171 \rightarrow AK669$	this work
B. subtilis PY79 AK683	Δ 9parS ⁺⁹⁰ Δ parA::neo tetR-gfp/tetO ⁻⁷	$AK171 \rightarrow AK673$	this work
B. subtilis PY79 AK685	Δ 10parS Δ parA::neo tetR-gfp/tetO ⁻⁷	$AK171 \rightarrow AK675$	this work
B. subtilis PY79 AK687	Δ 9parS ⁺³⁵⁹ Δ parA::neo tetR-gfp/tetO ⁻⁷	$AK171 \rightarrow AK677$	this work
B. subtilis PY79 BKM865	tetR-gfp/tetO ⁻⁷ ::cat	-	[4]
B. subtilis PY79 BKM918	tetO ⁻⁷ ::ery	-	[4]
B. subtilis PY79 BNS1657	Δ 8parS	-	[5]
B. subtilis 168ED HM4	trpC2 gfp-parA::neo	-	[6]
B. subtilis 168ED HM13	trpC2 ∆parB gfp-parA::neo	-	[6]
B. subtilis 168ED HM34	trpC2 parA-parB::neo	-	[6]
B. subtilis 168ED HM61	trpC2 parB-gfp::neo	-	[7]
B. subtilis 168ED HM130	trpC2 (spo0J tetO ⁻¹⁵⁰):: neo cgeD::(P _{pen} -tetR-yfp) tet		[6]
B. subtilis 168ED HM168	trpC2 (Δspo0J tetO ⁻¹⁵⁰)::neo cgeD::(P _{pen} -tetR-yfp) tet		[6]
B. subtilis 168ED HM171	trpC2 (Δsoj tetO ⁻¹⁵⁰)::neo cgeD::(P _{pen} -tetR-yfp) tet		[6]
B. subtilis 168ED HM183	trpC2 Δ(parA-parB)::neo		[6]
B. subtilis 168ED HM194	trpC2 (Δsoj Δspo0J tetO ⁻¹⁵⁰)::neo cgeD::(P _{pen} -tetR-yfp) tet	S	[6]
B. subtilis 168ED HM226	trpC2 pheA ΔparB::neo	-	[6]
B. subtilis 168ED HM227	trpC2 pheA ΔparA::neo	-	[6]
B. subtilis 168CA HM740	trpC2 gfp-parA::neo	$HM4 \rightarrow 168CA$	this work
B. subtilis 168CA HM747	trpC2 parA-parB::neo	HM34 \rightarrow 168CA	this work
B. subtilis 168CA HM748	trpC2 ΔparA::neo	$\rm HM227 \rightarrow 168CA$	this work
B. subtilis 168CA HM749	trpC2 Δ(parA-parB)::neo	$\rm HM183 \rightarrow 168CA$	this work
B. subtilis 168CA HM754	trpC2 ΔparB::neo	$\rm HM226 \rightarrow 168CA$	this work
B. subtilis 168CA HM756	trpC2 parB-gfp::neo	$HM61 \rightarrow 168CA$	this work
B. subtilis 168CA HM765	trpC2 parA-parB::neo tetR-gfp/tetO ⁻⁷	$HM747 \to AK47$	this work
B. subtilis 168CA HM766	trpC2 ΔparA::neo tetR-gfp/tetO ⁻⁷	$HM748 \rightarrow AK47$	this work
B. subtilis 168CA HM821	trpC2 spo0J-gfp::neo plasmid ^{-parS}	$\text{pHM430} \rightarrow \text{HM756}$	this work
B. subtilis 168CA HM823	trpC2 spo0J-gfp::neo plasmid ^{+parS}	$\text{pHM432} \rightarrow \text{HM756}$	this work
B. subtilis 168CA HM831	trpC2 ∆spo0J tetR-yfp/tetO ⁻¹⁵⁰	$\rm HM168 \rightarrow 168CA$	this work
B. subtilis 168CA HM832	trpC2 ∆soj tetR-yfp/tetO ⁻¹⁵⁰	$HM171 \rightarrow 168CA$	this work
B. subtilis 168CA HM834	trpC2 ∆spo0J tetR-yfp/tetO ⁻¹⁵⁰ plasmid ^{-parS}	pHM430 \rightarrow HM831	this work
B. subtilis 168CA HM835	trpC2 ∆soj tetR-yfp/tetO ⁻¹⁵⁰ plasmid ^{-parS}	pHM430 \rightarrow HM832	this work
B. subtilis 168CA HM837	trpC2 ∆spo0J tetR-yfp/tetO ⁻¹⁵⁰ plasmid ^{+parS}	pHM432 \rightarrow HM831	this work
B. subtilis 168CA HM838	trpC2 ∆soj tetR-yfp/tetO ⁻¹⁵⁰ plasmid ^{+parS}	pHM432 \rightarrow HM832	this work
B. subtilis 168CA HM853	trpC2 tetR-yfp/tetO ⁻¹⁵⁰	HM130 \rightarrow 168CA	this work
B. subtilis 168CA HM855	trpC2 tetR-yfp/tetO ⁻¹⁵⁰ plasmid ^{-parS}	pHM430 \rightarrow HM853	this work

B. subtilis 168CA HM856	trpC2 tetR-yfp/tetO ⁻¹⁵⁰ plasmid ^{+parS}	$pHM432 \to HM853$	this work
B. subtilis 168CA HM870	trpC2 gfp-soj::neo plasmid ^{-parS}	$\text{pHM430} \rightarrow \text{HM740}$	this work
B. subtilis 168CA HM871	trpC2 gfp-soj::neo plasmid ^{+parS}	$\text{pHM432} \rightarrow \text{HM740}$	this work
B. subtilis 168CA HM907	trpC2 ΔparB::neo tetR-gfp/tetO ⁻⁷	$\rm HM754 \rightarrow AK47$	this work
B. subtilis JH642 PSL23	trpC2 Δ 6parS parB-gfp cotS::parS ¹⁶ array cat	-	[8]
B. subtilis JH642 PSL25	trpC2 Δ 6parS parB-gfp yheH::parS ¹⁶ array cat	-	[8]
B. subtilis PY79	wild type prototroph	-	[9]

^a *B. subtilis* antibiotic resistance markers are listed respectively. *neo*, kanamycin resistance; *ery*, erythromycin resistance; *cat*, chloramphenicol resistance; *spc*, spectinomycin resistance; *tet*, tetracycline resistance.

^b Plasmids or genomic DNA of the indicated strain transformed into the parent strain used in the genetic construction.

^c DNA fragments amplified from AK47 gDNA using primer pairs oAK5/oAK6 and oAK7/oAK8.

Supplementary Table 2: Plasmids used in this study

Plasmid	Genotype ^a	Construction ^b	Source
pAK09	bla cat 'sigX $\Delta parS^{206}$::zeo resE'	-	[3]
pAK23	bla catʻyhaX Δ parS 90 ::tet hemZ	-	[3]
pAK26	bla cat parB::neo	-	[3]
pAK28	bla cat ∆parB∷neo	-	[3]
pAK30	bla cat ∆parB ∆parS ³⁵⁹ ::neo	pHM456 (oAK55/oGJS431) \rightarrow pHM23	this work
pAK32	bla cat parB ∆parS ³⁵⁹ ∷neo	-	[3]
pAK48	bla cat_gfp-parA ∆parS³⁵9::neo	pHM142 (oAK52/oAK53) → pHM23	this work
pAK56	bla catʻyhaX parS 90 ::tet hemZ	pHM48 (oAK61/oAK62) \rightarrow pAK23	this work
pAK82 ^c	bla cat parB-gfp::neo	pHM110 \rightarrow pAK26	this work
pAK83⁰	bla cat parB-gfp ∆parS ³⁵⁹ ∷neo	pHM110 \rightarrow pAK32	this work
pAK98	bla cat ∆parA∷neo	pHM160 (oAK58/oHM20) → pAK26	this work
pAK99	bla cat ∆(parA-parB)::neo	pHM160 (oAK58/oHM20) → pAK28	this work
pAK100	bla cat Δ (parA-parB Δ parS ³⁵⁹)::neo	pHM160 (oAK58/oHM20) → pAK30	this work
pAK101	bla cat ∆parA ∆parS ³⁵⁹ ::neo	pHM160 (oAK58/oHM20) → pAK32	this work
pAK128	bla cat 'ytcC::zeo	160CA (oAK191/oAK192) → pHM457	this work
pAK130	bla cat zeo ytxO'	160CA (oAK189/oAK190) → pHM457	this work
pAK136℃	bla cat 'ytcC::zeo ytxO'	pAK130 → pAK128	this work
pAK178	bla cat 'ytcC::erm ytxO'	pHM432 (oAK227/oAK257) → pAK136	this work
pAK180	bla cat 'ytcC::erm parS ²⁷⁰ ytxO'	pHM48 (oAK216/oAK217) → pAK178	this work
pcat::tet	bla cat::tet	-	[10]
pHM23	bla cat gfp-parA::neo	-	[6]
pHM48	bla cat parB::neo	-	[6]
pHM52	bla cat ∆parB::neo	-	[6]
pHM59	bla cat ∆(parA-parB)::tet	-	[6]
pHM110	bla cat parB-gfp::neo	-	[7]
pHM142	bla cat parB ∆parS ³⁵⁹ ∷neo	-	[3]
pHM160	bla cat ∆parA∷neo	-	[6]
pHM430	ery	pNZ8907	[11]
pHM432	ery 'spo0J-parS-spo0J'	168CA (oAK61/oAK62) \rightarrow pHM430	this work
pHM456 ^c	bla cat ∆parB ∆parS ³⁵⁹ ∷neo	$pHM142 \rightarrow pHM52$	this work
pHM457	bla cat zeo	-	[3]

^a *E. coli* and *B. subtilis* antibiotic resistance markers are listed first and second respectively. *bla,* ampicillin resistance; *kan,* kanamycin resistance; *ery,* erythromycin resistance; *cat,* chloramphenicol resistance; *spc,* spectinomycin resistance; *tet,* tetracycline resistance; *phl,* phleomycin resistance; zeomycin resistance; *zeo.*

^b DNA fragments amplified with primer pair indicated in parentheses using template from either plasmids or genomic DNA indicated in parentheses before the amplified products are cloned into the parent plasmid used in the genetic construction.

^c DNA fragments are digested by restriction enzymes and cloned into the parent plasmid used in the genetic construction.

Supplementary Table 3: Oligonucleotides used in this study

- PrimerSequence $(5' \rightarrow 3')$ oAK52AAGGGAAGGGCCGCGGTCAAGAGGTGCGGAAGTATATTTAG
- oAK53 AAGGGAAGGGTCTAGAACTAGTGGATCCCCCGGGCTGC
- oAK55 AATTTAATTTCCTAGGTAAGGAAAAATCATAGCAATTACGAAC
- oAK58 TTTATGCTTCCGGCTCGTATG
- oAK61 AATTTAATTTGCGGCCGCGACTGCTGACACTGCCAG
- oAK62 AATTTAATTTGCGGCCGCCATTTATGATTCTCGTTCAGAC
- oAK91 AATTTAATTTGAGCTCGCGTTCTCTAATTTCACAAGAGG
- oAK92 GATTGGAAATACGGATTCTG
- oAK189 AAGGGAATTCTCGAGGTGACTTTATGCCTTGCGCTTTAC
- oAK190 AAGGGAATTGGTACCGCCTCTATTTCTAAACTGGATCTCGAC
- oAK216 AAGGGAATTTCTAGAGACTGCTGACACTGCC
- 0AK217 AAGGGAATTTCTAGACATTTATGATTCTCGTTCAGAC
- oAK227 AAGGGAATTGGATCCGACTCATAGAATTATTTCCTCCCG
- 0AK257 AATTTAATTTCTCGAGTATCACGAGGCCCTTTCGTCTTCAAGAATTGATCC
- oGJS431 GGTGGTCCCGCGGCATCTTCGTTTGAAAGATGC GGC
- oHM20 TTTTCTTGGCTGATAAGGATTAGGGCGTAAATCG

Supplementary Table 4: Strains used in each figures

Fig.1 HM756 (*parB-gfp*), AK153 (*parB-gfp parS*¹⁶ arrays)

Fig. 2 HM821 (parB-gfp plasmid^{-parS}), HM823 (parB-gfp plasmid^{+parS})

Fig. 3 HM765 (tetR-gfp/ $tetO^{-7}$), AK87 (tetR-gfp/ $tetO^{-7}$ parS¹⁶ arrays), HM907 (tetR-gfp/ $tetO^{-7}\Delta parB$), AK123 (tetR-gfp/ $tetO^{-7}$ parS¹⁶ arrays $\Delta parB$), HM766 (tetR-gfp/ $tetO^{-7}\Delta parA$), AK89 (tetR-gfp/ $tetO^{-7}$ parS¹⁶ arrays $\Delta parA$)

Fig. 4 HM855 (tetR- $yfp/tetO^{-7}$ plasmid^{parS}), HM856 (tetR- $yfp/tetO^{-7}$ plasmid^{+parS}), HM834 ($\Delta parB$ tetR- $yfp/tetO^{-7}$ plasmid^{parS}), HM837 ($\Delta parB$ tetR- $yfp/tetO^{-7}$ plasmid^{+parS}), HM835 ($\Delta parA$ tetR- $yfp/tetO^{-7}$ plasmid^{+parS}), HM838 ($\Delta parA$ tetR- $yfp/tetO^{-7}$ plasmid^{+parS})

Fig. 5 HM765 (tetR-gfp/tetO⁻⁷), AK87 (tetR-gfp/tetO⁻⁷ parS¹⁶ arrays), HM907 (tetR-gfp/tetO⁻⁷ΔparB), AK123 (tetR-gfp/tetO⁻⁷ parS¹⁶ arrays ΔparB), AK573 (tetR-gfp/tetO⁻⁷ ΔparA ΔparB), AK575 (tetR-gfp/tetO⁻⁷ parS¹⁶ arrays ΔparA ΔparB), HM766 (tetR-gfp/tetO⁻⁷ ΔparA), AK89 (tetR-gfp/tetO⁻⁷ parS¹⁶ arrays ΔparA), HM740 (gfp-parA), AK199 (gfp-parA parS¹⁶ arrays), AK547 (gfp-parA ΔparB), AK577 (gfp-parA ΔparB parS¹⁶ arrays), HM855 (tetR-yfp/tetO⁻⁷ plasmid^{+parS}), HM856 (tetR-yfp/tetO⁻⁷ plasmid^{+parS}), HM834 (Δspo0J tetR-yfp/tetO⁻⁷ plasmid^{+parS}), HM837 (Δspo0J tetR-yfp/tetO⁻⁷ plasmid^{+parS}), AK589 (Δsoj Δspo0J tetR-yfp/tetO⁻⁷ plasmid^{+parS}), HM838 (Δsoj tetR-yfp/tetO⁻⁷ plasmid^{+parS}), HM870 (gfp-soj plasmid^{+parS}), HM871 (gfp-soj plasmid^{+parS}), AK569 (Δspo0J gfp-soj plasmid^{+parS}), AK571 (Δspo0J gfp-soj plasmid^{+parS}).

Fig. 6

AK367 (parB-gfp), AK369 (parB-gfp Δ 10parS), AK593 (parB-gfp Δ 9parS⁺³⁵⁹), AK597 (parB-gfp Δ 9parS⁺²⁷⁰), AK373 (parB-gfp Δ 9parS⁺⁹⁰), AK239 (wild type), AK243 (Δ 10parS), AK259 (Δ 9parS⁺³⁵⁹), AK603 (Δ 9parS⁺²⁷⁰), AK323 (Δ 9parS⁺⁹⁰), AK241 (Δ parB), AK245 (Δ parB Δ 10parS), AK261 (Δ parB Δ 9parS⁺³⁵⁹), AK605 (Δ parB Δ 9parS⁺²⁷⁰), AK325 (Δ parB Δ 9parS⁺⁹⁰), AK559 (Δ parA Δ parB), AK563 (Δ parA Δ parB Δ 10parS), AK561 (Δ parA Δ parB), AK563 (Δ parA Δ parB Δ 10parS), AK557 (Δ parA), AK617 (Δ parA Δ parB Δ 9parS⁺²⁷⁰), AK553 (Δ parA Δ parB Δ 9parS⁺²⁷⁰), AK555 (Δ parA Δ 9parS⁺²⁷⁰), AK555 (Δ parA Δ 9parS⁺⁹⁰), AK557 (Δ parA), AK617 (Δ parA Δ 10parS), AK669 (Δ parA Δ 9parS⁺³⁵⁹), AK649 (Δ parA Δ 9parS⁺²⁷⁰), AK555 (Δ parA Δ 9parS⁺⁹⁰), AK277 (gfp-parA), AK281 (gfp-parA Δ 10parS), AK305 (gfp-parA Δ 9parS⁺³⁵⁹), AK599 (gfp-parA Δ 9parS⁺²⁷⁰), AK399 (gfp-parA Δ 9parS⁺⁹⁰)

- Fig. S1 HM756 (*parB-gfp*), AK153 (*parB-gfp parS*¹⁶ arrays), HM821 (*parB-gfp plasmid*^{-*parS*}), HM823 (*parB-gfp plasmid*^{+*parS*}), HM765 (*tetR-gfp/tetO*⁻⁷), AK87 (*tetR-gfp/tetO*⁻⁷ *parS*¹⁶ arrays), HM855 (*tetR-yfp/tetO*⁻⁷ *plasmid*^{-*parS*}), HM856 (*tetR-yfp/tetO*⁻⁷ *plasmid*^{+*parS*})
- Fig. S2 AK239 (wild type), AK243 (Δ10*parS*), AK259 (Δ9*parS*³⁵⁹⁺), AK603 (Δ9*parS*²⁷⁰⁺), AK323 (Δ9*parS*⁹⁰⁺)
- Fig. S3 AK181 (tetR-gfp/ $tetO^{-7}$), AK225 (tetR-gfp/ $tetO^{-7}\Delta 10parS$), AK591 (tetR-gfp/ $tetO^{-7}\Delta 9parS^{359+}$), AK405 (tetR-gfp/ $tetO^{-7}\Delta 9parS^{90+}$), AK183 (tetR-gfp/ $tetO^{-7}\Delta parB$), AK227 (tetR-gfp/ $tetO^{-7}\Delta parB\Delta 10parS$), AK639 (tetR-gfp/ $tetO^{-7}\Delta parB\Delta 9parS^{359+}$), AK615 (tetR-gfp/ $tetO^{-7}\Delta parB\Delta 9parS^{90+}$), AK187 (tetR-gfp/ $tetO^{-7}\Delta parA$), AK685 (tetR-gfp/ $tetO^{-7}\Delta parA\Delta 10parS$), AK687 (tetR-gfp/ $tetO^{-7}\Delta parA\Delta 9parS^{359+}$), AK683 (tetR-gfp/ $tetO^{-7}\Delta parA\Delta 9parS^{90+}$)

References

1. **Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G et al.** The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. *Nature* 1997;390(6657):249-256.

2. **Murray H, Koh A**. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis. *PLoS Genet* 2014;10(10):e1004731.

3. **Marbouty M, Le Gall A, Cattoni DI, Cournac A, Koh A et al.** Condensin- and Replication-Mediated Bacterial Chromosome Folding and Origin Condensation Revealed by Hi-C and Super-resolution Imaging. *Mol Cell* 2015;59(4):588-602.

4. **Wagner JK, Marquis KA, Rudner DZ**. SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis. *Mol Microbiol* 2009;73(5):963-974.

5. **Sullivan NL, Marquis KA, Rudner DZ**. Recruitment of SMC by ParB-parS Organizes the Origin Region and Promotes Efficient Chromosome Segregation. *Cell* 2009;137(4):697-707.

6. **Murray H, Errington J**. Dynamic Control of the DNA Replication Initiation Protein DnaA by Soj/ParA. *Cell* 2008;135(1):74-84.

7. Leaver M, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J. Life without a wall or division machine in Bacillus subtilis. *Nature* 2009;457(7231):849-853.

8. Lee PS, Lin DCH, Moriya S, Grossman AD. Effects of the chromosome partitioning protein Spo0J (ParB) on oriC positioning and replication initiation in Bacillus subtilis. *Journal of Bacteriology* 2003;185(4):1326-1337.

9. Youngman PJ, Perkins JB, Losick R. Genetic Transposition and Insertional Mutagenesis in Bacillus-Subtilis with Streptococcus-Faecalis Transposon Tn917. *Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences* 1983;80(8):2305-2309.

10. **Steinmetz M, Richter R**. Plasmids Designed to Alter the Antibiotic-Resistance Expressed by Insertion Mutations in Bacillus-Subtilis, through in-Vivo Recombination. *Gene* 1994;142(1):79-83.

11. **Bongers RS, Veening JW, Van Wieringen M, Kuipers OP, Kleerebezem M**. Development and characterization of a subtilin-regulated expression system in Bacillus subtilis: strict control of gene expression by addition of subtilin. *Appl Environ Microbiol* 2005;71(12):8818-8824.