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APPENDIX A
A.1 Consequence of MAR
For unit (individual) 𝑖, let 𝑅𝑖 = 1 if 𝑋𝑖 is observed, and 0 otherwise. Algebraically, the definition of MAR (Table 1) means
𝑓(𝑅𝑖|𝑋𝑖, 𝑌𝑖, 𝑍𝑖) = 𝑓(𝑅𝑖|𝑌𝑖, 𝑍𝑖). Using the definition of conditional probability, this implies that the distribution of the par-
tially observed variable, 𝑋, in the observed data, that is

𝑓(𝑋𝑖|𝑌𝑖, 𝑍𝑖, 𝑅𝑖 = 1) =
𝑓(𝑅𝑖 = 1, 𝑋𝑖, 𝑌𝑖, 𝑍𝑖)

𝑓(𝑅𝑖 = 1, 𝑌𝑖, 𝑍𝑖)

=
𝑓(𝑅𝑖 = 1|𝑋𝑖, 𝑌𝑖, 𝑍𝑖)𝑓(𝑋𝑖, 𝑌𝑖, 𝑍𝑖)

𝑓(𝑅𝑖 = 1|𝑌𝑖, 𝑍𝑖)𝑓(𝑌𝑖, 𝑍𝑖)

=
𝑓(𝑋𝑖, 𝑌𝑖, 𝑍𝑖)

𝑓(𝑌𝑖, 𝑍𝑖)

= 𝑓(𝑋𝑖|𝑌𝑖, 𝑍𝑖), (A.1)

that is the distribution of 𝑋 given 𝑌, 𝑍 in the population. It is worth emphasising that this shows that MAR means that
the distribution of 𝑋 given 𝑌, 𝑍 is the same whether or not 𝑋 is observed.Therefore, under MAR, we can estimate the
distribution of 𝑋 given 𝑌, 𝑍 in the observed data and use this (implicitly or explicitly) to impute the missing values of 𝑋.
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A.2 Criteria for validity of complete records for logistic regression
To obtain the results in Table 2, consider the odds ratio relating 𝑌 to binary 𝑋1 at a fixed value of 𝑋2. Suppose that the
probability of a complete record depends on 𝑌 and 𝑋2. Then the odds ratio in the complete records is{

Pr(𝑌 = 1|𝑋1 = 1, 𝑋2 = 𝑥2, 𝑅 = 1)

Pr(𝑌 = 0|𝑋1 = 1, 𝑋2 = 𝑥2, 𝑅 = 1)

}
×

{
Pr(𝑌 = 0|𝑋1 = 0, 𝑋2 = 𝑥2, 𝑅 = 1)

Pr(𝑌 = 1|𝑋1 = 0, 𝑋2 = 𝑥2, 𝑅 = 1)

}
=

{
Pr(𝑅 = 1|𝑌 = 1, 𝑋1 = 1, 𝑋2 = 𝑥2) Pr(𝑌 = 1, 𝑋1 = 1, 𝑋2 = 𝑥2)

Pr(𝑋1 = 1, 𝑋2 = 𝑥2, 𝑅 = 1)

}
×

{
Pr(𝑋1 = 1, 𝑋2 = 𝑥2, 𝑅 = 1)

Pr(𝑅 = 1|𝑌 = 0, 𝑋1 = 1, 𝑋2 = 𝑥2) Pr(𝑌 = 0, 𝑋1 = 1, 𝑋2 = 𝑥2)

}
×

{
Pr(𝑅 = 1|𝑌 = 0, 𝑋1 = 0, 𝑋2 = 𝑥2) Pr(𝑌 = 0, 𝑋1 = 0, 𝑋2 = 𝑥2)

Pr(𝑋1 = 0, 𝑋2 = 𝑥2, 𝑅 = 1)

}
×

{
Pr(𝑋1 = 0, 𝑋2 = 𝑥2, 𝑅 = 1)

Pr(𝑅 = 1|𝑌 = 1, 𝑋1 = 0, 𝑋2 = 𝑥2) Pr(𝑌 = 1, 𝑋1 = 0, 𝑋2 = 𝑥2)

}
=

{
Pr(𝑌 = 1|𝑋1 = 1, 𝑋2 = 𝑥2)

Pr(𝑌 = 0|𝑋1 = 1, 𝑋2 = 𝑥2)

}
×

{
Pr(𝑌 = 0|𝑋1 = 0, 𝑋2 = 𝑥2)

Pr(𝑌 = 1|𝑋1 = 0, 𝑋2 = 𝑥2)

}
, (A.2)

in other words the odds ratio in the population, as the probability of a complete record depends on 𝑌 and 𝑋2, so Pr(𝑅 =

1|𝑌 = 𝑦, 𝑋1 = 𝑥, 𝑋2 = 𝑥2) = Pr(𝑅 = 1|𝑌 = 𝑦, 𝑋2 = 𝑥2).
This is simply a version of the same argument that justifies the use of logistic regression for case-control studies; there

selection depends on case/control status (𝑌), but not on exposure (𝑋), and so the estimate of the odds ratio relating expo-
sure to outcome is valid. The validity of complete records in logistic regression is explored in more detail by Bartlett et al.
(2015a), using simulations and an example.

 15214036, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202000196 by U
niversity C

ollege L
ondon U

C
L

 L
ibrary Services, W

iley O
nline L

ibrary on [14/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


