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SUPPLEMENTARY METHODS 

Sample collection 

A total of 123 cancer-free volunteers donated a normal skin sample obtained from the margin of 

skin excision biopsies undertaken to remove a cutaneous benign lesion (Table S1). Seventy-nine 

samples were collected from skin areas with intermittent sun exposure (back, chest, legs and 

upper arms), and 44 samples were obtained from chronically sun-exposed skin areas (neck, face 

and hands). Samples were recruited at the Department of Dermatology of two hospitals from 

Castellon Province, Spain (Castellon University General Hospital and La Plana University 

Hospital). Only one sample was recruited per donor due to ethical reasons. All participants 

provided a written informed consent. The study was approved by the Ethics Committee of the 

Jaume I University of Castellon (Spain).  

 

An elliptical excision was performed for removing each skin lesion. Excision design followed 

the standard length-to-width ratio of 3:1, with apical angles of less than 30 degrees and surgical 

margins of 1 to 3 mm. In all excisions performed, the surgical margin was the minimum 

possible to perform the primary closure achieving a cosmetically acceptable scar. One of the 

two sharp ends of the biopsies (benign area) was collected for this study.  

 

Immediately after resection, tissue samples were submerged in RNAlater Tissue Collection 

Solution (Thermo Fisher Scientific, Walham, MA, USA) and stored at 4ºC overnight. Then, the 

epidermis was separated from the dermis by incubating the tissue sample in 3.8% ammonium 

thiocyanate (Sigma-Aldrich, St Louis, MO, USA) in PBS (pH 7.4) at room temperature for 3 

hours. Subsequently, the epidermis was immersed in RNAlater solution and stored at -20ºC 

until sample processing. 

 

Genomic DNA was isolated from fresh-frozen normal epidermal samples with the QIAamp 

DNA Mini Kit, (Qiagen, Hilden, Germany). DNA was stored at -20ºC until use. 
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Phenotypic data collection 

Each participant completed a standardised questionnaire to collect information on sex, age, 

pigmentation traits (skin, hair and eye colour), skin sensitivity to sunlight (tanning ability versus 

tendency to burn), freckling degree, history of childhood sunburns, and sun exposure habits. 

Pigmentation- and sun sensitivity-related traits were used to group individuals according to 

Fitzpatrick’s skin type classification. Detailed information related to signs of sun damage in the 

skin area biopsied (pigmented spots, blotches, and wrinkles) was also recorded. To avoid 

misclassification, each participant completed the questionnaire under the supervision of a 

professional. 

 

Sequencing of MC1R coding region 

The coding sequence of the MC1R gene was directly sequenced in all samples, as previously 

described [1]. Non-synonymous MC1R mutations were then defined as ‘R’, ‘r’ or ‘p’ 

(pseudoallele) alleles according to their impact on protein function, following criteria previously 

described [2].  

 

Ultra-deep targeting sequencing 

A panel of 46 genes was chosen to perform ultra-deep targeted sequencing (Table S3). These 

genes have been found to be often involved in skin cancer development [3–6] and/or have been 

shown to be frequently mutated in normal skin samples [7]. A custom bait capture was designed 

using NimbleGen SeqCap EZ (Roche, Basel, Switzerland) in order to target the exonic regions 

of the selected genes. The total size of the targeted regions was 0.32 Mb.  

 

The 46 genes selected for sequencing are: ADAM29, ADAMTS18, ARID1A, ARID2, BAI3, 

BRAF, CDKN2A, CRNKL1, EPHA2, EZH2, FAT1, FAT2, FGFR3, GRIN2A, GRM3, HRAS, 

IL7R, KMT2B, KRAS, MECOM, NF1, NOTCH1, NOTCH2, NOTCH3, NRAS, PIK3CA, PLCB1, 

PPP1R3A, PPP6C, PREX2, PTCH1, PTEN, PTPRB, PTPRK, RAC1, RB1, RBM10, SALL1, 

SCN1A, SF3B1, SPHKAP, STAT5B, TERT, TP53, and ZNF750. 
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Sequencing of paired-end 100bp reads was performed on an Illumina HiSeq 2000 machine. The 

average on-target coverage across samples was 923.44x, ranging from 377.96x to 1657.37x. 

The variation in coverage across genes and samples is displayed in Figure S11. Note that the 

mutation burden found per gene, as well as per sample, was not strongly influenced by 

differences in coverage (Figure S11C-D). 

 

Paired-end reads were aligned to the reference human genome (GRCh37d5) using the BWA-

MEM algorithm with default parameters [8]. Alignment files (BAM format) containing only 

properly paired, uniquely mapping reads were processed using Picard tools version 1.110 

(http://broadinstitute.github.io/picard/) to add read groups and remove PCR duplicates. Local 

realignments and base-quality recalibrations were conducted using GATK (v.3.2.2) [9]. 

 

Variant calling 

Processed BAM files were analysed to identify single-nucleotide variants (SNVs) and small 

insertions and deletions (indels). Somatic mutations are normally called by detecting 

mismatches present in a tissue sample that are absent in a matched control sample (normal 

tissue or blood from the same patient). Due to the absence of matched normal sample from each 

individual, processed BAM files were used to perform somatic variant calling by applying 

Mutect2 in tumour-only mode (version 4.0.8.1). Following Broad Institute recommendations for 

variant calling, putative artefacts and germline variants were removed with FilterMutectCalls 

and FilterByOrientationBias. We provided FilterMutectCalls the set of human variants from 

gnomAD (https://gnomad.broadinstitute.org). Functional annotations were added to the 

resulting list of variants using SnpEff [10], with the gene annotation based on Ensembl data 

release 75. Variants were then annotated using SnpSift [11], with population frequencies, 

conservation scores and deleteriousness predictions obtained from dbNSFP [12]. Each variant 

was also annotated using gnomAD, COSMIC, ExAC, and ClinVar. 

 

http://broadinstitute.github.io/picard/
https://gnomad.broadinstitute.org/
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Then, a number of post-processing filters were applied. Firstly, we focused on identifying and 

removing germline variants. The variant caller Platypus was used to identify germline variants, 

which were filtered out from the list of somatic mutations [13]. The tool was run using the 

human variant set from dbSNP as the reference, instead of using a matched normal sample. 

Mutations detected in each sample were additionally called against the aggregate variants from 

a panel of normal samples of 200 Spanish individuals sequenced in the facilities of the CNAG-

CRG (Barcelona, Spain) in order to remove common single-nucleotide polymorphisms (SNPs) 

and frequent technical artefacts. Indeed, variants were filtered out if they appeared in any of the 

ExAC, 1000 Genomes Project and dbSNP databases. As our filtering strategy seems to be quite 

rigorous, we decided to not remove those mutations that are included in the catalogue of 

somatic mutations found in human cancers (according to COSMIC and DoCM databases) for 

downstream analyses. These 75 putative driver mutations had a low VAF (mean = 0.021, max = 

0.093) and prevalence (mean = 1.42%, max = 2.74%) in our cohort. To reduce false positive 

calls, variants were also filtered out based on their allele frequency. Our study was designed to 

detect mutations present in a small fraction of the skin cells of the biopsy. Variant allele 

frequencies for somatic mutations in normal samples are more likely to have values below 50%, 

as shown previously in normal skin samples from eyelids [7]. Therefore, we filtered out a 

variant when the 95% confidence intervals (CIs) of its VAF (determined by the binomial 

distribution taking into account the depth of coverage) reached values greater than 50%. To 

increase the sensitivity of our analyses, we also opted to remove all variants present with VAF 

values two standard deviations away from the mean per sample. As we were working with a 

small cohort of unrelated patients, mutations with a prevalence higher than 25% in our cohort 

were further excluded. Next, we also excluded variants that have not been found to have a 

clinical relevance in human cancers (according to DoCM database) with a prevalence two 

standard deviations away from the mean of our cohort. That is because spontaneously-arising 

neutral mutations are extremely unlikely to affect samples collected from different patients. 

Finally, sites with very low coverage (n<50 reads) were also excluded to avoid testing sites with 

limited power to detect variants.  
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To check if the majority of mutations removed were germline variants or technical artefacts, we 

studied the context-specific mutation spectra for each set of mutations removed at each filtering 

step (Figure S2C). Note that nearly all substitutions removed were not related to UV damage 

(C>T mutations at dipyrimidine sites). Indeed, having a global dN/dS ratio << 1 may denote 

that the pre-filtering dataset of variants is contaminated with germline SNPs (Figure S2D). 

 

Validation of germline filtering procedure 

The efficiency of post-processing filters in removing germline variants from the final list of 

putative somatic mutations was tested by using two external datasets. 

 

Firstly, we called somatic mutations from the genome in a bottle set (NA12878, 

https://www.nist.gov/programs-projects/genome-bottle) using our variant calling pipeline. We 

use only the genomic regions that were captured in our experiments. The efficiency of the 

filtering procedure was assessed by comparing the predicted set of somatic mutations before and 

after applying the post-processing filters with the golden set of germline variants. Four out of 

257 germline variants (1.55%) remained in the pre-filtering list of somatic mutations, but they 

were filtered out after applying the filtering procedure (false positive rate of 0%).  

 

In addition, we used sequencing data from melanoma and adjacent non-malignant FFPE 

samples from six patients. The same panel of 46 genes was sequenced. Germline variants were 

called using HaplotypeCaller. Putative somatic mutations were predicted in all FFPE samples 

using our variant calling pipeline and filtering procedure. Then, we evaluated the proportion of 

germline variants included in the predicted set of somatic mutations before and after applying 

the filtering procedure. A significant number of germline variants were filtered out from the pre-

filtering set of somatic mutations after applying the post-processing filtering steps (mean rate of 

false positives decreased from 24.07% to 0.04%; Figure S2A).  

 

https://www.nist.gov/programs-projects/genome-bottle
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Evaluation of somatic mutations missed 

Since we applied a very stringent filtering procedure, we also evaluated the percentage of real 

somatic mutations likely missed in our dataset by two different ways. 

 

Firstly, after calling somatic mutations from the genome in a bottle set (NA12878, 

https://www.nist.gov/programs-projects/genome-bottle) with Mutect2 tumour-only mode, we 

removed the known set of germline variants. Then, all post-processing filters were subsequently 

applied to the list of putative somatic mutations, except for the one that removes sites with low 

coverage (<50 reads). One out of 10 somatic mutations was lost from the pre-filtering set (false 

negative rate of 10%).  

 

Additionally, we called somatic mutations accumulated in six melanoma FFPE samples using 

Mutect2 paired mode, since a non-malignant FFPE sample from each patient was also 

sequenced. After applying our filtering procedure, an average of 21.63% of putative somatic 

mutations were lost. That is, since many of variants in FFPE samples may be technical artefacts, 

we expected to have a maximum false negative rate of 21.63%.  

 

Prediction of mutational burden 

After evaluating different types of model (Supplementary Text and Figure S3), a log-linear 

model was applied to correlate the number of mutations detected per sample with the sun 

exposure pattern of the skin sample and the individual’s age, including different phenotypic 

traits as covariates. The covariates included in the model were sex (female vs. male), skin 

phototypes (I vs. II, III or IV), sun damage in the tissue (absence vs. presence), history of 

sunlight exposure (frequently vs. occasionally), and MC1R genotype (wild-type vs. r carriers or 

R carriers). The R package ‘relaimpo’ was used to assess the relative importance of the different 

variables included in the model. Non-photoexposed skin samples were excluded in this analysis 

due to the reduced sample size of this group (n=4). Nonparametric bootstraps (1000 runs) were 
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conducted to estimate the 95% confidence intervals (CI95) of the age effect in each skin 

phototype subgroup. 

 

Additionally, the correlation of the different intrinsic and extrinsic risk factors with the number 

of mutations accumulated per sample was also tested taking into account the mean clone’s size 

per sample (an indicator of mutation detectability threshold).  

 

In order to double-check that the majority of mutations were real somatic variants, we applied 

the log-linear model using the pre-filtering dataset of variants (Figure S2E). Note that the total 

variance of mutational burden explained by the model was very low (adjusted-R2 = 6.08%), and 

the major predictors of mutational burden were completely different from those obtained when 

the filtering mutation dataset was used.  

 

Coverage down-sampling analysis 

To evaluate the effect of sequencing depth on mutational burden variation across samples, bam 

files were randomly down-sampled to different coverage levels (1000x, 800x, 600x and 400x) 

using the function DownsampleSam in Picard tools. Once the down-sampled datasets were 

generated, the variant calling and filtering steps were repeated to obtain a list of somatic 

mutations from each down-sampled dataset. The number of samples included in each down-

sampled dataset varied according to the original coverage of the sample. A total of 54 samples 

were included in the 1000x dataset, 95 samples in the 800x dataset, 113 samples in the 600x 

dataset, and 122 samples in the 400x dataset.  

 

Analysis of local mutational context and extraction of mutational signatures 

Mutational spectrum and signatures analyses were performed by using the deconstructSigs R 

package [14]. Due to the limited number of mutations found in some samples (less than 50 

mutations), we decided to group the samples by (a) age of individuals, and (b) pattern of 

sunlight exposure of skin tissue biopsied. Firstly, the proportion of each distinct single base 
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substitution, as well as of each dinucleotide mutation, occurring within a given trinucleotide 

context was determined per each sample and per group. Hierarchical clustering of samples 

based on trinucleotide context of mutations was performed by applying the Ward's criterion. 

Samples were mainly divided into the different clusters by age and body site exposure, 

confirming that the vast majority of mutations included in our final list are real somatic 

mutations (Figure S5A).  

 

Then, we evaluated the transcriptional strand bias for the mutations that are located within 

exons. A Poisson test was applied to assess whether the mutations occurred more often in the 

transcribed or untranscribed strand, or vice versa. Exon definitions for human reference genome 

were retrieved from BiomaRt by loading a TxDb annotation package from Bioconductor [15]. 

 

The limited number of variants hampers the discovery of new mutational signatures. Therefore, 

we ran deconstructSigs including only the mutational signatures related to aging and/or 

previously observed in the different skin cancers subtypes that contribute at least 6% of all of 

the observed mutations across the 127 samples (SBS2, SBS6, SBS7a, SBS7b, SBS7d, and 

SBS17a). Figure S5B shows the weights assigned to all of these mutational signatures for the 

combined set of mutations within cohort (Total) and per age group. Due to the limited number 

of samples and the low number of mutations, non-photoexposed skin samples were excluded. 

 

Prevalence of non-synonymous mutations and selection analyses 

Selection across the normal skin samples was quantified by using the dNdScv R package [16], 

which adapts the traditional implementation of dN/dS ratio by using trinucleotide context-

dependent substitution models to avoid common mutation biases affecting dN/dS. Selection 

tests were performed on different subsets of mutations by grouping samples per age. Briefly, 

global and gene-level dN/dS ratios were quantified for missense and truncating (nonsense and 

essential splicing) mutations, as well as for indels, and then were used to compare the selection 

intensities between skin samples biopsied from elderly and young individuals. Global dN/dS 
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ratios were performed for cancer and non-cancer genes independently. Again, the fact that our 

results reveal an excess of non-synonymous mutations in genes previously associated with 

cancer development (dN/dS > 1), which is not seen in non-cancer genes (dN/dS ~ 1), suggests 

that our list of mutations is not contaminated by germline variants or technical artefacts (Figure 

3B).  

 

The fraction of non-synonymous mutations fixed by positive selection (and thus may be driver 

mutations) was calculated from the estimated dN/dS ratios for missense, truncating and essential 

splicing substitutions [16].  

 

The database of curated mutations (DoCM, docm.genome.wustl.edu) was used to identify 

canonical hotspot mutations with characterized functional or clinical evidence in cancer. 

 

To further evaluate evidence for drift and selection, a log-linear model was applied to explore 

the clonal expansion of non-synonymous and synonymous mutations (mean VAF per sample of 

both mutation types) with age. 

 

Detection of copy number aberrations 

Copy number aberrations were identified applying ExomeDepth [17], a R package that uses 

read depth data to call CNVs from exome/targeted sequencing datasets. Briefly, the BAM file 

from each sample was compared to a reference BAM file, which was constructed by combining 

sequencing data from the most compatible samples of the dataset. Thus, the reference BAM file 

was optimized for each sample. By applying this method, we assumed that the CNV of interest 

was absent from the aggregate reference set (recurrent CNVs may be missed), and that the 

coverage was equal in all genome regions sequenced in all samples (the same sequencing 

procedure was applied in all samples). This analysis was performed per gene. 
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Putative copy number aberrations were confirmed by detecting allelic imbalances. After 

identifying heterozygous polymorphisms, a proportion test was used for testing if the fraction of 

minor SNP-allele reads was similar to the minor allele frequency expected for a heterozygous 

SNP. To be more prudent, the observed proportion was compared to two theoretical 

proportions, which were calculated by two different ways: (1) per sample (mean of min(BAFs,i, 

1-BAFs,i)), and (2) per all SNPs (mean of min(BAFi, 1-BAFi). A biallelic fraction was 

considered as statistically different to the theoretical fraction when the two-sided P-values of 

both comparisons were lower than 0.001. Only genes that had at least 50% of their heterozygous 

SNPs with a statistically different proportion were considered to have a significant allelic 

imbalance.  
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SUPPLEMENTARY TEXT 

Model selection for explaining mutational burden 

Although there was a theoretical reason for modelling mutational burden increase as a log-linear 

function of age, other possible model forms (including linear, log-linear, quadratic, cubic and 

non-linear) were explored to make sure that we were choosing the best model for fitting our 

data.  

 

Model selection was based on the Akaike information criterion (AIC). Among all models 

explored, the log-linear model presented the lowest AIC value and thus was the optimal model 

(Figure S3). The log-linear model also presented the lowest significant value, supporting that 

this statistical model was the most compatible with the data. 

 

Effect of mutation detectability on mutational burden 

The number of detectable mutations may be sensitive to sequencing depth. In this study, the 

mutational burden found per gene was not influenced by differences in coverage (Figure S11C). 

Besides, the variation in the number of mutations across samples seemed to not be affected by 

coverage – even when age and skin phototype were considered (Figure S11D).  

 

To further evaluate the effect of sequencing depth on mutational burden variability across 

samples, bam files were down-sampled to different depths in order to compare mutational 

burden from down-sampled datasets with the original mutational burden values. A high 

correlation was observed between the original and each down-sampled dataset (Figure S4A), 

even though the impact of sequencing depth on mutational burden estimates was higher with 

decreasing coverage (the 400x down-sampled dataset presented the highest β value). This 

observation was also confirmed by estimating the ratio of difference (expressed as fold change) 

in mutational burden estimates for each increase in coverage metrics (Figure S4B). In fact, fold 

change values started to plateau with increased sequencing depth. 
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However, general conclusions of our work remained the same in all down-sampled datasets. 

Mutational burden variability across samples was mainly explained by age and skin phototype 

after down-sampling sequencing reads (Figure S4C). Local mutational context also remained 

similar when deconstructSigs was run on down-sampled datasets.   

 

The sensitivity of mutation detection may also be affected by the number of reads supporting 

the presence of the variant. The mutational burden detected in each sample was not affected by 

the average frequency of variant reads per sample (Figure S4D). We also observed similar 

correlations of mutational burden with each risk factor evaluated when clone size in each 

sample (measured by the average VAF per sample) was considered, confirming that the effect 

of risk factors on mutational burden was not dependent on a hypothetical mutation detectability 

threshold (Figure S4E). 

 

Copy number events in normal skin 

As previously shown in normal cells from different tissues [7, 18, 19], our results also suggests 

that genomic instability is rare in normal skin (only 4 samples with putative copy number 

changes) and thus structural changes may be a key evolutionary event in carcinogenesis (Figure 

S8A-B). Copy number alterations across genes were explored using ExomeDepth [17], and 

confirmed using a method for identifying allelic imbalances of germline heterozygous 

polymorphisms (evident deviation from the expected fraction of reads supporting one of the two 

alleles). Note that the ability to detect allelic imbalances was variable across samples and genes 

because of differences in the number of heterozygous polymorphisms in the region. 

 

NOTCH2 was the gene most frequently subject to copy number aberrations, with five samples 

having enough statistical power to confirm the duplication or deletion of this gene. Four of these 

samples also carried a missense or nonsense mutation in NOTCH2. We could not confirm the 

other copy number alterations identified by ExomeDepth.  
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Figure S1. Schematic overview of the experimental design. 
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Figure S2. Evaluation of variant calling and filtering. (A) Validation of filtering procedure 

efficiency in an independent dataset comprising tumour and adjacent benign FFPE samples 

collected from six melanoma patients. A noteworthy decrease of false positive rates (proportion 

of germline variants in the set of somatic mutations) was denoted after applying the procedure 

for filtering out germline variants. (B) Histogram of somatic mutations identified by VAF. Most 

somatic mutations remain in a subclonal state with low VAFs (VAF << 5%). (C) Spectra of 

mutation sets removed after applying a specific filtering step. All mutational spectra are very 

different from the typical UV-related mutational spectrum, indicating that the filtered variants 

are unlikely to be real somatic mutations. (D) Global dN/dS ratios estimated before and after 

mutation filtering called with Mutect2 tumour-only mode. The global dN/dS << 1 denotes 

contamination of germline variants and/or technical artefacts in the non-filtered dataset of 

somatic mutations. This problem seems to be solved after applying the different filtering steps 

(dN/dS > 1). Error bars denote 95% confidence interval. (E) Results of applying a log-linear 

regression model in the non-filtered mutation dataset for predicting the number of mutations per 

sample. The low variance explained by the model (adjusted-R2 = 6.08%) denotes that the non-

filtered list of mutations includes a large number of likely false positive calls.  
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Figure S3. Selection of the best model explaining the age-dependent increase of somatic 

mutations in normal skin. Model selection was performed using the Akaike information 

criterion (AIC).  
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Figure S4. Evaluation the impact of mutation detectability on mutational burden 

variability across samples. (A) Scatter plots showing a high correlation between the number of 

mutations predicted from the original dataset and from each down-sampled dataset. β values 

denote the gradient of impact of coverage metric on mutational burden estimates. (B) Box plots 

showing the ratio of increase, expressed as fold change (FC), in mutational burden estimates for 

each increase in coverage metrics. (C) Heatmap showing the analyses-of-variance (ANOVA) P-

values of multivariate log-linear model coefficients of each dataset. DS, down-sampled. N, 

sample size of the dataset. (D) Scatter plot showing the mean VAF and the number of all 

mutations found per sample. (E) Heatmap showing the P-values of univariate log-linear model 

coefficients from the ANOVA tables. The normalized mutational burden of each sample was 

calculated by dividing the number of mutations per sample by the mean VAF of all mutations 

found in the sample. All these plots show that mutation detectability did not significantly 

influence the number of mutations found across samples. 
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Figure S5. Mutational spectra in normal skin. (A) Heatmap showing the fraction of each 96-

mutation type per sample. Clinical and demographic characteristics are presented above each 

sample. (B) Percentage of substitutions attributed to each one of the six mutational signatures 

for all mutations from all 127 samples together (Total), as well as for all mutations included in 

each age subgroup.  
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Figure S6. Linearization of the exponential increase of both UV-mutation accumulation 

and skin cancer incidence with age. Logarithmic transformation of data displayed in Figure 

2D. The relatively high R-squared values denote that a high proportion of the total variance in 

UV-mutation accumulation (blue dots) and in skin cancer incidence (black dots) is explained by 

the respective log-linear model. 
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Figure S7. Age-related mutational spectra in normal skin. (A) Local mutational context of 

T>C substitutions in samples biopsied from young and elderly donors. (B) Relative number of 

each substitution type present on the transcribed (dark shading) and untranscribed strand (light 

shading) in samples biopsied from young and elderly donors. Asterisks indicate significant 

transcriptional strand asymmetries (Poisson test). (C) Percentage of C>T mutations per strand in 

young and elderly individuals. ANOVA test used for comparing the ratio of non-coding/coding 

C>T mutations between age groups. (D) Age-dependent increase of T>C substitutions. (E) 96-

barplot depicting the number of mutations observed at each trinucleotide context taking together 

all samples biopsied from young and elderly individuals (Total), as well as splitting samples of 

each age group by the body site pattern of sun exposure (Chronically- and Intermittently-

photoexposed).  
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Figure S8. Occurrences of copy number alterations in the 46 cancer genes across samples. 

(A) Heatmap showing the significant copy number events detected in our cohort. (B) Scatter 

plots of four samples showing allelic imbalances in NOTCH2. The b-allele fraction (BAF) and 

95% confidence interval of each germline heterozygous polymorphism in NOTCH2 is shown. 

Red dots denote a deviation of the observed fraction of reads supporting the minor allele from 

the expected fraction (dashed lines), which is calculated by averaging the BAFs of all germline 

heterozygous SNPs in each sample and in all samples. 
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Figure S9. Mutation effect in cell fitness, selection and clonal expansion. (A) Age-related 

VAF spectra of non-synonymous and synonymous mutations in both cancer and non-cancer 

genes. (B) Global dN/dS values (top) and frequency of driver mutations (bottom) estimated in 

cancer and non-cancer genes according to mutation frequencies. Percentage of driver mutations 

was only calculated when dN/dS ratios denoted positive selection (dN/dS > 1). Mutations were 

divided into four equal parts according to their VAF. VAF Q1, mutations with VAF values 

below the first quartile. VAF Q2, mutations with VAF values between the first and second 

quartiles. VAF Q3, mutations with VAF values between the second and third quartiles. VAF 

Q4, mutations with VAF values above the third quartile.  
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Figure S10. Clonal expansion of clones with oncogenic mutations. (A) Number of non-

synonymous mutations per sample in normal skin samples non-carriers or carriers of one or 

multiple non-synonymous mutations in NOTCH1, TP53 and FAT1, as well as in normal skin 

without or with canonical hotspot mutations. Each dot represents a sample and is coloured 

according to the donor’s age. For avoiding the confounding effects of age, samples were 

stratified according to donor’s age for statistical analyses. In panels comparing more than two 

groups, a Kruskall-Wallis (KW) test is used for testing differences among groups. In panels 

comparing two groups, a Wilcoxon-Mann-Whitney (WMW) test is used for testing differences 

among groups. (B) Heatmap showing the mean VAF of all non-synonymous mutations found 

per gene across normal samples collected from young and elderly individuals. 
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Figure S11. Coverage and mutational burden across genes and samples. (A) Plot showing 

the number of mutations per gene across all samples (bar plot, top) and the mean coverage per 

gene and sample (box plot, bottom). Genes in the x-axis sorted by mean coverage across 

samples. Blue line indicates the mean coverage across all samples. (B) Plot showing the number 

of mutations per sample (bar plot, top) and the mean coverage per sample (bar plot, bottom). 

Samples in the x-axis sorted by mean coverage across all sequenced regions. Blue line indicates 

the mean coverage across all samples. (C) Scatter plot showing the coverage and number of 

mutations per gene. (D) Scatter plot showing the coverage and number of mutations per sample 

coloured by skin phototype (left) and per age group (right). These plots show that coverage did 

not significantly influence the number of mutations found across genes and/or across samples.  
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Table S1. Demographic and clinical data of all Spanish donors. 

 
  Pattern of sunlight exposure of normal skin samples   

  Chronically (N = 44) Intermittently (N = 79) Total (N = 123) 

  Mean SD Mean SD Mean SD 

Age (years)   69.86 15.99 52.16 20.91 58.50 21.03 
 

            

    N % N % N % 

Sex Females 12 27.27 47 59.49 59 47.97 

Males 32 72.73 32 40.51 64 52.03 

Unknown 0 0.00 0 0.00 0 0.00 

Fitzpatrick skin 

type ‡ 
I 3 6.82 11 13.92 14 11.38 

II 13 29.55 34 43.04 47 38.21 

III 21 47.73 25 31.65 46 37.40 

IV 6 13.64 9 11.39 15 12.20 

Unknown 1 2.27 0 0.00 1 0.79 

MC1R genotype Wild-type 18 40.91 28 35.44 46 37.40 

r carrier 18 40.91 26 32.91 44 35.77 

R carrier 7 15.91 22 27.85 29 23.58 

Unknown 1 2.27 3 3.80 4 3.25 

History of sun 

exposure ¥ 
Occasional 18 40.91 54 68.35 72 58.54 

Frequent 22 50.00 21 26.58 43 34.96 

Unknown 4 9.09 4 5.06 8 6.50 

Sun damage in the 

skin area 
No 6 13.64 46 58.23 52 42.28 

Yes 35 79.55 27 34.18 62 50.41 

Unknown 3 6.82 6 7.59 9 7.32 

N, number of individuals; %, percentage of individuals per group among the total 

‡ Fitzpatrick’s skin type classification is based on pigmentation traits (skin, hair and eye color) and sun sensitivity-

related traits (ability to tan versus tendency to burn, and freckling degree) 

¥ History of sun exposure is based on occupancy, outdoor sport activity, and sunbed use  
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Table S2. Log-linear modelling of the accumulation of somatic mutations in normal skin. 

 

Variable Categories β SE P-value ‡ R2 (%) 

Age  0.028 0.004 1.46E-09 55.17 

Sex Female reference - - 3.89 

  Male -0.109 0.165 0.51   
Sunlight exposure 

of body site 
Chronic reference - - 7.83 

Intermittent -0.171 0.179 0.34   

Sun damage No reference - - 7.95 

  Yes 0.187 0.168 0.27   

Skin phototype I reference - - 17.93 

 II -0.387 0.266 0.11   

 III -0.414 0.253 0.15   

 IV -1.220 0.312 1.74E-04   

MC1R genotype wild-type reference - - 2.00 

  r carrier 0.104 0.180 0.56   

  R carrier -0.226 0.191 0.24   

History of sunlight 

exposure 
Frequent reference - - 5.23 

Occasional -0.189 0.161 0.24   

β, coefficients; SE, standard error; R2, percentage of relative contribution of each predictor to 

the total variance 

‡ P-value for the multivariate log-linear model 
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Table S3. Information from literature about the function and the role in carcinogenesis of 

the list of genes sequenced in this study 

 

Gene name Description Evidences from function ‡ Gene classification ¥ 

ADAM29 ADAM Metallopeptidase 

Domain 29 

Membrane-anchored proteins implicated in a variety of biological 

processes involving cell-cell and cell-matrix interactions 

Non-cancer 

ADAMTS18 ADAM Metallopeptidase 

with Thrombospondin 

Type 1 Motif 18 

Metalloproteinase with thrombospondin motifs that regulates 

hemostatic balance and functions as a tumor suppressor 

Non-cancer 

ARID1A AT-Rich Interaction 

Domain 1A 

Involved in transcriptional activation and repression of select genes 

by chromatin remodeling. Component of SWI/SNF chromatin 

remodeling complexes with key enzymatic activities. 

Cancer 

ARID2 AT-Rich Interaction 

Domain 2 

Involved in transcriptional activation and repression of select genes 

by chromatin remodeling (alteration of DNA-nucleosome topology). 

Required for the stability of the SWI/SNF chromatin remodeling 

complex 

Cancer 

BAI3/ADGRB3 Brain-Specific 

Angiogenesis Inhibitor 3 

A p53-target gene that encodes for an angiogenesis inhibitor Non-cancer 

BRAF B-Raf Proto-Oncogene, 

Serine/Threonine Kinase 

Oncogene that encodes for a serine/threonine protein kinase. 

Involved in the regulation of the MAP kinase/ERK signaling 

pathway affecting cell division, differentiation and secretion. 

Cancer 

CDKN2A Cyclin Dependent Kinase 

Inhibitor 2A 

Tumor suppressor gene encoding p16 and p14. Involved in cell cycle 

arrest in G1 and G2 phases 

Cancer 

CRNKL1 Crooked Neck Pre-

MRNA Splicing Factor 1 

Involved in pre-mRNA splicing process Non-cancer 

EPHA2 Ephrin Receptor A2 Receptor tyrosine kinase which regulates cell adhesion and 

differentiation through DSG1/desmoglein-1 and inhibition of the 

ERK1/ERK2 signaling pathway. May also participate in UV 

radiation-induced apoptosis. 

Cancer 

EZH2 Enhancer Of Zeste 2 

Polycomb Repressive 

Complex 2 Subunit 

Catalytic subunit of the PRC2/EED-EZH2 complex. Involved in 

maintaining the transcriptional repressive state of genes via histone 

H3 methylation 

Cancer 

FAT1 FAT Atypical Cadherin 1 Tumor suppressor that plays an essential role for cellular 

polarization, directed cell migration and modulating cell-cell contact 

Cancer 

FAT2 FAT Atypical Cadherin 2 Functions as a cell adhesion molecule, controlling cell proliferation 

and playing an important role in cerebellum development 

Cancer 

FGFR3 Fibroblast Growth Factor 

Receptor 3  

Tyrosine-protein kinase that acts as cell-surface receptor for 

fibroblast growth factors and plays an essential role in the regulation 

of cell proliferation, differentiation and apoptosis 

Cancer 

GRIN2A Glutamate Ionotropic 

Receptor NMDA Type 

Subunit 2A 

Component of NMDA receptor complexes that function as 

heterotetrameric, ligand-gated ion channels with high calcium 

permeability and voltage-dependent sensitivity to magnesium. 

Non-cancer 

GRM3 Glutamate Metabotropic 

Receptor 3 

G-protein coupled receptor for glutamate. Signaling inhibits 

adenylate cyclase activity. 

Non-cancer 

HRAS HRas Proto-Oncogene, 

GTPase 

Involved in the activation of Ras protein signal transduction Cancer 

IL7R Interleukin 7 Receptor Receptor for interleukin-7 Non-cancer 

KMT2B Lysine Methyltransferase 

2B  

Histone methyltransferase that methylates 'Lys-4' of histone H3, a 

specific tag for epigenetic transcriptional activation. 

Non-cancer 

KRAS KRAS Proto-Oncogene, 

GTPase  

Possess intrinsic GTPase activity and plays an important role in the 

positive regulation of cell proliferation  

Cancer 

MECOM MDS1 And EVI1 

Complex Locus 

Transcriptional regulator and oncoprotein that may be involved in 

hematopoiesis, apoptosis, development, and cell differentiation and 

proliferation. 

Non-cancer 

NF1 Neurofibromin 1  Negative regulator of the Ras signal transduction pathway. Cancer 

NEBL Nebulette May functionally link sarcomeric actin to the desmin intermediate 

filaments in the heart muscle sarcomeres 

Non-cancer 

NOTCH1 Notch Receptor 1 Involved in the Notch signaling pathway, a evolutionarily conserved 

intercellular signaling pathway that regulates cell fate decision and 

affects the implementation of differentiation, proliferation and 

apoptotic programs. 

Cancer 
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NOTCH2 Notch Receptor 2 Member of the Notch family that plays a role in a variety of 

developmental processes by controlling cell fate decisions. Involved 

in immune system function, tissue repair and bone remodeling. 

Cancer 

NOTCH3 Notch Receptor 3  Member of the Notch family that plays a key role in the function and 

survival of vascular smooth muscle cells and in neural development 

Non-cancer 

NRAS NRAS Proto-Oncogene, 

GTPase 

Possess intrinsic GTPase activity and plays an important role in the 

positive regulation of cell proliferation  

Cancer 

PIK3CA Phosphatidylinositol-4,5-

Bisphosphate 3-Kinase 

Catalytic Subunit Alpha 

Oncogene encoding a phosphoinositide-3-kinase that activates 

signaling cascades involved in cell growth, survival, proliferation, 

motility and morphology. 

Cancer 

PLCB1 Phospholipase C Beta 1  Catalyzes the formation of inositol 1,4,5-trisphosphate and 

diacylglycerol from phosphatidylinositol 4,5-bisphosphate 

Cancer 

PPP1R3A Protein Phosphatase 1 

Regulatory Subunit 3A 

Participates in the regulation of glycogen metabolism, muscle 

contractility and protein synthesis 

Non-cancer 

PPP6C Protein Phosphatase 6 

Catalytic Subunit 

Component of a signaling pathway regulating cell cycle progression 

in response to IL2 receptor stimulation 

Cancer 

PREX2 Phosphatidylinositol-

3,4,5-Trisphosphate 

Dependent Rac Exchange 

Factor 2  

Functions as a RAC1 guanine nucleotide exchange factor (GEF), 

activating Rac proteins by exchanging bound GDP for free GTP 

Cancer 

PTCH1 Patched 1  Component of the hedgehog signaling pathway involved in 

embryonic development and tumorigenesis 

Cancer 

PTEN Phosphatase And Tensin 

Homolog 

Tumor suppressor that antagonizes the PI3K-AKT/PKB signaling 

pathway modulating cell cycle progression and cell survival 

Cancer 

PTPRB Protein Tyrosine 

Phosphatase Receptor 

Type B 

Plays an important role in blood vessel remodeling and angiogenesis Non-cancer 

PTPRK Protein Tyrosine 

Phosphatase Receptor 

Type K 

Regulation of processes involving cell contact and adhesion such as 

growth control, tumor invasion, and metastasis. 

Non-cancer 

RAC1 Rac Family Small 

GTPase 1 

GTPase that binds to a variety of effector proteins to regulate 

cellular responses such as secretory processes, phagocytosis of 

apoptotic cells, epithelial cell polarization, neurons adhesion, 

migration and differentiation 

Cancer 

RB1 RB Transcriptional 

Corepressor 1 

Key regulator of the cell cycle that acts as a tumor suppressor. 

Hypophosphorylated form of the protein binds transcription factor 

E2F1, leading to cell cycle arrest 

Cancer 

RBM10 RNA Binding Motif 

Protein 10 

Nuclear protein that may be involved in post-transcriptional 

processing, most probably in mRNA splicing 

Cancer 

SALL1 Spalt Like Transcription 

Factor 1  

Zinc finger transcriptional repressor involved in organogenesis Non-cancer 

SCN1A Sodium Voltage-Gated 

Channel Alpha Subunit 1 

Mediates the voltage-dependent sodium ion permeability of 

excitable membranes 

Non-cancer 

SF3B1 Splicing Factor 3b 

Subunit 1 

Involved in pre-mRNA splicing Cancer 

SPHKAP SPHK1 Interactor, AKAP 

Domain Containing 

Anchoring protein that may act as a converging factor linking cAMP 

and sphingosine signaling pathways 

Cancer 

STAT5B Signal Transducer And 

Activator Of 

Transcription 5B 

After being phosphorilated in response to cytokines and growth 

factos, this STAT family member tanslocates to the nucleous and 

acts as transcription factor  

Non-cancer 

TERT Telomerase Reverse 

Transcriptase  

Ribonucleoprotein polymerase that maintains telomere ends by 

addition of the telomere repeat TTAGGG 

Non-cancer 

TP53 Tumor Protein P53 The encoded tumor suppressor protein responds to diverse cellular 

stresses to induce cell cycle arrest, apoptosis, senescence, DNA 

repair or changes in metabolism 

Cancer 

ZNF750 Zinc Finger Protein 750 Transcription factor involved in epidermis differentiation. Cancer 

‡ Information taken from GeneCards (http://www.genecards.org) 

¥ Classification based on www.cancer-genes.org  
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