Supplementary Appendix to

Variant PNLDC1, Defective piRNA Processing and Azoospermia

Nagirnaja L, Mørup N, Nielsen JE, Stakaitis R, Golubickaite I, Oud MS, Winge SB, Carvalho F, Aston KI, Khani F, van der Heijden GW, Marques CJ, Skakkebaek NE, Rajpert-De Meyts E, Schlegel PN, Jørgensen N, Veltman JA, Lopes AM, Conrad DF, and Almstrup K

Table of Contents

Participating centres of the GEMINI consortium 2 Description of the cohorts 3 Supplementary Methods 4 RNA isolation 4 Gene expression 4 Small RNA sequencing 4 Supplementary Figures 5 Supplementary Figure S1 5 Supplementary Figure S2 6 Supplementary Figure S4 8 Supplementary Figure S5 9 Supplementary Figure S6 10 Supplementary Figure S7 11 Supplementary Figure S1 12 Supplementary Figure S1 13 Supplementary Figure S1 14 Supplementary Figure S1 17 Table S1. Primers and conditions for Sanger sequencing and qPCR. 17 Table S3. Sources of RNA used in the study. 18 Table S3. Sources of RNA used in the study. 19 References 20	Supplementary Information	
Description of the cohorts 3 Supplementary Methods 4 RNA isolation 4 Gene expression 4 Small RNA sequencing 4 Supplementary Figures 5 Supplementary Figure S1 5 Supplementary Figure S2 6 Supplementary Figure S3 7 Supplementary Figure S4 8 Supplementary Figure S5 9 Supplementary Figure S6 10 Supplementary Figure S8 12 Supplementary Figure S1 13 Supplementary Figure S1 14 Supplementary Tables 17 Table S1. Primers and conditions for Sanger sequencing and qPCR. 17 Table S3. Sources of RNA used in the study. 18 Table S3. Sources of RNA used in the study. 19 References 20	Participating centres of the GEMINI consortium	2
Supplementary Methods 4 RNA isolation 4 Gene expression 4 Small RNA sequencing 4 Supplementary Figures 5 Supplementary Figure S1 5 Supplementary Figure S2 6 Supplementary Figure S3 7 Supplementary Figure S4 8 Supplementary Figure S5 9 Supplementary Figure S6 10 Supplementary Figure S8 10 Supplementary Figure S9 13 Supplementary Figure S10 14 Supplementary Tables 17 Table S1. Primers and conditions for Sanger sequencing and qPCR 17 Table S3. Sources of RNA used in the study 18 Table S3. Sources of RNA used in the study 19 References 20	Description of the cohorts	3
RNA isolation 4 Gene expression 4 Small RNA sequencing 4 Supplementary Figures 5 Supplementary Figure S1 5 Supplementary Figure S2 6 Supplementary Figure S3 7 Supplementary Figure S4 8 Supplementary Figure S5 9 Supplementary Figure S6 10 Supplementary Figure S7 11 Supplementary Figure S8 12 Supplementary Figure S10 13 Supplementary Figure S11 16 Supplementary Tables 17 Table S1. Primers and conditions for Sanger sequencing and qPCR 17 Table S2. Antibodies and conditions used in the study. 18 Table S3. Sources of RNA used in the study. 19 References 20	Supplementary Methods	
Gene expression 4 Small RNA sequencing 4 Supplementary Figures 5 Supplementary Figure S1. 5 Supplementary Figure S2. 6 Supplementary Figure S3. 7 Supplementary Figure S4. 8 Supplementary Figure S5. 9 Supplementary Figure S6. 10 Supplementary Figure S7. 11 Supplementary Figure S8. 12 Supplementary Figure S10. 14 Supplementary Figure S11. 16 Supplementary Tables 17 Table S1. Primers and conditions for Sanger sequencing and qPCR. 17 Table S2. Antibodies and conditions used in the study. 18 Table S3. Sources of RNA used in the study. 19 References 20	RNA isolation	4
Small RNA sequencing 4 Supplementary Figures 5 Supplementary Figure S1 5 Supplementary Figure S2 6 Supplementary Figure S3 7 Supplementary Figure S4 8 Supplementary Figure S5 9 Supplementary Figure S6 10 Supplementary Figure S7 11 Supplementary Figure S8 12 Supplementary Figure S9 13 Supplementary Figure S10 14 Supplementary Tigure S11 16 Supplementary Tables 17 Table S1. Primers and conditions for Sanger sequencing and qPCR 17 Table S2. Antibodies and conditions used in the study 18 Table S3. Sources of RNA used in the study 19 References 20	Gene expression	4
Supplementary Figures5Supplementary Figure S15Supplementary Figure S26Supplementary Figure S37Supplementary Figure S48Supplementary Figure S59Supplementary Figure S610Supplementary Figure S711Supplementary Figure S812Supplementary Figure S913Supplementary Figure S1014Supplementary Figure S1116Supplementary Tables17Table S1. Primers and conditions for Sanger sequencing and qPCR17Table S3. Sources of RNA used in the study.19References20	Small RNA sequencing	4
Supplementary Figure S1.5Supplementary Figure S2.6Supplementary Figure S3.7Supplementary Figure S4.8Supplementary Figure S5.9Supplementary Figure S6.10Supplementary Figure S7.11Supplementary Figure S8.12Supplementary Figure S9.13Supplementary Figure S10.14Supplementary Figure S11.16Supplementary Tables17Table S1. Primers and conditions for Sanger sequencing and qPCR.18Table S3. Sources of RNA used in the study.19References20	Supplementary Figures	
Supplementary Figure S2.6Supplementary Figure S3.7Supplementary Figure S4.8Supplementary Figure S5.9Supplementary Figure S6.10Supplementary Figure S7.11Supplementary Figure S8.12Supplementary Figure S9.13Supplementary Figure S10.14Supplementary Figure S11.16Supplementary Tables17Table S1. Primers and conditions for Sanger sequencing and qPCR.18Table S3. Sources of RNA used in the study.19References20	Supplementary Figure S1.	5
Supplementary Figure S3.7Supplementary Figure S4.8Supplementary Figure S5.9Supplementary Figure S6.10Supplementary Figure S7.11Supplementary Figure S8.12Supplementary Figure S9.13Supplementary Figure S10.14Supplementary Figure S11.16Supplementary Tables17Table S1. Primers and conditions for Sanger sequencing and qPCR.17Table S2. Antibodies and conditions used in the study.18Table S3. Sources of RNA used in the study.19References20	Supplementary Figure S2.	6
Supplementary Figure S48Supplementary Figure S59Supplementary Figure S610Supplementary Figure S711Supplementary Figure S812Supplementary Figure S913Supplementary Figure S1014Supplementary Figure S1116Supplementary Tables.17Table S1. Primers and conditions for Sanger sequencing and qPCR17Table S2. Antibodies and conditions used in the study18Table S3. Sources of RNA used in the study19References.20	Supplementary Figure S3.	7
Supplementary Figure S59Supplementary Figure S610Supplementary Figure S711Supplementary Figure S812Supplementary Figure S913Supplementary Figure S1014Supplementary Figure S1116Supplementary Tables17Table S1. Primers and conditions for Sanger sequencing and qPCR17Table S2. Antibodies and conditions used in the study18Table S3. Sources of RNA used in the study19References20	Supplementary Figure S4.	8
Supplementary Figure S6.10Supplementary Figure S7.11Supplementary Figure S8.12Supplementary Figure S9.13Supplementary Figure S10.14Supplementary Figure S11.16Supplementary Tables17Table S1. Primers and conditions for Sanger sequencing and qPCR.17Table S2. Antibodies and conditions used in the study.18Table S3. Sources of RNA used in the study.19References20	Supplementary Figure S5	9
Supplementary Figure S7. 11 Supplementary Figure S8 12 Supplementary Figure S9. 13 Supplementary Figure S10. 14 Supplementary Figure S11. 16 Supplementary Tables 17 Table S1. Primers and conditions for Sanger sequencing and qPCR. 17 Table S2. Antibodies and conditions used in the study. 18 Table S3. Sources of RNA used in the study. 19 References 20	Supplementary Figure S6	
Supplementary Figure S8 12 Supplementary Figure S9 13 Supplementary Figure S10 14 Supplementary Figure S11 16 Supplementary Tables 17 Table S1. Primers and conditions for Sanger sequencing and qPCR 17 Table S2. Antibodies and conditions used in the study. 18 Table S3. Sources of RNA used in the study. 19 References 20	Supplementary Figure S7	
Supplementary Figure S9. 13 Supplementary Figure S10. 14 Supplementary Figure S11. 16 Supplementary Tables 17 Table S1. Primers and conditions for Sanger sequencing and qPCR. 17 Table S2. Antibodies and conditions used in the study. 18 Table S3. Sources of RNA used in the study. 19 References 20	Supplementary Figure S8	
Supplementary Figure S10. 14 Supplementary Figure S11. 16 Supplementary Tables 17 Table S1. Primers and conditions for Sanger sequencing and qPCR. 17 Table S2. Antibodies and conditions used in the study. 18 Table S3. Sources of RNA used in the study. 19 References 20	Supplementary Figure S9	
Supplementary Figure S11. 16 Supplementary Tables 17 Table S1. Primers and conditions for Sanger sequencing and qPCR. 17 Table S2. Antibodies and conditions used in the study. 18 Table S3. Sources of RNA used in the study. 19 References 20	Supplementary Figure S10	
Supplementary Tables 17 Table S1. Primers and conditions for Sanger sequencing and qPCR	Supplementary Figure S11	
Table S1. Primers and conditions for Sanger sequencing and qPCR	Supplementary Tables	17
Table S2. Antibodies and conditions used in the study	Table S1. Primers and conditions for Sanger sequencing and qPCR	
Table S3. Sources of RNA used in the study. 19 References 20	Table S2. Antibodies and conditions used in the study	
References	Table S3. Sources of RNA used in the study	
	References	20

Supplementary Information

Participating centres of the GEMINI consortium

Donald F. Conrad (leading PI**), Liina Nagirnaja**; Department of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA

Kenneth I. Aston (leading PI), Douglas T. Carrell, James M. Hotaling, Timothy G. Jenkins; Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA

Moira K. O'Bryan; School of Biological Sciences, Monash University, Clayton, Victoria, Australia

Rob McLachlan; 1) Hudson Institute of Medical Research and the Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia; 2) Monash IVF and the Hudson Institute of Medical Research, Clayton, Victoria, Australia

Peter N. Schlegel; Department of Urology, Weill Cornell Medicine, New York, NY, USA

Michael L. Eisenberg; Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA

Jay I. Sandlow; Department of Urology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA

Emily S. Jungheim, **Kenan R. Omurtag**; Washington University in St Louis, School of Medicine, St Louis, MO, USA

Alexandra M. Lopes, Susana Seixas; i3S - Instituto de Investigação e Inovação em Saúde, University of Porto; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal

Filipa Carvalho, Susana Fernandes, Alberto Barros; i3S - Instituto de Investigação e Inovação em Saúde, University of Porto; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal

João Gonçalves; Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal

Maris Laan; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia

Margus Punab; Andrology Center, Tartu University Hospital, Tartu, Estonia

Ewa Rajpert-De Meyts, Niels Jørgensen, Kristian Almstrup; Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Csilla G. Krausz; 1) Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; 2) Andrology Department, Fundacio Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Spain

Keith A. Jarvi; Division of Urology, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada

Description of the cohorts

GEMINI consortium

The GEnetics of Male INfertility Initiative (GEMINI; https://gemini.conradlab.org/) is a multi-centre effort to identify rare DNA variations leading to male infertility. Whole exome sequencing (WES) has been performed on the whole blood of 1011 unrelated men diagnosed with idiopathic NOA (azoospermia or sperm concentration ≤ 1 million/mL) (manuscript in preparation). This sample collection represents both historical and current cases recruited across ten centres for andrology in seven countries (Australia, Canada, Denmark, Estonia, Portugal, Spain and USA). Exclusion criteria included obstruction or absence of vas deferens, varicocele of grade II or higher, history of cryptorchidism, radical pelvic surgery, anejaculation, spinal cord injury, Y chromosome microdeletions or karyotypic abnormalities, history of radiation treatments or chemotherapy. The WES call set of single-nucleotide variants (SNVs) and copy number variants (CNVs) was used to further identify and remove individuals with missed diagnosis of Klinefelter syndrome. CFTR mutations, large structural variants on sex chromosomes or autosomes, as well as cryptic relatedness and sample duplicates. The final GEMINI cohort consisted of 924 unrelated cases which were predicted to be predominantly of European ancestry (91%), followed by South Asia (4%), Africa (3%) and East Asia (2%). Out of 924 men, 72 were found to have >2.6% of autosomes in autozygous state indicative of recent parental consanguinity of 4th degree or higher.

Dutch consortium

A total of 99 patients who presented with unexplained oligozoospermia (<10 million sperm/mL; n=44) and non-obstructive azoospermia (no sperm in the ejaculate; n=55) were enrolled at the Radboudumc outpatient clinic between July 2007 and October 2017. The average age of included men was 32 years (range 20 to 49 years). Most men were of Dutch descent (93 out of 99 men), one man was from the United Arab Emirates, one male was from Saint Martin (Caribbean Islands) and of four men their descent was unknown.

All males receive routine diagnostic assessment including detailed history, and physical examination, scrotal ultrasound, semen analysis, karyotyping, AZF screening and hormone level evaluation of FSH, testosterone and often inhibin B. Clinical evaluation and genetic testing did not lead to an etiologic diagnosis in these patients.

A total of 56 patients out of all 99 underwent TESE in the Radboudumc and in 31 cases TESE-ICSI was performed. Furthermore, 32 patients with moderate to extreme oligozoospermia underwent ICSI with ejaculated semen. In total, 55 out of 99 men (56%) achieved a pregnancy.

Residual genomic DNA extracted from a blood sample taken at the time of evaluation and treatment at the fertility centre was used for exome sequencing. DNA from all parents was obtained from saliva by using the Oragene OG-500 kit (DNA Genotek, Ottawa, Canada) at home.

Dutch control cohort

As a control cohort for the frequency of rare variants in proven fathers, we used an anonymized exome dataset derived from 5,784 Dutch men. These men received routine exome sequencing in the Radboudumc genome diagnostics centre as the healthy parent of a child with a severe illness. Whereas these men fathered a child with, e.g. developmental delay, their fertility is expected to be similar to an unselected sample of the male population.

Supplementary Methods

RNA isolation

Testicular RNA from Patient 1, Patient 4, and matched (by fixative) controls were extracted from fixed tissue. For Patient 3 and matched controls, remnants from mechanical and enzymatic TESE were used. The RNA quality was in all cases sufficient for subsequent analyses. In addition, frozen testicular biopsies with complete spermatogenesis, Sertoli cell-only pattern, and commercial RNAs from ovary, testis, skin, liver and ductus deferens were used (Supplementary Table S3). Testicular tissue for RNA extraction was unavailable for Patient 2.

Gene expression

RNA was reverse transcribed (RT) and qPCR performed using gene-specific primers and conditions, as listed in Supplementary Table S1. For all primer combinations, bands of appropriate size were excised after gel electrophoresis, sequenced, and the identity validated. For Δ Ct calculations, *RPS29* was used as a housekeeping gene¹. When plotting, non-detected signals were imputed according to McCall *et al.*² and a Student's t-test was used to test for differences as the sample size was very small³. Single-cell RNA sequencing data was obtained from Wang *et al.*⁴.

Small RNA sequencing

Sequencing libraries were prepared with CATS Small RNA-seq kit (Diagenode, Cat. #C05010040) and sequenced on the MiSeq platform using MiSeq Reagent Kit v2 (Illumina, Cat. #MS-102-2001). Reads were trimmed and mapped to hg19 using bowtie v.1.0.1⁵ and all small non-coding RNAs other than piRNAs (DASHR v.2.0⁶) were removed. The remaining reads were intersected with 205 piRNA genomic regions previously detected in the adult human testis⁷.

Supplementary Figures

Supplementary Figure S1.

p.R452Ter

Human	IRPPILILSV-KRWPGVSEQQVYHKFQNLCKFDVFRLTRSQFLL46	50
Chimpanzee	IRPPILILSV-KRWPVVSEQQVYHTFQNLCKFDVHRLTRSQFLL47	11
Horse	IRPPILILRV-RRWPGLSEQQVYREFQNLCKFDVFRLTRSQFLL47	11
Cow	IRPPILILTV-RKWPGVSEQQVYREFQNLCKFDVFRLTRSQFLL46	ŝ9
Pig	IRPPTLILRV-RRWPEVSEQQIYREFQNLCKFDVFRLTRSQFLL47	11
Dog	IRPPILLLRV-RRWPGVSEQQVYREFQNVCKFDVFRLSRSQFLL47	11
Cat	IRPPILLLSV-RRWPGVSEQQVYREFQNLCKFDVFRLSRSQFLL47	11
Rabbit	FRPPVLILSV-ARWPGVSEQQVYREFQNLCKFDVFRLTRSQFLL47	11
Rat	34	11
Mouse	IRPPVLILTV-KRWPGVSEQQVYREFQNLCKFDVFRFTRSQFLL47	11
Zebrafish	KRDHVLYVTFPKEWKTSDLYQLFSAFGNIQVSWVDDrSAFVS 48	32
Worm	FRPDVITIVRRDRVAIEEDEFRYLEKALGTLMATYQFDIEWSK <mark>NK</mark> KELFLATNSPGSYAF50)2

В Human

Chimpanzee Horse Cow Pig Dog Cat Rabbit Rat Mouse Zebrafish Worm

Α

SVQQFTVCQIGLSVFSAIEGEANKYIAHSCNFYLF	Ρ	TTFGILDSEFSFQASSVQFLNQ106
SVQQFTICQIGLSVFSAIEGEANKYIAHSCNFYLF	Ρ	TTFGILDSEFSFQASSVQFLNQ 117
SVQQFTICQIGLSVFSSIEGESNKYVAHSCNFFLF	Ρ	TTFGILDSEFSFQASSVQFLNQ 117
SVQQFTICQIGLSVFSSIEGESNKYVAHSCNFFLF	Ρ	TTFGVLDSEFSFQASSVQFLNQ 115
SVQQFTICQIGLSVFSSIEGESNKYVAHSCNFFLF	Ρ	TTFGILDSEFSFQASSVQFLNQ 117
SVQQFTICQIGLSVFSSIEGESNKYVAHSCNFFLF	Ρ	TTFGILDSEFSFQASSVQFLNQ 117
SVQQFTICQIGLSVFSSIEGESNKYVAHSCNFFLF	Ρ	TTFGVLDSEFSFQASSVQFLNQ 117
SVQQFTICQIGLSVFSTIEGESNKYVAHSCNFFLF	Ρ	TTFGILDSEFSFQASSVQFLNQ 117
SVQQFTICQIGLSMFSSVEGESNKYVAHSCNFFLF	Ρ	TTFGILDSEFSFQASSVQFLNQ 117
SVQQFTICQIGLSMFSSIEGESNKYVAHSCNFFLF	Ρ	TTFGILDSEFSFQASSVQFLNQ 117
HSMNFLLFQFGVCTFRYD-QNQSTYITKAFNFYIF	P	KPFSRTSPDIKFICQSSSIDFLAS 118
NVIKYRPCOLGLTLFKOKSNRAYKADTYSVPLF	0	-RFGDNDTSISLPSMRFLVK108

-----MFCTRGLLFFAFLAGLDIEFTGLRSNLSGPQQ1<mark>SL</mark>FDLPSEWYLKTRQ48

p.P84S

p.L35fsTer3

С

Human Chimpanzee Horse Cow Pig Dog Cat Rabbit Rat Mouse Zebrafish Worm

-MDVGADEFEQSLPLQELVLGADFVGLDIEFTGLRSSLSEPHQISLFDLPSEWILKTRQ 59 -MDVGADEFEQSLPFLQELVLGADFVGLDIEFTGLRSSLSEPHQISLFDLPSEWILKTRQ 59 -MDVGADEFEQSLPFLQELVAGADFVGLDIEFTGLRSSLSRPQQISLFDLPSEWILKTRQ 59 -MEVTRQNFKEILPEVCNAVQEADFISIDGEFTGISDGPSVSALTNSLDTPEERYTKLRK 59 MVIVTDSNFLDAAGTLRKGLLYCDFVAIDFEFLGLDVS----AISLHDTVESRYQILRD 55

p.M259T

Human	OMLVKAOKPLVGHNM	M	DLLHLHEKFFRPLPESYDOFKONIHSLFPVLIDTKSVTKDI-W 301
Chimpanzee	QMLVKAQKPLVGHNMM	M	DLLHLHEKFFRPLPESYNQFKQNIHSLFPVLIDTKSVTKDI-W 312
Horse	QMLVKAQKPLVGHNM	MI	DLLHLHEKFFRPLPESYEQFKLNVHNLFPVLIDTKNVTKDI-W 312
Cow	QMLVKARKPLVGHNM	M	DLLHLHEKFFRPLPESYDEFKLNIHNLFPVLIDTKNVTKDI-W310
Pig	QMLVKAQKPLVGHNMM	MI	DLLHLHEKFFRPLPESYEDFKLNIHNLFPILIDTKNVTKDV-W312
Dog	QMLVKAQKPLVGHNM	M	DLLHLHEKFFRPLPESYDQFKLNIHNLFPILIDTKNVTKDI-W312
Cat	QMLVKAQKPLVGHNMM	ΤI	DLLHLHEKFFRPLPESYDQFKLNIHNLFPVLIDTKNVTKDI-W312
Rabbit	QMLVRAQKPLVGHNM	M	DLLHLHEKFFRPLPESYDQFKQNIHSLFPVLIDTKNVTKDI-W 312
Rat	QMLVKAQKPLVGHNMM	ΤI	DLLHLHEKFFRPLPESYDQFKQNIHSLFPVLIDTKNVTKDI-W312
Mouse	QMLVKAQKPLVGHNMM	MI	IDLLHLHEKFFRPLPESYDQFKQNIHSLFPVLIDTKNVTKDI-W 312
Zebrafish	RAISKSGKLVVGHNMI	Ll	DVMHTIHQFCGPLPEELDDFKEVAMTVFPRLLDTKLMASTQPF332
Worm	QVVHMTGKLVVGHNSI	LI	damymyhyffshlpanyqmfkdkfnalfprimdtkllaqalrf 325

Figure S1. Protein sequence alignment of the PNLDC1 gene across species. Mutations identified in NOA Patient 1 from Denmark (A), Patient 2 from the US (B) and Patient 3 from Portugal (C) are highlighted.

Supplementary Figure S2.

		NM_17351	6.2(PNLDC1):c.607	′-2A>T - [c.606+	-98 (Intro	on 8) - c.705 (Exo	n 9)]	Jamut Vi	sual v.2.	13 rev. (
SpliceSiteFinder-like	[0-100]									
MaxEntScan 🗖	[0-12]			= 0.4						
NNSPLICE D	[0-1]									
GeneSplicer	[0-24]					=1	5			
Poforonco Soquenco		607-20	607-10			620		630	ATCGT	640 T C C T A
Reference sequence	TCAGG	IGAATTIGI			JIAGI	GAAGAAG	IGAG	ΙΑΑΚΙΑΑ	AICGI	IGGIA
SpliceSiteFinder-like	[0-100]			89.9						
MaxEntScan	[0-16]			10.0						
NNSPLICE	[0-1]			1.0						
GeneSplicer	[0-21]			8.3=						
Branch Points	[0-100]			71.7				00000		
SpliceSiteFinder-like	[0-100]									
MaxEntScan 📻 🛛	[0-12]									-
NNSPLICE	[0-1]									
GeneSplicer	[0-24]					=1	7			
	0	607-20	607-10	607		620		630	ATOOT	540 TOOTA
Mutated Sequence	ICAGG	GAALLIGI	I CCCII GCI I I			GAAGAAAG	IGAG	ΙΑΑΑϹΑΑΟ	AICGI	IGGIA
SpliceSiteFinder-like	[0-100]				77.8					
MaxEntScan	[0-16]				4.5					
NNSPLICE 5	[0-1]									
GeneSplicer	[0-21]				2.4-			•: 50)DL	i ∧™
Branch Points	[0-100]									

Figure S2. Splicing prediction models predict the abolishment of the canonical splice acceptor site by the c.607-2A>T variant in Patient 4. The mutation is located at the boundary of intron 8 and exon 9 of the PNLDC1 gene. Exon 9 is highlighted by a blue box, and the wild-type (reference) *PNLDC1* sequence is given in the top and the alternate sequence at the bottom track of the figure. Predicted splice sites from four different splice prediction models (SpliceSiteFinder-like, MaxEntScan, NNSPLICE, GeneSplicer and Human Splicing Finder) are displayed as green and blue vertical bars for 3' (acceptor) and 5' (donor) sites, respectively. The computed score of each model is presented by the height of the green and blue vertical bars as a proportion of the maximum possible score, and the individual scores are displayed left of the bars. The ortholog alignment and splicing prediction were performed in the splicing module of the Alamut Visual version 2.13 software package (http://www.interactive-biosoftware.com).

Supplementary Figure S3.

Figure S3. Mitotic index of spermatogonia in controls with complete spermatogenesis and in Patient 1 and Patient 2. The P-value was 0.057.

Supplementary Figure S4.

Figure S4. Left: MAGE-A4 staining (red/brown) indicating a similar number of spermatogonia in Patient 2 as in the control with complete spermatogenesis. The bar represents 250 microns. **Right**: Transition protein 1 (TNP1) staining showing few spermatids positive for TNP1 in Patient 4 compared to a control with complete spermatogenesis. The bar represents 10 µm.

Supplementary Figure S5

Figure S5. Immunohistochemical staining for PNLDC1 in a control biopsy with complete spermatogenesis and in biopsies from the three patients with homozygous pathogenic mutations in *PNLDC1*. Arrows indicate pachytene spermatocytes expressing PNLDC1 in the control but not in the three patients. The bars represent 25 μ m.

Supplementary Figure S6.

Figure S6. Negative controls for antibodies used in the study. Controls were obtained by omitting the primary antibody. The bar represents $100 \mu m$.

Supplementary Figure S7.

Figure S7. Negative controls for antibodies used in the study. Controls were obtained by substituting the primary antibody with an antibody of the same class but keeping all other conditions similar. The bar represents 50 μ m.

Supplementary Figure S8

Figure S8. Negative control for *in situ* hybridization of *PNLDC1*. *In situ* hybridization with probes targeting *DapB* in a testicular biopsy from a control with complete spermatogenesis (top) and a testicular biopsy from Patient 4 (bottom). *DapB* is a bacterial RNA and hence serves as a negative control. There is no expression of *DapB* in neither case nor control. The bar represents 50 µm.

Supplementary Figure S9.

Figure S9. Staining of key piRNA processing components in sections from controls (same as in Figure 4A) and from Patient 1 and Patient 4. Due to the limited amount of tissue available and differences in used fixatives, it was not possible to get all antibodies to work on all biopsies. The bar represents 50 μ m and all images are in same magnification.

Supplementary Figure S10.

Page 14 of 20

Figure S10. RT-qPCR and small RNA sequencing applied to the testicular sample of Patient 4 and the compound heterozygous Patient 3. **A**) Relative expression analysis of components of the piRNA biogenesis in Patient 4 and matched controls. *PNLDC1* (Figure 3C), *PIWIL1*, *PIWIL4*, *MYBL1*, and *TDRKH* all showed a significant down-regulation in Patient 4 compared to controls with complete spermatogenesis similar to Patient 1 (Figures 3 and 4). **B**) Relative expression analysis of components of piRNA biogenesis indicated a mild impact of the heterozygous compound mutations p.M259T and p.L35fsTer3 identified in Patient 3. **C**) Small RNA sequencing on the testicular tissue of Patient 4 demonstrated a significant loss of piRNAs compared to the control (P<0.001), specifically at the expected length of around 30 bases, as also observed for the Patient 1 (Figure 4). **D**) Small RNA sequencing confirmed the partially functional piRNA biogenesis in Patient 3, with a milder reduction in the amounts of piRNAs compared to the control (P=0.04) and a shift in the distribution of piRNA lengths towards longer transcripts. All read counts of piRNAs are normalized to spike-in controls added to the RNA before library preparation. ns: non-significant, *: 0.01 < P <= 0.05, **: 0.001 < P <= 0.01, ***: P <= 0.001.

Supplementary Figure S11.

Figure S11. Percentage of piRNA reads arising from pachytene piRNA loci. Significantly reduced percentage of reads were produced from pachytene piRNA loci in all sequenced cases with PNLDC1 variants compared to respective controls. ***Fisher's exact test, P<0.001

Supplementary Tables

Method	Target	Primer sequences (5' -> 3')	Primer conc.	Annealing temperature	Product size
Sanger sequencing [#]	PNLDC1 p.P84S	Forw: AGCCTGCACGCCCTAACCTG Rev: CGGGAGGCGAAGATTGCACC	0.4 µM	Touch down 65°C to 55°C	491 bp
Sanger sequencing [#]	PNLDC1 p.R452Ter	Forw: AGCAGAGCCTTTCCTAGTTTCT Rev: GAGCAGGCAGTTGACGTTTG	0.4 µM	Touch down 65°C to 55°C	500 bp
Sanger sequencing§	PNLDC1 p.S34fs	Forw: GGTTGCGAGTGGTGGTCC Rev: GCCCAACACAAAACAAGCAT	0.4 µM	60°C	294 bp
Sanger sequencing [§]	PNLDC1 p.M259T	Forw: GTGATCAGAATTGCAGTGGGT Rev: TGTACCAATCCCTCTGCCAG	0.4 µM	60°C	250 bp
Sanger sequencing [§]	PNLDC1 c.607-2A>T	Forw: CCAAATCTGGCCTCTGAAAA Rev: CAGAAAAACCCCTTGCTGAG	0.33 µM	60°C	252 bp
RT-qPCR*	RPS29	Forw: CGCTCTTGTCGTGTCTGTTCA Rev: CCTTCGCGTACTGACGGAAA	0.67 aM 0.67 aM	62°C	91 bp
RT-qPCR*	MYBL1	Forw: TGTGTCCCAGCCACTTGCTTTC Rev: TCTGACTTTCTTCCCAGAAGCGGT	0.2 aM 0.2 aM	62°C	148 bp
RT-qPCR*	PIWIL1	Forw: GCGGAGGTCAATCGCAG Rev: TTGCAGCTATTCCAAGCCC	0.2 aM 0.2 aM	64°C	150 bp
RT-qPCR*	PIWIL4	Forw: TCCAGCTCAAATACCAGCTCA Rev: GTACAGTGCGGTTCATTTCGG	0.2 aM 0.2 aM	64°C	91 bp
RT-qPCR*	PNLCD1	Forw: ATCTCCCTGTACCGCTACTG Rev: CAAGGATGAACGCGAGAAGG	0.2 aM 0.2 aM	62°C	100 bp
RT-qPCR*	TDRKH	Forw: GATCCAGATCGTTGGCTCCC Rev: ACAGTCAAGTCTTCAGGCACA	0.2 aM 0.2 aM	62°C	96 bp
RT-qPCR*	RPS20	Forw: AACAAGCCGCAACGTAAAATC Rev: ACGATCCCACGTCTTAGAACC	0.2 aM 0.2 aM	62°C	166 bp

Table S1. Primers and conditions for Sanger sequencing and qPCR.

* Sequenced by Integrated DNA Technologies (Coralville, IA, USA)

[§] Sequenced in-house with the BigDye Terminator v.3.1 Cycle Sequencing Kit (PATIENT 3; Applied Biosystems, Carlsbad, CA, USA).

* RNA was reverse transcribed (RT) using AffinityScript qPCR cDNA Synthesis Kit (Agilent, Cat. #600559), qPCR performed with the Brilliant II SYBR Green qPCR master mix (Agilent, Cat. #600828) on QuantStudio 3 (Thermo Fisher Scientific, Cat. #A28137) using gene-specific primers and conditions as listed. A 12 cycle pre-amplification step was added.

Epitope	Vendor, code, species and class	Bouin's: working dilutions and buffers	GR-fix: working dilutions and buffers	Formalin: working dilutions and buffers	Working protocol	Comments
PNLDC1	Acris Antibodies, ADP53365PU-N, Rabbit, IgG	1:200: CIT	1:275: TEG	1:200: CIT	Formalin: Microwave AEC GR / Bouin's: Pressure cooker AEC	Interstitial background
PNLDC1	Invitrogen, PA5-62535, Rabbit, IgG	1:100, 1:150: CIT/TEG*	1:100: CIT/TEG* 1:250: TEG*		Pressure cooker DAB	Suboptimal in our protocols
PNLDC1	Invitrogen, PA5-62535, Rabbit, IgG	1:100: CIT/TEG* 1:150, 1:300, 1:500: CIT*			Microwave DAB	Suboptimal in our protocols
PNLDC1	Abcam, ab151151, Rabbit, IgG	1:100, 1:200: CIT/TEG* 1:500: CIT*	1:150: CIT/TEG* 1:250: TEG*		Pressure cooker DAB	Suboptimal in our protocols
PNLDC1	Abcam, ab151151, Rabbit, IgG	1:100: CIT/TEG* 1:250: CIT*			Microwave DAB	Suboptimal in our protocols
PIWIL1 (MIWI)	Cell Signaling Technology, #2079, Rabbit, IgG	1:150: CIT	1:650: TEG	1:100: CIT	Bouin's / Formalin: AEC Microwave, GR-fix: Pressure cooker AEC	
PIWIL4 (MIWI2)	Thermo Fisher Scientific, MA5- 17151, Mouse, IgG	1:1500 CIT	1:450 CIT		Pressure cooker AEC	
MYBL (A-MYB)	Sigma Aldrich, HPA008791, Rabbit, IgG	1:150 TEG		1:500: CIT	Microwave AEC	
TDRKH (TDRD2)	Proteintech,13528-1- AP, Rabbit, IgG	1:3000 TEG		1:5000. CIT	Bouin`s: Pressure cooker AEC Formalin: Microwave	
MAGE-A4	Gift from G. Spagnoli, Clone 57B, Mouse, IgG	1:2000 TEG			Pressure cooker AEC	
TNP1	Novusbio NBP2-30567, Rabbit, IgG			1:750: CIT	Microwave AEC	
Rabbit IgG- isotype	Abcam, Ab37415	various	various	various	All above	Negative control
Mouse IgG- isotype	Abcam, Ab91353	various	various	various	All above	Negative control

Table S2. Antibodies and conditions used in the study.

Notes: *Intervals tried. GR-fix, modified Stieve's fixative; CIT, 0,01 M Citrate (pH 7,4); TEG, TEG buffer (10 mM Tris, 1mM EDTA, 0,05% Tween 20, pH 8,5); AEC, 3-amino-9-ethylcarbazole; DAB, 3,3' diaminobenzidine tetrahydrochloride.

Source	Tissue	Extraction method	Remarks
Patient 1 ^{*, #}	Testis	RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Thermo Fisher Scientific, Cat. #AM1975)	Fixed (GR-fix, a modified Stieve's fixative) testicular biopsy
Patient 3 ^{§, #}	Testis	Trizol reagent (Thermo Fisher Scientific, Cat. #15596018)	Remnants from testicular sperm extraction (TESE)
Patient 4**	Testis	RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Thermo Fisher Scientific, Cat. #AM1975)	Fixed (Formalin) testicular biopsy
Sertoli-cell-only pattern (SCO) *	Testis	NucleoSpin® RNA kit (Macherey-Nagel, Cat. #740955)	Frozen testicular biopsy (n=2)
Controls with complete spermatogenesis (for Patient 1) * ^{, #}	Testis	RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Thermo Fisher Scientific, Cat. #AM1975)	Fixed (GR-fix, a modified Stieve's fixative) testicular biopsy control cases (n=4) with complete spermatogenesis
Controls with complete spermatogenesis (for Patient 3) ^{§, #}	Testis	Trizol reagent (Thermo Fisher Scientific, Cat. #15596018)	Remnants of TESE from patients with conserved spermatogenesis but undergoing infertility treatment due to anejaculation (n=2).
Control with complete spermatogenesis (for Patient 4)	Testis	RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Thermo Fisher Scientific, Cat. #AM1975)	Archived FFPE biopsy of a patient undergoing a TESE after a vasectomy was used. Histological inspection of the biopsy showed complete spermatogenesis.
Controls with complete spermatogenesis	Testis	NucleoSpin® RNA kit (Macherey-Nagel, Cat. #740955) Clontech - Acid guanidinium thiocyanate-phenol-chloroform extraction Ambion - Modified version of the ToTALLY RNA Kit (Ambion, Cat. #AM1910)	Frozen testicular biopsy (n=1)* Human Testis Total RNA (Clontech, Cat. #636533) Human Testes Total RNA (Ambion, Cat. #AM7972)
Ovary	Ovary	A modified version of the ToTALLY RNA Kit (Ambion, Cat. #AM1910)	Human Ovary Total RNA (Ambion, Cat. #AM6974)
Somatic	Skin	Modified guanidine thiocyanate technique	Human Skin Total RNA (BioChain, Cat. #R1234218-50)
Somatic	Ductus deferens	Modified guanidine thiocyanate technique	Human Ductus Deferens Total RNA (BioChain, Cat. #R1234100-10)
Somatic	Liver	Acid guanidinium thiocyanate-phenol-chloroform extraction	Human Liver Total RNA (Clontech, Cat. #636531)

Table S3. Sources of RNA used in the study.

* Obtained from the archives at Department of Growth of Reproduction, Rigshospitalet.

** Obtained from the pathology archives at Radboudumc.

[§] Obtained from Departamento de Patologia, Faculdade de Medicina da Universidade do Porto

[#] Degradation level and quantity were evaluated with the 2100 Bioanalyzer (Agilent, Cat. #G2939BA) and Qubit 3.0 Fluorometer (Thermo Fisher Scientific, Cat. #Q33216) respectively.

References

- 1. Svingen T, Jørgensen A, Rajpert-De Meyts E. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms. Mol Hum Reprod 2014;20(8):709–18.
- 2. McCall MN, McMurray HR, Land H, Almudevar A. On non-detects in qPCR data. Bioinformatics 2014;30(16):2310–6.
- 3. De Winter JCF. Using the Student's t-test with extremely small sample sizes. Practical Assessment, Research, and Evaluation 2013;18(1):10.
- 4. Wang M, Liu X, Chang G, et al. Single-Cell RNA Sequencing Analysis Reveals Sequential Cell Fate Transition during Human Spermatogenesis. Cell Stem Cell 2018;23(4):599-614.e4.
- 5. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009;10(3):R25.
- 6. Leung YY, Kuksa PP, Amlie-Wolf A, et al. DASHR: database of small human noncoding RNAs. Nucleic Acids Res 2016;44(D1):D216-22.
- 7. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 2006;442(7099):199–202.