
SUPPLEMENTARY NOTE

Contents

1. Basics of stochastic conveyor belt (SCB) dynamics 1

1.1. Biological motivation for the modelling 1

1.2. Formal definition of the SCB dynamics 2

1.3. SCB dynamics in real crypts 8

1.4. Nature of the stochastic rearrangements and retrograde movements 10

2. Numerical simulations of the 2D SCB dynamics and statistics 11

2.1. Details on the implementation of 2D simulations 11

2.2. Statistical approach for fitting and confidence intervals 11

2.3. Clonal fragmentation from fixed data 14

2.4. Timescale of monoclonal conversion 15

2.5. Dynamics of filling after ablation 15

3. Comparison to previous models 16

Supplementary references 17

In this supplementary note we provide additional details on the modelling approach used in the manuscript,

as well as details on the numerical and statistical tools used to analyze the data.

1. Basics of stochastic conveyor belt (SCB) dynamics

1.1. Biological motivation for the modelling.

The intestinal epithelium is renewed from proliferative intestinal stem cells at the bottom of crypts (Fig.

1a), while cell loss occurs at the tip of villi. The push up force exerted by the duplication of stem cells creates

a constant, unidirectional flow of cells from lower to upper levels along the crypt-villus axis. This continuous

advection generates a conveyor belt-like dynamics within the epithelial sheet. If one only considers advection

and we set ourselves in a one-dimensional setting, the question of whether a cell initially located at a given

position can give rise to the lineage that eventually colonizes the whole system has a simple answer: the

lineage from the cell at the bottom-most row of the crypt will colonize the whole system with probability

1. Indeed, any cell located in another level has zero probability to survive long-term, as the push up force

triggered by cell divisions creates a unidirectional drift towards the villus. For that reason, one may refer to

such a dynamics as a deterministic conveyor belt. If we consider a more realistic geometry, the bottom level

is populated by several cells that compete laterally and neutrally for lineage survival [1, 2]. Such dynamics
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at the bottom of the crypt (in the lateral/circumferential direction) is well-described by a 1D Voter model

on a ring with an estimated amount of cells around 12−16. Subsequent data and modelling from continuous

labelling [3] proposed a smaller number of functional stem cells, around 5− 7 stem cells per crypt.

But how is this number of stem cell determined in the first place from a biological perspective? One

definition would be molecular, with Lgr5+ being a marker of stemness that is expressed within the first

four bottom-most cell rows. However, it has been reported via short-term live-imaging that in the SI,

bottom vs top layers of Lgr5+ cells have highly different survival dynamics, which was explained via short-

term advantages linked to location [4]. However, whether and how this dynamics is conserved in different

intestinal regions remains unclear, together with what determines the strength of the competition for space.

Here, we combine short-term and long-term live-imaging, to help bridge the time scale of individual cell

movements with the time scale of monoclonal conversion (and stem cell competition). This provides insights

into how the effective number of stem cells per crypt is defined, understanding the effective number of stem

cells as the amount of cells giving rise to long term clones. Interestingly, this framework is able to identify

surprising differences between Large and Small intestines (resp. denoted subsequently as LI and SI) .

In particular, the modelling approach is based on two key experimental findings: i) a stochastic addition

to the classical ”conveyor belt” picture, allowing cells to randomly reposition to more favourable locations,

ii) the strength of stochasticity/repositioning varies drastically between the SI and the LI despite strong

anatomical similarities. This empirical observation of retrograde movements implies that other factors,

besides the one-directional drift induced by cell duplication, must be taken into account. The constraint

of homeostasis/constant cellular density in time puts strong constraints on retrograde movements. Indeed,

any downward active migration of a given cell i must be compensated by the upward migration of a given

cell j by the same amount. Importantly however, such events of active cell migration or cells stochastically

switching their positions can counter-act the drift induced by cell divisions, allowing cells from upper levels

to relocate in more favorable positions. In Fig. 2e of the main text we schematize this dynamics. In that

case, the question whether a cell located at a given level can colonize the whole organ becomes a complex

problem, and we provide in this Supplementary Note details on the modelling and statistical approach used

to interpret the data [5]. Finally, although we find evidence (see main text for details) for relocations to

rely on Wnt-dependent active cell migration, the presented theoretical framework is quite insensitive to the

particular details through which they occur (as detailed below).

1.2. Formal definition of the SCB dynamics.

1.2.1. 1D SCB dynamics.

We will first define the dynamics in a 1D setting along the crypt-villus flow direction, to get insights into

how the row of a given cell is located influences the survival probability of its lineage. We consider a column

of cells arranged in a finite segment [0, L], in which the length unit is scaled to the average diameter of a cell.

We assume a mean field approach in which each cell divides at constant rate kd. When a new cell is born at

longitudinal level j, it moves either one position left or right, pushing the old neighbour cell to level j + 1,

or directly up, pushing the cell that was immediately above the mother cell from level j + 1 to level j + 2
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(See Fig. 2e for a schematic view). This mechanism ensures that the density of cells remains constant, as

required by the constraint of homeostasis. This division process creates a positive push up force projected

through the longitudinal axis of the organ. When a cell reaches level L and is pushed, it disappears from the

system. In addition, the position of the cells can fluctuate stochastically at rate kr in either direction. The

combination of the advection force due to cell duplication at rate kd and stochastic rearrangements occurring

at rate kr create a dynamics that can be abstracted as a conveyor belt with random relocations, defining the

essentials of the Stochastic Conveyor Belt (SCB) dynamics. Note that, in the case where kr = 0, we recover

the standard scenario of a deterministic conveyor belt as outlined in the previous section.

To study lineage dynamics, we first need to define the SCB dynamics at the single cell level. According

to the description above, the position of cell in cell-unit lengths from the bottom of the organ will be a

random variable X subject to an advection force due to duplication ∼ kdX, since X cells will duplicate

below at every time unit, and a random fluctuation of amplitude
√
kr. In the continuous approximation, the

stochastic differential equation for the positional variable X will be thus [5]:

(1.1) dX = kdXdt+
√
krdW ,

where dW is the Wiener or Brownian differential [6, 7, 8]. According to the above dynamics, the probability

that a cell that started at position n is at a given position x of the organ at time t is governed by the

following Fokker-Planck equation [7, 8]:

1

kd

∂pn
∂t

= − ∂

∂x
(xpn) +

kr
2kd

∂2pn
∂x2

.

Accounting for the division rate implies the addition of a reaction term, that is, the cell, aside the random

fluctuations provided above, also divides at a certain rate. The cell that at t = 0 was at position n will define

a lineage, cn, made up of all its descendants. In the continuous setting, such a lineage will be described as

a density ρn of cells of the lineage cn that will depend both on the position and the time. This will lead to

a reaction-diffusion equation governing the density of lineage cn under the SCB dynamics that reads:

(1.2)
1

kd

∂ρn
∂t

= − ∂

∂x
(xρn) +

kr
kd

∂2ρn
∂x2

+ ρn .

While this equation has no steady state solution, its time-dependent solution can be derived. We follow the

steps provided in [5].

1.2.2. Interpretation of ρn(x, τ).

Eq. (1.10) must be interpreted carefully: it is not telling us what is the physical density of cells of a given

lineage, but the relative strength of such a lineage at a given point and time in the competition with the

other cells to occupy a given position at a given time. That is: in an ensemble picture, the probability of

finding a cell of lineage n at position x at time t will depend on the relative strength of ρn(x, τ) with respect

to other densities. Essentially, we are circumventing the fact that there is only one cell per position, and we

are projecting such constraint at the ensemble level as the result of a competition where the possibilities to

win are proportional to ρn(x, τ).
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1.2.3. Solutions of the 1D SCB equation.

To solve Eq. (1.2) we impose as initial condition that ρn(x, 0) ∼ N(n, 1/2), i.e., a normal distribution

centred at n with variance 1/2. This condition describes a single cell located at position n as a density that

spreads significantly only at n ± 1/2 and whose integral is equal to 1, as is expected for a single clonally

labelled cell. Natural boundary conditions apply [8]. The solution of Eq. (1.2) factorizes as follows:

(1.3) ρn(x, t) ∝ φ1(x, t)φ2(t) ,

where ∝ implies ”up to some multiplicative positive constant” and φ1 is the solution of:

(1.4)
∂φ1
∂τ

= − ∂

∂x
(xφ1) +

kr
2kd

∂2φ1
∂x2

,

and φ2 is the solution of:
∂φ2
∂τ

= φ2 .

which has a simple solution:

(1.5) φ2 ∝ eτ ,

where we have defined for convenience the rescaled time unit τ = kdt. Thus, φ2 represents the fact that cells

proliferate at rate kd so that the entire lineage increases in size exponentially regardless of its position.

Computing φ1, we first observe that (1.4) is a Fokker-Planck like equation for the time evolution of the

probabilities of a random variable following a mixture of Brownian motion with a given amplitude kr/kd

and a drift parameter xφ1(x, τ). Equation (1.4) has its stochastic differential equation counterpart in:

(1.6) dX = Xdτ +

√
kr
kd
dW ,

which is equivalent to Eq. (1.1). Recall that Eq. (1.6) explicitly tracks the real trajectory of a cell (and not

lineage prevalence. The above described stochastic process has no stationary solutions, which is in agreement

with the SCB dynamics: all cells will sooner or later be pushed out from the system. Imposing the following

initial conditions t0 = 0, φ1(x, 0) ∼ N(n, 1/2) and natural boundary conditions, we observe that:

d
(
e−τX(τ)

)
= dX(τ)e−τ − e−τX(τ)dτ .

Then, multiplying both sides of Eq. (1.6) by e−τ , and after some algebra, one finds that:

d
(
e−τX(τ)

)
=

√
kr
kd
e−τdW ,

leading to:

(1.7) X(τ) = x0e
τ +

∫ τ

0

√
kr
kd
e(τ−s)dW .

The integral is a standard stochastic integral with respect to a Wiener process. According to Ito’s isometry

[6] one has that the law governing the random variable described by the integral is a normal distribution
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N(0, σ2(τ)). In our case this reads:∫ τ

0

e(τ−s)
√
kr
kd
dW ∼ N

0,

∫ t

0

∣∣∣∣∣
√
kr
kd
e(t−s)

∣∣∣∣∣
2

ds

 ,

which means that the explicit form of σ2(τ) is thus given by:

σ2(τ) =

∫ τ

0

∣∣∣∣∣
√
kr
kd
e(τ−s)

∣∣∣∣∣
2

ds =
kr
2kd

(
e2τ − 1

)
.(1.8)

Finally, from Eq. (1.7), we conclude that the time dependent mean, µ(τ), is:

µ(t, x0) = x0e
τ .

That leads to:

(1.9) φ1(x, τ) ∝

√
kd

2πkr (e2τ − 1)
exp

{
− kd

2kr

(x− neτ )
2

(e2τ − 1)

}
.

According to Eqs. (1.3, 1.5) and (1.9), the solution of the SCB equation (1.2) can be fairly approximated as:

(1.10) ρn(x, τ) ∝
√

kd
2πkr

exp

{
− kd

2kr

(
x− neτ

eτ

)2
}

.

1.2.4. Clone survival probability.

According to the definition of ρn(x, τ), the probability for a lineage n to survive after time τ , p(cn, τ) will

be defined in relation to p(c0, τ) as:

(1.11)
p(cn, τ)

p(c0, τ)
=

∫ L

0

ρn(x, τ)dx

(∫ L

0

ρ0(x, τ)dx

)−1
.

p(c0, τ) is taken as a reference since:

(∀n, τ > 0) p(c0, τ) ≥ p(cn, τ) .

The absolute values of these probabilities can be computed numerically by simulating the SCB dynamics

[see section 3 of this Supp. Note for details]. We observe that, ρn(x, τ) tends to a constant ρn(∞) > 0,

defined as:

ρn(∞) = lim
τ→∞

ρ(x, τ) ,

which is independent of x, taking the explicit form of:

ρn(∞) ∝ exp

{
− kd

2kr
n2
}

.

In consequence, one has that:

lim
τ→∞

∫ L

0

ρn(x, τ)dx = Lρn(∞) .
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Therefore, the probability that lineage cn occupies the whole organ satisfies the following ratio:

(1.12)
p(cn,∞)

p(c0,∞)
= exp

{
− kd

2kr
n2
}

.

Since we know that the whole system becomes monoclonal at large times, we can impose the normalization:∑
n≤L

p(cn,∞) = 1 .

Leading us to a discrete Gaussian distribution:

(1.13) p(cn,∞) =
1

Z
exp

{
− kd

2kr
n2
}

,

consistent to what is found in [5], and where the normalization constant Z is defined as:

Z =
1

p(c0,∞)
=
∑
n≤L

exp

{
− kd

2kr
n2
}
, p(c0,∞) = ρ0(∞) .

According to Eq. (1.10):

ρ0(∞) =

√
kd

2πkr
,

as expected for a Gaussian distribution centred at 0 and with σ2 = kr/kd.

1.2.5. Generalization of the SCB dynamics to higher dimensions and different geometries.

To properly study the SCB dynamics in more general geometries, let us consider a Riemannian manifold

equipped with a metric tensor g, with components gij [9]. The property of local flatness is assumed [9, 10].

Roughly speaking, this implies that, for small enough regions of the manifold, the geometry has euclidean

properties. Let us consider that the push up force due to proliferation has an origin (equivalent to the center

of the crypt in intestine) and is projected along the direction of a single coordinate z (the crypt-villus axis

in intestine). The general expression of the drift term will be described by the function v(z), defined as the

local speed of a cell at position z due to the proliferation of cells located at z′ < z:

(1.14) v(z) ≡ dz

dt
.

In the case of a 1-dimensional system, as the one described by Eq. (1.2), one has that v(x) = kdx. The

surface/volume units are given such that an average cell has a surface/volume of 1 in the corresponding

units. Consider the starting position of our cell to be zn along the coordinate z. If the other coordinates of

the manifold are x1, ..., xn−1, the surface/volume encapsulated below position zn is given by:

(1.15) Sn =

∫
...

∫ zn

0

√
gdx1...dxn−1dz ,
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where g is the determiner of the metric tensor, i.e.:

g =

∣∣∣∣∣∣∣∣∣∣∣∣

g11 g12 . . .

g21 g22

. .

. .

. .

∣∣∣∣∣∣∣∣∣∣∣∣
Cells are assumed to divide at rate kd. That implies that kdSn new cells will be produced below the cell

located at zn. This will create an extra surface/volume per time unit of:

dSn
dt

= kdSn ,

that will project into the coordinate z. Using that:

dSn
dt

=
dSn
dz

dz

dt
,

and, then, Eq. (1.14), one can find the general expression for this projection, which reads:

(1.16) v(zn) = kd

(
dSn
dz

)−1
Sn .

Local flatness enables us to consider that, locally, random fluctuations due to kr may occur in all directions

over a flat geometry, either isotropically or not. For the study of lineage prevalence as a function of the

position z only the projection of such fluctuations over the coordinate z matters, since the other contributions

cancel out. We call such a projection of the stochastic fluctuations kr(z).

According to the above results, the general equation for the evolution of cell lineage prevalences along the

coordinate z will read:

(1.17)
∂ρn
∂t

= − ∂

∂z
(v(z)ρn) +

kr(z)

2

∂2ρn
∂z2

+ ρn .

1.2.6. Effective number of stem cells emerging from the SCB dynamics.

In many cases of relevance, probabilities of lineage prevalence under SCB dynamics display a well defined

scale for the fluctuations leading to effective retrograde movements. The strength of these fluctuations will

define the stem cell number as the amount of cells being at lower distance to the origin than the typical length

of fluctuations over time scale at which the competition resolves. However, one has to bear in mind that the

approach presented here does not assume any intrinsic changes in cell properties, so the effective stem cell

number will be linked to the probability cut-off one wishes to use (i.e. the minimal probability of lineage

survival to consider a cell to be an effective stem cell).

In the simplest 1D case, since σ ∼
√

kr
kd

, and given that kr = 0 implies the existence of 1 stem cell, one

can conclude that the effective stem cell number, Ns, can be defined as:

(1.18) Ns ≈ 1 + a

√
kr
kd

, a = 1, 2, 3... ,
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where the parameter a depends on the cut-off probability used to define functional stem cells (defining the

number of variances away from the mean: if a = 1, Ns would be the amount of cells whose lineages persist

in the 68% of the monoclonal conversions, if a = 2, Ns will refer to the amount of cells whose lineages

participate to the 95.5% and so on).

Now we consider a more general case. Consider that, as we did above, that tissues can be abstracted as a

n-dimensional (x1, ..., xn−1, z) Riemannian manifold equipped with a metric tensor g where the local flatness

property holds. Assume there is an origin from which the push up force due to proliferation is exerted along

the positive direction of a single coordinate z, and that the lineage survival probabilities associated to the

SCB equation (1.17) for this particular case have a bounded σ. An effective stem cell is defined as any cell

within a distance aσ, a = 1, 2, ..., of the niche center, meaning that, there is a belt containing

∼ aσ + 1 ,

cells from the origin of coordinate z to the last cell that is inside the stem-cell region, considering that

a = 1, 2, ... determines the confidence interval. Assuming that we have a well defined and bounded σ, the

effective number of stem cells emerging from the SCB dynamics in general geometries, assuming a certain

confidence interval aσ, Ns(a), will be:

(1.19) Ns(a) ≈
∫
...

∫ aσ+1

0

√
gdx1...dxn−1dz .

1.3. SCB dynamics in real crypts.

1.3.1. Crypt geometry and experimental data structure.

In the real crypt geometry, the cells are not organized along a one-dimensional line, but are arranged in a

2D surface, that can be approximated by an hemisphere connected to a cylinder (see Fig. 2e and Extended

Data Fig. 9a–d). In this section, we show how to adapt the SCB dynamics to this specific geometry.

The experimental data was acquired, following the literature, by assessing the clonal dynamics of cells as

a function of their cell row/height (resp +0, +1, +2, +3). Importantly, in a hemispherical geometry, the

number of cells per row is expected to be approximately constant (see Extended Data Fig. 9d), as seen in the

data. Indeed, considering sections of hemispheres at different heights, `0, `1, `2, `3, such that the difference

between successive heights is constant, ∆` gives rise to identical surfaces

A0 = A1 = A2 = A3 .

In consequence, jointly with the fact that data is given at different height levels (and movements through

them), this tells us that our SCB dynamics in the crypt takes place over four levels of the same size (i.e., the

same number of cells). Consistently, in order to derive theoretical predictions, we can project our dynamics

into a 2D square-like surface with periodic boundary conditions, namely, a cylinder. In Extended Data Fig.

9d, we describe this mapping and in Extended Data Fig. 1b we provide the empirical number of Lgr5+ cells

per level, which is fairly uniform and supports our approach.
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1.3.2. SCB over a 2D cylinder is formally equivalent to the 1D problem.

We then need to apply the theory described above to the particular case of cylindrical geometry. In a

cylindrical surface of radius R, we have that:

√
g = R .

In consequence, Eq. (1.15) reads:

Sn =

∫ 2π

0

dθ

∫ zn

z=0

√
gdz = 2πRzn ,

resulting into drift parameter v(z), after application of Eq. (1.16):

v(z) = kdz ,

as in the 1D case. Therefore, the SCB dynamics in a cylinder where the push up force is projected towards

the z coordinate is formally equivalent to the 1D case. Specifically, Eqs. (1.2, 1.10, 1.11, 1.12) and (1.13)

have exactly the same form, simply considering the change kr → kr(z). The long-term dynamics is well

fitted with predicted Gaussian distribution (see Fig. 2d and Extended Data Fig. 9e). Empirical ratios kr/kd

have been fitted using long term data (56 days), as this is a very long time compared to the other timescales

of the problem, allowing us to safely assume that this is within in the asymptotic regime governed by Eq.

(1.13). Very good fits are obtained for both the large and SI using non-linear mean square fit provided by the

standard python library scipy.optimize, leading to kr/kd ≈ 1.84, with a mean square error of ∼ 10−2

for the SI and kr/kd ≈ 0.32, with a mean square error of < 10−5 for the LI.

Importantly, we also verified that numerical simulations and the theoretical derivation above agree very

well with each, both for the steady-state survival probability and its temporal dynamics (Extended Data

Fig. 9h,i), so that both can be used to fit the data of the 1D survival probability. For long-term monoclonal

conversion however, the discrete simulations need to be used (see below for details) as monoclonal conversion

is intrinsically a concept that requires a discrete finite system. We also use 2D simulations (see below) in

the subsequent statistical analysis because it allows us more straightforwardly to derive non-parametric

confidence intervals based on the amount of data collected in each experiment.

1.3.3. Effective number of stem cells in 2D cylindrical geometry.

Due to the 2D nature of the cylinder, the number of effective stem cells will differ from the 1D case by

a geometrical pre-factor. In particular, we have to solve Eq. (1.19) considering a 2D cylindrical surface,

with
√
g = R. According to the above reasonings, the scale of the (vertical) fluctuations will be given by

σ ∼
√

kr(z)
kd

. In consequence, If we consider 2σ’s of representativeness, we will cover around 95.5% of the

cases, leading the effective number of stem cells to be defined as:

(1.20) Ncrypt ≈ 2πR

1 + 2

√
kr(z)

kd

 .
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We identify 2πR as the perimeter of the crypt in units of cell length and, thus, the number of cells per level

Ng. According to empirical observations (see Extended Data Fig. 1b), we assume that:

Ng ≈ 5 cells ,

which leads to the estimation of effective number of stem cells, considering an amplitude of fluctuations of

2σ, to be:

Ncrypt ≈ 5

1 + 2

√
kr(z)

kd

 .

1.4. Nature of the stochastic rearrangements and retrograde movements.

At the mathematical level, the parameter kr(z) describes fluctuations in the position of cells along the

axis defined by the push-up force exerted by proliferation. However, this description remains agnostic as

to the underlying nature of the rearrangements, both at the cellular and molecular levels. In consequence,

kr(z) can be the outcome of several processes, whose only common ingredient is that they result in stochastic

fluctuations in the position of cells along the crypt-villus axis. We discuss some possibilities below.

1.4.1. Relation between retrograde and random movements.

We consider that the cells populating the 2D surface of the crypt perform stochastic rearrangements in

four generic directions: up, down, left and right, at rate kr. ”Left” and ”right” movements are irrelevant

from the point of view of the model, because they do not change the favourability of the cell position. If

the direction taken by the cell is ”down”, we call this movement ”retrograde movement”, as this is the key

process that can lead to non-trivial competition (in its absence, only the first row of cells compete on the

long-term). However, because of the requirement of constant cellular density, any ”retrograde” movement

downwards from a given cell has to be compensated by an upwards movement from another cell. Therefore,

even in scenarios where stem cells in SI actively migrate actively towards the bottom of the crypt (consistent

with the experimental findings of Fig. 3), the constraint imposed by homeostasis (constant cellular density)

implies that the net dynamics of the retrograde movements will result into stochastic rearrangements.

1.4.2. Epithelial ”tectonic” movements.

In the simulations, we assume that the stochastic re-arrangements are only between nearest neighbours,

which switch position. However we could also imagine more collective modes of re-arrangements, i.e. ”tec-

tonic” movements. By ”tectonic” movement, we denote global rearrangements of the epithelium relative to

the bottom of the crypt. Numerical simulations show that such (stochastic) tectonic movements are also

well-described in our coarse-grained model, simply by renormalizing the effective rate of rearrangements kr

over the long term [5]. However, one would expect tectonic movements to change the short-term dynamics: If

stochastic rearrangements come from tectonic movements, one does not expect clonal dispersion for instance,

despite multiple cell rows being able to contribute long-term.
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2. Numerical simulations of the 2D SCB dynamics and statistics

Although the analytical arguments above provide accurate predictions for key observables arising from

the stochastic conveyor belt dynamics (along the crypt-villus axis), such as the evolution of the survival

probability as a function of starting position, they do not take into account the (finite) circumferential size

of the crypt. This is necessary in particular to understand metrics such as monoclonal conversion time. Past

models have concentrated on this aspect by modelling the neutral dynamics of lateral competition along a

1D ring of equipotent stem cells [1, 2, 3], which leads to a diffusive process of monoclonal fixation. However,

combining the two dynamics is highly non-trivial in the general case, leading us to rely on 2D numerical

simulations for parameter-fitting and predictions.

2.1. Details on the implementation of 2D simulations.

Simulations are done on a square lattice with periodic boundary conditions in order to reproduce a

cylindrical geometry. Such a cylinder consists of L rows and Ng cells per row, so that we define cell position

by the coordinate (i, j), where i ∈ [0, L] and j ∈ [1, Ng] (periodic boundary condition used along the j

direction). Based on the data, we take Ng = 5 (see Extended Data Fig. 1b), whereas the number L of rows

chosen is largely irrelevant (as shown in the sections above, as long as L �
√
kr/kd) so we take L=20 in

the simulations. We define the crypt region as the first 4 rows based on the pattern of Lgr5+ expression

observed in vivo, so that the simulations are initialized at t = 0 by labelling a cell at a random position in

the first 4 rows (20 positions possible).

Cells divide as a Poisson process at rate kd, in a spatially isotropic manner: 50% of divisions occur along

the crypt-villus axis, so that a cell at position (i, j) produces an identically labelled cell at position (i+ 1, j),

and displaces all cells of column j above it by +1. The rest of the divisions occur laterally, so that a cell at

position (i, j) produces an identically labelled cell at position (i, j − 1) or (i, j + 1) and the cell that was at

this position is expelled along side its column to a position (i + 1, j − 1) or (i + 1, j + 1) (see Fig. 2e for a

sketch).

Moreover, we also assume that cells can reposition to different rows, as a Poisson process at rate kr.

As discussed above, several microscopic implementations of this process can be envisioned, but give rise to

similar behavior, so that we implement the simplest version: repositioning exchanges the positions of a cell

at position (i, j) with one of its neighbours of the same column, either (i+1, j) or (i−1, j). We note that we

could also implement a process of dispersion/repositioning along the lateral direction, but i) such a process

is neutral, in the sense that it does not contribute to repositioning towards the center of the niche, and ii)

little clonal dispersion is observed in the lateral direction in vivo, arguing against a strong prevalence of such

events.

2.2. Statistical approach for fitting and confidence intervals.

As we have shown analytically, the probability of lineage survival p(cn) as a function of starting position n

of the mother cell rapidly converges towards a Gaussian form, despite its amplitude decreasing over time as

monoclonal conversion occurs. For fitting the long term (8-week intravital) tracing data, it is thus convenient
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to normalize the amplitude of p(cn) by its sum over all cn (which becomes the probability of a a cell at a

given starting site winning the competition compared to other site, rather that the fraction of surviving

clones at a given site, among those that started at the same site).

We thus ran 2D numerical simulations for T = 56 days, simulating 10000 clonal labelling events, and using

a division rate of kd = 5 per week (although as mentioned above, the exact value of the division rate irrelevant

for the fit to long-term normalized survival distributions). We performed a parameter sweep kr/kd ∈ [0, 10],

and used a least-squares method on the normalized survival probability distribution of the 8-week intravital

tracing (see Fig. 2d), to identify the best-fit value of kr/kd in both SI and LI. For completeness, we have

also performed a sensitivity analysis where we report the behavior of the model for several time points when

varying independently the values of kr and kd (Extended Data Fig. 9h).

To build confidence intervals in a non-parametric way, we used a bootstrapping with replacement approach.

The SI and LI data consisted respectively of 268 and 294 clones across starting positions i = 0, 1, 2, 3, so we

re-sampled the dataset 1000 times for both LI and SI, and performed a least-squares fit to the theoretical

expectation for each re-sampled dataset. This allowed us to build 95% confidence intervals together with

best-fit values (which are reported in the main text).

We found that in both SI and LI, the predictions using the best fit values of kr/kd captured well the

gradual decay of survival probability with position observed in the data (Fig. 2d). The shaded intervals

shown were obtained by running the model with the best-fit value only, but simulating only the observed

number of clones (resp. 323 and 351), and calculating 1 standard-deviation confidence intervals, to give a

feeling for the influence of finite sampling of the model prediction.

With the best-fit values extracted via the long-term survival probability, we then tested whether the model

could predict the short-term evolution of the survival probability as a function of starting position. Unlike

its long-term counterpart, this transient does depend on the absolute value of the division rate kd, which sets

the time-scale of the problem. However, this value is heavily constrained by past cell kinetics measurements

from the literature, which have measured a typical division time of 1.2 days at homeostasis [1, 2]. This is

also consistent with our own measurements of fb = 20 − 25% of cells labelled by a short EdU pulse (Fig.

1k,l). Indeed, given prior estimates of an S-phase duration of Ts = 7.5h being highly conserved [11] would

translate into a division time Ts/fb between 1.2 and 1.5 days. We note that although we find small statistical

differences between the proliferation rates of SI and LI (Fig. 1l), these were very small compared to the very

large value of the difference between kr in both regions (see below for more details). Together with our data

on the role of Wnt-dependent active migration in setting the value of kr, this argues that the main difference

between SI and LI is due to active retrograde movements.

2.2.1. LI.

We first started with the short-term LI data, and found that using a value of division time of 1.2 days,

together with kr/kd = 0.25 (95% CI: 0.05-0.55) yielded good predictive power. To quantify this, we calculated

an average residual s =
√∑n

i r
2
i /n, where ri is the difference between theoretical (best-fit value) and

experimental persistence, for day 2, 3, 4 and 56, and for position 0,1,2 and 3 (so that we sum over n=16
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data points), and found s = 0.07, indicative of a good fit. We then performed a parameter sweep over kd,

to check that the fit was not improved by choosing a different value of division time, and found an optimum

fitting value of a division every 1.4 days, within the range of value inferred from EdU pulse experiments

(see above), which only marginally improved the fit (s = 0.06). This demonstrates the predictive power of

the theory. Computing as above the confidence interval on the prediction with the best-fit value, but finite

statistics (number of crypts considered in the respective experiment, shaded area in Fig. 3g, Extended Data

Fig. 9i,j,k) showed that all data points fell within the prediction.

Furthermore, setting the division rate to once every 1.4 days, and performing a parameter sweep to fit

kr/kd from the short-term data only (day 2, 3 and 4) led to a best-fit value of kr/kd = 0.4 (95% CI: 0-1), fully

in line with the value fitted from the long-term persistence. From the same data and simulations, we could

also extract the transfer probability between center and border rows in crypts (Extended Data Fig. 9l,m).

To do this, we calculate (both in simulations and data, at day 2, 3 and 4 of the tracings ) the probability for

clones that started at the border (resp. at the center) at day 1 to be either i) lost from the stem cell region,

ii) only in the crypt border, or iii) have some cells in the crypt center. Again, we found consistently good

agreement between data and the model (using the same values as above).

2.2.2. SI.

Using the same approach as in the LI, for the SI we found best value kr/kd = 2 extracted from the

long-term SI data. As expected from the higher clonal dispersion, we observed in the data a much larger

probability for border cells to go back to the center of the crypt (Fig. 3e), and consequently a weaker

gradient of clonal loss as a function of starting position (see Extended Data Fig. 9h,j,k). Screening again for

optimal values of division rate allowed for a very good fit (s = 0.07) of the survival probability as a function

of time and starting position (see Extended Data Fig. 9j). However, this optimal fit was achieved for a

slower division rate than inferred from EdU (division time of 2.8 days). This initially puzzling feature came

from the fact that persistence is globally higher (on average over all positions) than in LI, which cannot be

explained by changes in kr. One possibility could be that the method of observation (and presence of an

imaging window) causes the dynamics to be slower than expected on short-time scales in SI. Alternatively

if we constrain the division rate to be the rate as LI, a way to explain the discrepancy is to assume that

the labelling method labels preferentially cells about to undergo mitosis: if we initialise the simulation by 2

cells instead of 1 in the SI, then we can achieve the best-fit of the short-term data (s = 0.07) for the same

division rate as SI (one division every 1.4 days).

We then turned to the transfer probability between center and border in small intestinal crypts. As

expected, the ratio of starting border cells making it to the center regions to those being lost was much

higher in SI than LI (0.18 in LI vs 0.57 in SI at day 2, 0.02 in LI vs 0.19 in SI at day 3, 0.2 in LI vs 0.18

in SI at day 4), which is in very good quantitative agreement with our model predictions (see Fig. 3g,h,

Extended Data Fig. 9l,m)

2.2.3. SI with LGK974 inhibitor.
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Next, we sought to challenge the model further by confronting it to perturbation experiments. We thus

re-analyzed published data [12] on stem cell dynamics in the small intestine upon LGK974 treatment (which

has been shown to accelerate monoclonal conversion) within the framework of our model, as well as performed

new genetic experiments using APC hypomorph mice.

In LGK974 treatment condition, as we do not have access to the long-term persistence as a function of

starting position, we set the division rate to once every 1.4 days, and proceeded as above to fit kr/kd based

on the short-term persistence as a function of starting position (at day 2, 3 and 4). Interestingly, we found

that kr/kd = 0.4 (95% CI: 0-1, a similar value to the one extracted in wild-type LI), provided again a good fit

for the dataset (see Fig 3g). We note that in this experimental condition, we could explain the dynamics of

the data with only one initially labelled cell, although further work should be performed to understand how

the condition changes exactly the initial labelling of the system. Overall, this analysis argues that LGK974

treatment nearly abolishes the retrograde movements observed in normal small intestinal crypts, which we

observe experimentally (see Fig. 3e), making the dynamics closely resemble the one of large intestinal crypts.

Similarly, turning to the transfer probability between centre and border, we found that border cells nearly

never returned to central position over the time course of the live-imaging (occurring at a single day for a

single clone, out of 19 clones imaged at days 2, 3 and 4), and that the full transfer probabilities in time were

well-captured by the model (see Fig. 3h).

2.3. Clonal fragmentation from fixed data.

Another way of independently testing the model was to test whether the kr/kd parameter that we extracted

from the long-term clonal survival experiments could recapitulate not only the short-term survival dynamics

(section above), but also the spatial profiles and shapes of clones at a fixed time point. Intuitively, large

values of kr/kd should give rise to extensive clonal fragmentation, which should manifest as non-cohesive

clones (Extended Data Fig. 10a).

We reasoned that such differences should be most manifest for intermediary time points: at very late time

points, clones occupy a significant fraction of the crypts, and extend along the entire crypt-villus axis, so

that fragmentation will be ”geometrically” reduced, while for very early time points, there are too few cells

to observe fragmentation. We thus settled experimentally on day 7 post-clonal labelling (Extended Data.

Fig. 10b), and we systematically assessed the number of clones which were cohesive or non-cohesive in LI vs

SI (we defined a non-cohesive clone as one were a gap of at least one non-labelled cell was observed between

two clonal fragments along the crypt-villus axis).

Importantly, we found clear differences between SI and LI in the experimental data (Extended Data Fig.

10b,c): whereas 66% ± 20% of clones showed fragmentation in SI, this was only the case for 21% ± 16% of

clones in LI (we indicate mean ± SD). This validates qualitatively the hypothesis of higher values of random

relocation movements kr in small intestine, in an independent manner.

Furthermore, to test whether this could also be recapitulated quantitatively, we ran the same model as

above for SI and LI for 7 days, using the exact same values of kr/kd = 2 and kr/kd = 0.25 respectively.

Interestingly, defining clonal fragmentation in the same way (one non-labelled cell between two labelled cells
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along the crypt-villus axis), we found that the simulations predicted 27% of fragmentation in LI and 59% in

SI (Extended Data Fig. 10c), in good agreement with the data.

2.4. Timescale of monoclonal conversion.

Finally, we sought to test whether the model could also capture the long-term conversion towards crypt

monoclonality that is observed in static lineage tracing experiments. Such experiment provides an inde-

pendent test of our framework, all other parameters having been measured or fitted as previous described.

Furthermore, we also provide a systematic theoretical analysis for the model expectation across all values of

kr

For kr = 0, the neutral 1D dynamics of [1, 2] holds, so that crypts drift to monoclonality on the charac-

teristic time scale of Tm ≈
N2

g

kd
. We then sought to compute Tm in our stochastic conveyor belt model, as a

function of kr/kd and Ng. We ran the same dynamics as described above, and defined crypts as monoclonal

when all cells in the first 4 rows were labelled. We then computed the evolution of the average fraction of

monoclonal crypts over time. Interestingly, using values of kr/kd = 0.25 (LI) and kr/kd = 2 (SI), together

with the same division rate as before (division every 1.4 days) yielded an excellent quantitative agreement

with experimental data (see Fig. 4c). For LI, the 1D ring model predicts Tm ≈
N2

g

kd
≈ 5w, close to the

observed dynamics in 2D (which is expected for such low kr), where the dynamics is significantly slower for

SI.

To make this more systematic, we simulated the monoclonal conversion for a large range of parameters

kr/kd ∈ [0, 20]. Interestingly, we found that the monoclonal conversion curves for different values of kr

(see Extended Data Fig. 9f,g) could be rescaled on each other, and that the rescaled monoclonal time was

well-fitted by a square-root dependency Tm(kr)/Tm(kr = 0) ≈
√
kr (see Extended Data Fig. 9f,g), arguing

that monoclonal conversion occurs on timescales quadratic in Ng, and quasi-linear in Ns.

Interestingly, small intestinal crypts in the presence of the LGK inhibitor drift to monoclonality even

faster than expected from Ng = 5 and kr = 0, even though the cell division rate was reportedly unaffected

[12]. However, for very small values of kr, our definition of discrete cell rows (which arises from projecting

SCB dynamics from a half-sphere to a cylinder) becomes too strong. Indeed, the LGK monoclonal conversion

time scale can be well-fitted by a model where kr ≈ 0 and Ng = 3 (see Fig. 4d), arguing that retrograde

movements become so small that only certain cells at the very ”bottom” of row 0 can now win the competition

over the long-term.

2.5. Dynamics of filling after ablation.

Simulations of the SCB dynamics in regenerative scenarios after ablation were performed assuming, as

initial condition, that the crypt is empty at levels (0,+1,+2,+3), but that an additional level, +4, is populated

by LGR5+ cells. These cells, in turn, divide at rate kd and perform retrograde movements at rate k̂r. If a

duplication event at position j happens such that either the position j − 1 or the position j + 1 is empty,

the newborn cell occupies position j − 1 or j + 1 respectively. If both positions j − 1 and j + 1 are empty,

the newborn cell choses one of the two positions, either j − 1 or j + 1, at random, with equal probability.
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If a cell at position j undergoes a retrograde movement towards position j − 1, just moves to that position,

if such a position is empty, or exchanges its position with the cell located at j − 1. For the sake of clarity,

we write k̂r instead of kr as we did in confluent tissue at homeostasis. The reason lies in the potential

existence of gaps in the epithelium in the regeneration scenario, leading to situations in which a retrograde

movement does not imply an exchange of positions, i.e., it does not trigger a random fluctuation, but a

net downwards movement. In addition, one expects, specially at the beginning of the regeneration process,

that the mechanical properties of the tissue may be different from the ones found for a confluent tissue in

homeostasis. It is worth to note that this dynamics converges to the standard SCB dynamics we described

so far as soon as the tissue becomes confluent.

Starting from an empty crypt as described above, we run the SCB dynamics and we track the position

of the lowest cell in time. As expected, for comparable kd values, the larger k̂r, the faster is the occupation

of the lower levels –see Fig. 4h. This qualitative prediction of the model allows us to test the behaviour of

the regenerative dynamics. From real data we extract the position of the bottom-most LGR5+ cell for days

2,4,7 and 15 after ablation –see Fig. 4i. Assuming kd ≈ 0.5, –i.e., ∼ 1 division every two days–, we fitted the

positions of the bottom-most cells in these sequence of days with a single value of k̂r. Results show a good

qualitative agreement with data along the time sequence –see Fig. 4h. Best fits give us a k̂SIr ≈ 5k̂LIr , fully

compatible with the other results corresponding to confluent tissues at homeostasis shown in this study.

3. Comparison to previous models

Previous studies performing lineage-tracing in intestinal crypts had identified a faster drift to monoclon-

ality in large compared to SI (around 3-6w vs 8w for half the crypts to become monoclonal) [1, 2]. This was

also found using a continuous labelling approach, where the time scale for monoclonality can be inferred by

comparing the fraction of partially labelled to fully labelled crypts [3], and where colon was found to drift

to monoclonality 2-3 times faster than SI. In this latter study, this difference was ascribed to differences in

the symmetric division rate λsym of stem cells in SI (1-2 symmetric divisions a week) versus LI (3 symmetric

divisions a week), with functional stem cell numbers being similar in both regions (Ns = 5 − 7 per crypt).

Given the fact that the stem cell division rate λ is close to once a day in both regions, this would mean that

most divisions in SI are asymmetric (at a rate λasym). This also goes against our findings from live-imaging

of a larger number of effective stem cells in SI compared to LI.

However, Ref. [3] makes three important assumptions: i) Ns compete neutrally along a 1D ring (which

leads to monoclonal conversion on the time scale of N2
s /λsym, ii) continuous labelling (arising in the case

of spontaneously occurring frameshift mutations) occurs at the same rate α in both small and LI, and iii)

seemingly, only symmetric divisions can give rise to a mutation that leads to labelling, so that the rate of

monoclonal crypt labelling is:

(3.1) ∆Cfix = αλsym .

Assumption ii) and iii) are critically important, because the differences of symmetric division rate λsym

between SI and LI reported in Ref. [3] then arise directly from observed differences in ∆Cfix. However,

little evidence of intrinsically asymmetric division exists in intestinal crypts, and no ”immortal strand” has
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been observed upon division: thus labelling events should also occur upon asymmetric division event, and

the 3-fold differences observed in symmetric division rate ∆Cfix can only arise from difference in absolute

division rate (which does not seem to be the case between SI and LI) or labelling rate α. Given that ∆Cfix

is observed to be 2.8 times larger in LI compared to proximal SI, we can then infer that α should be 2.8

times larger also in LI. Importantly, α also enters into the fraction of partially labelled crypts [3]:

(3.2) Cpart = αNcrypt(Ncrypt − 1)/2 ,

which is used in Ref. [3] to deduce the number of stem cells per crypt Ncrypt in both regions. Correcting

for α can then be used to predict stem cell numbers. However, Eq. 3.2 critically depends on assumption i),

i.e.dynamics of stem cells along a 1D ring, and would take a different form in different geometries [13].

In the limiting case kr/kd ≈ 0 (which is relevant for LI from our live-imaging data), only a single row

of stem cells contributes, so our data supports Ncrypt ≈ 7. This is in close agreement with the findings

of Ref. [3] in colon, which is expected because Eq. 3.2 holds in this effectively one-dimensional situation

(with Cpart = 2.29× 10−5), and if half of divisions are lateral, a global division rate of once every 1-1.5 day

translates to a symmetric division every 2-3 days as assumed in [3]. In SI, fitting as discussed above from

∆Cfix that αLI = 2.8αSI , we can still first apply the 1D ring model (Eq. 3.2, with Cpart = 1.32 × 10−5

in proximal SI), which then predicts a slightly larger stem cell number in SI of Ncrypt ≈ 9. However, in

this case, the 1D ring approximation starts losing its validity, since we find in our live-imaging data that

Ns ≈ 2.5 (which leads to Ncrypt ≈ 12).

In the general case, one should note the definition of the stem cell number (and how it influences the

timescale for monoclonality Tm) differs between the SCB dynamics model and the 1D ring model. Getting

such a simple analytical approximation for Cpart is more difficult, in particular because there are two length

scales defining stem cell number Ncrypt = NgNs: the number Ng of stem cells per row (defined by tissue

geometry) and the number Ns of rows participating to the competition of the SCB dynamics. As discussed

above however, the time to monoclonality Tm scales in a different manner with Ng and Ns, with a quadratic

scaling in Ng as in the 1D ring model, but a quasi-linear scaling in Ns. This is consistent with the fact

that SI drifts to monoclonality around 1.6 times slower than LI (given that we find Ns in SI around twice

larger than in LI). This is also consistent with the ratio of partial crypts in SI vs LI found in Ref. [3], when

correcting for the different mutation rate:
CSI

partαLI

CLI
partαSI

≈ 1.6.
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