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including medication, procedure, test, BP measurement, BMI,
drinking status, and smoking status. Since they provided addi-
tional information for modelling, as expected, the Hi-BEHRT
model achieved better performance with the inclusion of more
modalities. Therefore, our work highlighted the great benefit
of including rich medical history for accurate risk prediction.
However, we further observed that the contribution of a modality
to the model performance is in general highly related to its
frequency of recording in the dataset. It is partially due to
the fact that higher frequencies of recording can provide more
information for prediction. Another possible explanation is that
the information provided by modalities with low frequency are
overpowered by the modalities with much higher frequency. This
phenomenon has been described in the natural language process-
ing literature for the embedding of words as well which tend to
be biased towards higher word frequencies [30]. Therefore, one
potential future work will be to investigate how to incorporate
features or modalities with low frequency in a more meaningful
way for risk prediction.

Furthermore, to better understand the advantage of including
patients’ complete medical history for modelling, we compared
Hi-BEHRT to the benchmark models in terms of handling pa-
tients with different learning periods. We conducted a subgroup
analysis to evaluate model performance on patients who have
EHR length within the capacity of Transformer models (i.e., less
than or equal to 256 in our study) and longer than the Transformer
models’ capacity (i.e., more than 256) in the learning period.
We found that the Hi-BEHRT model showed similar or better
performance than the benchmark models on risk prediction tasks
for patients within the relatively short EHR length group, but
it greatly improved model performance with the inclusion of
more records (i.e., > 256). However, due to the limitation of
sequence length in the benchmark Transformer models, the
difference of model performance between patients with long
EHR and short EHR is relatively small. Additionally, we notice
for very imbalanced outcomes, for example HF, the majority of
the positive cases occur in patients with longer EHR and these
patients can have different contextual patterns compared to the
patients with short EHR. By making risk prediction with only
a fraction of the latest records in the benchmark Transformer
models when patients have long EHR sequence, they treated
patients with long EHR the same way as making prediction
for patient with short EHR sequence. Therefore, the models,
which rely on the global attention, can be driven to have better
discrimination performance for the positive cases with long EHR
records in the training and have relatively poor capability of
identifying positive cases with short EHR sequence. On the
contrary, with the inclusion of the entire EHR, together with
local feature extractor and global feature aggregator to identify
temporal and global patterns, the Hi-BEHRT model is more
capable of distinguishing different patterns of positive cases in
both long and short EHR sequences. Considering the majority
(70%) of the population have relatively short EHR length (less
than 256) in our risk prediction tasks and probably in most of
the cases in reality, this can be an important additional feature
of our proposed model.

In addition to model architecture, we also evaluated the usabil-
ity of a contrastive learning pre-training strategy, BYOL, in this
work. We combined the framework, which was originally de-
signed for image pre-training, with the MLM task, and adapted
it to pre-train our sequential model. With the pre-training, the
Hi-BEHRT model can achieve similar performance using only
1% of training data as the model trained without pre-training
using 5% of training data. With additional ablation analysis,
we concluded that the pre-training can potentially expanded the
power-law region [29] and allowed the model to reach power-law
region with smaller data size. However, our results also indicated
that the model performance almost saturated when using 50%
of training dataset. It means the model achieves the irreducible
error region. Future work should investigate more robust model
architectures to shift the power-law curve and improve the model
accuracy.

One of the major contributions of this work is the provi-
sion of a framework for risk prediction with the inclusion of
long and comprehensive EHR. With the growing accessibil-
ity and usability of EHR systems, risk prediction using long
EHR can be inevitable and have important implications for
medical practice. To our best knowledge, long sequence mod-
elling and its application in the context of healthcare and EHR
remains unexplored. Our work proposed a potential solution
to tackle this problem and investigated its benefit comparing
to model that makes prediction using only a fraction of the
EHR. Moreover, we provided a self-supervised pre-training
framework for the proposed model, and pre-training can adapt
risk prediction model to handle tasks with less training data
available, which is highly desired in most of the scenarios.
We also encourage future work to further explore other long
sequence modelling strategies (e.g., Longformer [11]) for EHR
modelling.

Our study also has limitations. First, we focused on the risk
of HF, diabetes, CKD, and stroke. As such, the conclusion may
not generalize to other diseases. Additionally, our work relied on
internal validation and the model performance under data shifts
or in the external cohorts requires further investigation.

APPENDIX

A. Additional Information on Dataset

In this section, we provide more information on modalities
that are not commonly included in the modelling. More specif-
ically, we will introduce procedure and test.

1) Procedure: Procedure is CPRD linked data collected
from Hospital Episode Statistics (HES) Admitted Patient Care
(EHS APC) data. It is recorded at the point of admission to, or
attendances at NHS healthcare providers. All procedure infor-
mation is coded using the U.K. Office of Population, Census
and Surveys classification (OPCS) 4.6, and procedures that are
not covered by OPCS code is not included in the system. Each
record in the system is specified with a start and an end date,
as well as event date. We used OPCS code and event date to
structure the timeline of a patient’s EHR history for modelling.
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2) Test: Test is recorded in the CPRD test table and coded as
Read code. It includes information on history/symptoms, exami-
nation/signs, diagnostic procedures, and laboratory procedures.
In the experiment, we only used the information in the Read
code level, which represents what examinations or procedures
are carried out. More detailed quantitative information was
excluded.

B. Clinical Codes for HF, Diabetes, CKD, and Stroke

TABLE V
ICD-10 CODES USED TO IDENTIFY PATIENTS WITH HEART FAILURE IN
HOSPITAL DISCHARGE RECORDS AND GENERAL PRACTICE RECORDS

TABLE VI
ICD-10 CODES USED TO IDENTIFY PATIENTS WITH DIABETES IN HOSPITAL

DISCHARGE RECORDS AND GENERAL PRACTICE RECORDS

C. Model Evaluation Stratified By Baseline Age

We evaluated model performance stratified by the baseline
age. The comparison was conducted on three subgroups of
patients: 1) patients with baseline age between 35 and 50 years
old (young adult); 2) patients with baseline age between 50 and
70 years old (middle-aged adult), and 3) patients with baseline
age 70–90 years old (older adult). Table IX shows that the
hierarchical BEHRT model has better performance across all
subgroups, and it substantially outperforms for BEHRT model
on HF and diabetes risk prediction tasks, especially for patients
with younger age.

TABLE VII
ICD-10 CODES USED TO IDENTIFY PATIENTS WITH CKD IN HOSPITAL

DISCHARGE RECORDS AND GENERAL PRACTICE RECORDS

TABLE VIII
ICD-10 CODES USED TO IDENTIFY PATIENTS WITH STROKE IN HOSPITAL

DISCHARGE RECORDS AND GENERAL PRACTICE RECORDS

D. Size and Overlap of Sliding Window

For Hi-BEHRT model, we used sliding window to segment
the raw EHR into segments. As shown in Table X when window
size is relatively small (i.e., 50), the size of the stride does not
have significant impact in terms of predictive performance, and
the bigger stride size can potentially decrease the number of
segments and reduce model complexity. However, for the larger
window size (i.e., 100), the stride size becomes more important,
and some level of overlap between segments is necessary. With-
out any overlap for window size 100, the AUPRC decreases
4% comparing to the model with stride size 50. Additionally,
the analysis shows that not larger window size always the
better choice. For instance, AUPRC of window size 100 without
overlap decreases 2% comparing to AURPC of window size
50 without overlap. Without overlap, larger window can lead
to shorter length in the segment level, and a balance between
window size and length of segment might be more preferred in
the hierarchical structure.
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TABLE IX
BASELINE AGE STRATIFIED SUBGROUP ANALYSIS

TABLE X
PERFORMANCE OF HF RISK PREDICTION WITH DIFFERENT WINDOW AND

STRIDE SIZE

TABLE XI
HI-BEHRT HYPER-PARAMETER TUNING

E. Hyper-Parameter Tuning

We set up hierarchical BEHRT with similar hyper-parameters
as the BEHRT model and used it as a reference model to
tune the hidden size and intermediate size of the Transformer.
More specifically, we applied grid search for hidden size among
[90, 150, 240] and intermediate size among [108, 256]. All
experiments were conducted on the 5-year HF risk prediction
task. Table XI shows that hidden size 150 and intermediate size
108 can achieve similar performance as the model with larger
size.

F. Evaluation for Multiple Levels of Hierarchy

In this section, we investigated how the number of levels of
hierarchy in Hi-BEHRT can influence the model performance
in risk prediction. Specifically, we compared the performance
of Hi-BEHRT with two and three levels of hierarchy. This
is because each additional level can substantially reduce the
sequence length. For instance, a sequence with maximum length
1225 would reduce to sequence length 118 with window size
50 and stride size 10 after the first level of hierarchy and would
further reduce to 7 after the second level of hierarchy. Therefore,
our dataset limited the number of levels we can investigate, and it

would not make sense to investigate Hi-BEHRT with more than
three levels of hierarchy. We encourage future work to replicate
our work to more comprehensively investigate Hi-BEHRT with
more levels of hierarchy. In our experiment, we only modified
the feature extractor and kept the total number of layers in feature
extractor the same for both comparators. More specifically, the
two-level Hi-BEHRT had one level of hierarchy with four layers
of Transformer for the extractor while the three-level Hi-BEHRT
included two levels of hierarchy with a two-layer Transformer
for each hierarchy. Both comparators used window size 50 and
stride size 10 and the rest parameters were the same as reported
in the manuscript. The results show that both models achieved
AUROC 0.96 and AUPRC 0.76 for HF risk prediction, and
there is no material difference between two-level and three-level
Hi-BEHRT in our dataset.
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