Web appendix

Table of Contents

Detailed statistical methods Appendix Table 1: Information about cohorts used in estimating the coefficients of the risk score	Page 2 5
Appendix Table 2: Characteristics and summary statistics for health examination surveys used in the analysis	6
Appendix Table 3: Characteristics of the cohort studies used for external validation Appendix Table 4: Results of validation of the fatal CVD model	7 7
Appendix Table 5: Population in risk category (%) of 10 year fatal CVD by country, sex, and age group.	8
Appendix Figure 1: Age-standardised CVD death rates per 100,000 by country and year	9
References	10

Detailed statistical methods

Model estimation

We used sex- and cohort-stratified Cox proportional hazards regression to estimate the coefficients of the risk function, similar to previous cohort pooling projects.¹⁻⁵ The risk predictors (smoking, diabetes, serum total cholesterol and systolic blood pressure) were measured at baseline. Participants' age was used as the time scale,⁶ which allows age-specific cardiovascular disease (CVD) rates to vary across cohorts, and hence across populations to which the risk score is applied. This parameterization allows the risk equation to be recalibrated to each country, and each sex and age group within it, by replacing the age-sex-specific CVD rates from the pooled cohorts with those from the application country. We included interaction terms between all risk factors and age and, as described in the main paper, between sex and diabetes, and sex and smoking based on previous evidence.

The Cox model is given as:

$$\lambda_{i}(t) = \lambda_{0,k}(t) \exp(\sum_{l=1}^{4} \beta_{l} X_{i,l} + \sum_{l=1}^{4} \delta_{l} t X_{i,l} + \sum_{l=3}^{4} \gamma_{l} sex_{i} X_{i,l})$$
(1)

where subscript *i* denotes individual participants in the cohorts; *k* denotes sex-cohort combination; *l* denotes risk factors in the risk prediction equation (1: systolic blood pressure, 2: total cholesterol, 3: diabetes, and 4: smoking); *t* denotes age in years; $X_{i,l}$ is the level of the risk factor *l* for individual *i* at baseline; β_l is the log hazard ratio (HR) for the main effect of each risk factor, δ_l is the coefficient for linear interaction between risk factor *l* and age, and γ_l is the coefficient for interaction between diabetes and smoking, and sex; and $\lambda_{0,k}(t)$ is the age-specific hazard of CVD at the average level of risk factors for participants of sex-cohort k. $\lambda_{0,k}(t)$ is conceptually equivalent to an age-specific version of the So(t) parameter in the specification used by D'Agostino and colleagues in the Framingham Risk Score.⁷ This formulation of the risk prediction equation does not need a coefficient for age although it includes interaction terms between age and other risk factors as described below.

Risk prediction

The first step in recalibrating the risk score for a country (and age and sex), is to calculate the CVD rate for each year of follow-up in the 10-year period of risk prediction using the coefficients of the proportional hazards model. For an individual who is aged t years (e.g. 60 years in the worked out example of Figure 2), this is given by the equation below:

$$\varphi_{i}(t) = \varphi_{0,k}(t) \exp\left[\sum_{l=1}^{4} \beta_{l}(X_{i,l} - \overline{X}_{l,k,t}) + \sum_{l=1}^{4} \delta_{l}t(X_{i,l} - \overline{X}_{l,k,t}) + \sum_{l=3}^{4} \gamma_{l}sex_{i}(X_{i,l} - \overline{X}_{l,k,t})\right]$$
(2)

where $\varphi_{0,k}(t)$ is the age-specific average CVD rate for country-sex k at age t (current age and the subsequent 9 years of life) and $\overline{X}_{l,k,t}$ is the country-sex-specific mean level of risk factor l at age t, i.e. at the time of risk prediction (analogous to the baseline in the cohorts that were used for estimating the coefficients). In practice, event rates and risk factor levels are often available in 5-year age groups in national populations.

The estimated 10-year risk of CVD for an individual aged t years at the time of risk prediction is:

$$P_{i}(CVD) = 1 - \prod_{j=t}^{t+9} (\exp(-\varphi_{i}(j)))$$
(3)

where *j* denotes the age for individual *i* at the time of risk prediction and in the 9 subsequent years of their life, and $\varphi_i(j)$ is the estimated CVD hazard from the above equation for each of those 10 years of age.

Cohort name*	Baseline date	Median follow up (years)	Number of participants	Percent female	Age range at baseline	Mean (SD) age at baseline	Number of fatal plus non-fatal CVD events (% stroke)	Number of fatal CVD (% stroke)	Mean (SD) total cholesterol (mmol/L)	Mean (SD) systolic blood pressure (mmHg)	Current smoking prevalence (%)	Diabetes prevalence (%)
ARIC	1987-89	15	13,405	56	44-66	54.1 (5.8)	2,164 (28)	368 (17)	5.6 (1.1)	121 (19)	25.9	10.4
CHS	1989-93	13	4,364	60	66-90	72.6 (5.5)	1,064 (57)	526 (20)	5.5 (1.0)	137 (22)	12.5	14.7
FHS	1948-51	15	3,027	55	40-65	50.2 (6.6)	412 (31)	185 (16)	6.1 (1.2)	137 (24)	54.6	1.6
FHS-OFF	1971	15	1,822	49	40-62	46.9 (5.1)	183 (21)	67 (10)	5.5 (1.0)	128 (18)	42.7	3.9
HHP	1965-68	15	7,572	0	45-68	54.4 (5.6)	810 (33)	359 (37)	5.6 (1.0)	135 (21)	44.1	6.1
MRFIT	1973-76	11	10,481	0	40-57	48.0 (4.7)	938 (10)	418 (8)	6.6 (0.9)	148 (16)	57.3	3.8
PRHHP	1965	12	5,416	0	42-77	54.4 (6.5)	292 (36)	296 (34)	5.2 (1.1)	133 (23)	41.4	7.3
WHICT	1993	8	4,042	100	50-79	62.1 (7.0)	179 (45)	46 (20)	5.8 (1.0)	128 (18)	8.9	10.0

Appendix Table 1: Information about cohorts used in estimating the coefficients of the risk score

* ARIC: atherosclerosis risk in communities; CHS: cardiovascular health study; FHS: Framingham heart study original cohort; FHS-OFF: Framingham heart study offspring cohort; HHP: Honolulu heart program; MRFIT: multiple risk factor intervention trial; PRHHP: Puerto Rico heart health program; WHICT: women's health initiative clinical trial. Detailed information on these cohorts are provided elsewhere. ⁸⁻¹⁶ WHICT was stratified on type of intervention.

Country	Survey name	Survey Year	Number of participants used in the analysis †	Mean systolic blood pressure (mmHg)	Mean total cholesterol (mmol/L)	Diabetes prevalence (%)	Current smoking prevalence (%)
China	CHNS	2009	6,346	128	5.0	10	28
Czech Republic	Post-MONICA	2007	2,478	131	5.5	15	30
Denmark	DANHES*	2008	13,787	131	5.5	4	16
England	HSE*	2011	1,569	129	5.5	12	30
Iran	NCDSS	2007	8,642	131	5.1	14	23
Japan	NHNS	2012	11,174	133	5.3	12	15
Malawi	STEPS	2009	1,045	140	4.5	2	14
Mexico	ENSANUT	2006	4,061	129	5.3	27	16
South Korea	KNHANES	2011	3,940	122	5.0	13	22
Spain	ENRICA	2008-10	7,822	133	5.3	14	23
United States	NHANES	2011-12	1,764	125	5.2	18	19

Appendix Table 2: Characteristics and summary statistics for health examination surveys used in the analysis

*Hb1Ac \geq 6.5% was used for diabetes diagnosis as fasting glucose was not available.

† Number of participants 40-84 years of age who had data on sex, systolic blood pressure, total cholesterol, diabetes, and smoking.

Cohort* characteristics	SHHEC	TLGS	AusDiab
Baseline date	1984-1992	1999-2001	1999-2000
Median follow up (years)	10	10	10
Number of subjects † (% female)	12,579 (51)	4,097 (57)	8,230 (54)
Age range at baseline	40-75	40-80	40-80
Mean (SD) age at baseline	51 (7)	54 (10)	56 (11)
Number of fatal CVD (% stroke)	346 (25)	111 (23)	166 (37)
Mean (SD) total cholesterol (mmol/L)	6.4 (1.2)	5.8 (1.2)	5.8 (1.1)
Mean (SD) systolic blood pressure (mmHg)	133 (20)	127 (21)	132 (19)
Current smoking prevalence (%)	46	14	14
Diabetes prevalence (%)	15	19	10

Appendix Table 3: Characteristics of the cohort studies used for external validation

*SHHEC: Scottish Heart Health Extended Cohort; TLGS: Tehran Lipid and Glucose Study; AusDiab: Australian Diabetes, Obesity and Lifestyle study

[†]Participants between 40 and 80 years of age; with no missing risk factor data; and with no history of coronary heart disease or stroke at baseline were included. Detailed information on SHHEC, TLGS and AusDiab have been reported elsewhere.¹⁷⁻²⁰

		Discrimination	Calibration
	Cohort name	C statistic (95% CI)	Hosmer-Lemeshow Chi-square (p) df=8
Internal validation	Total	71 (70-73)	15.5 (0.051)
	Men	70 (68-72)	20.2 (0.010)
	Women	80 (76-84)	9.8 (0.28)
Validation in each	ARIC	78 (74-82)	33.3 (<0.0001)
of the cohorts iteratively excluded	CHS	67 (62-71)	39.4 (<0.0001)
when estimating	FHS	74 (69-80)	7.7 (0.46)
coefficients	FHS-OFF	70 (59-81)	8.1 (0.42)
	HHP	73 (69-77)	18.4 (0.018)
	MRFIT	60 (57-63)	26.8 (<0.0001)
	PRHHP	77 (73-80)	11.4 (0.18)
	WHICT	76 (66-85)	11.1 (0.20)
External validation	SHHEC	74 (71-77)	12.0 (0.15)
	TLGS	83 (79-86)	12.9 (0.12)
	AusDiab	84 (82-87)	44.3 (<0.0001)

Appendix Table 4: Results of validation of the fatal CVD model

	Men: 40-64 years					Women: 40-64years					
	<3%	3-6%	7-9%	10-14%	≥15%	<3%	3-6%	7-9%	10-14%	≥15%	
China	48.3	27.8	11.1	7.3	5.4	55.3	28.8	6.8	4.1	4.9	
Czech Republic	40.5	35.9	10.2	8.4	5.0	82.5	13.8	2.0	1.0	0.6	
Denmark	86.7	12.4	0.7	0.2	0.0	97.9	2.0	0.1	0.1	0.0	
England	85.8	11.9	1.6	0.4	0.2	96.4	2.7	0.7	0.2	0.0	
Iran	38.9	38.1	9.8	7.7	5.5	59.6	23.9	6.6	4.5	5.4	
Japan	78.6	19.2	1.5	0.8	0.0	98.3	1.5	0.2	0.0	0.0	
Malawi	57.4	27.6	9.8	3.2	2.1	64.3	22.3	5.9	4.9	2.7	
Mexico	68.1	24.5	3.8	3.0	0.6	84.3	12.4	2.2	1.0	0.0	
South Korea	92.8	6.1	0.2	0.1	0.7	99.0	0.8	0.0	0.1	0.1	
Spain	88.2	10.6	0.4	0.5	0.2	99.0	1.0	0.1	0.0	0.0	
USA	73.8	21.9	2.8	0.4	1.0	92.6	6.8	0.3	0.2	0.1	
	Men: 65-84 years						Women: 65-84 years				
	<3%	3-6%	7-9%	10-14%	≥15%	<3%	3-6%	7-9%	10-14%	≥15%	
China	0.0	0.7	5.8	12.6	81.0	0.0	1.1	8.7	18.6	71.5	
Denmark	5.2	45.4	18.7	14.9	15.8	35.1	37.7	10.9	7.7	8.6	
England	4.2	35.7	19.5	14.9	25.8	29.9	24.9	11.0	11.5	22.7	
Japan	8.4	44.9	18.4	12.9	15.4	47.3	27.6	8.5	4.1	12.5	
Mexico	0.0	21.5	14.4	15.1	49.0	4.4	31.3	10.1	19.3	34.9	
South Korea	7.0	42.2	15.0	18.0	17.8	29.6	30.9	12.1	10.2	17.2	
Spain	11.7	43.4	15.5	14.9	14.5	44.2	31.0	8.2	5.4	11.2	
USA	2.9	33.2	21.7	16.2	26.0	22.7	30.6	7.8	19.4	19.5	
	Men: 40-84 years						Women: 40-84 years				
	<3%	3-6%	7-9%	10-14%	≥15%	<3%	3-6%	7-9%	10-14%	≥15%	
China	36.5	21.2	9.8	8.6	23.9	42.2	22.3	7.3	7.5	20.7	
Denmark	61.9	22.5	6.2	4.7	4.8	78.7	12.9	3.4	2.4	2.6	
England	60.7	19.2	7.1	4.8	8.1	77.1	9.2	3.7	3.5	6.6	
Japan	43.5	32.0	9.9	6.8	7.7	74.9	13.5	4.0	1.9	5.7	
Mexico	54.6	23.9	5.9	5.4	10.2	69.0	16.0	3.8	4.5	6.7	
South Korea	76.8	12.8	3.0	3.4	3.9	82.4	8.0	2.9	2.5	4.2	
Spain	66.8	19.8	4.7	4.6	4.2	80.2	11.3	2.9	1.8	3.8	
USA	54.8	24.9	7.8	4.7	7.7	72.6	13.6	2.4	5.7	5.7	

Appendix Table 5: Population in risk category (%) of 10 year fatal CVD by country, sex, and age group.

Men 300 - China CVD death rate (per 100,000) 250 Czech Republic Denmark England Iran 200 Japan Malawi Mexico 150 South Korea Spain USA -100 50 2000 2003 2006 2009 2012 year Women 300 - China Czech Republic CVD death rate (per 100,000) Denmark England 200 Iran Japan Malawi Mexico South Korea Spain

2006 year

100

0

2000

2003

Appendix Figure 1: Age-standardised CVD death rates per 100,000 people by country and year. The WHO standard population was used for age-standardisation.

- USA

2012

2009

References

1. Lawes CM, Parag V, Bennett DA, Suh I, Lam TH, Whitlock G, et al. Blood glucose and risk of cardiovascular disease in the Asia Pacific region. Diabetes Care. 2004; **27**(12): 2836-42.

2. Lawes CM, Rodgers A, Bennett DA, Parag V, Suh I, Ueshima H, et al. Blood pressure and cardiovascular disease in the Asia Pacific region. Journal of hypertension. 2003; **21**(4): 707-16.

3. Zhang X, Patel A, Horibe H, Wu Z, Barzi F, Rodgers A, et al. Cholesterol, coronary heart disease, and stroke in the Asia Pacific region. International journal of epidemiology. 2003; **32**(4): 563-72.

4. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002; **360**(9349): 1903-13.

Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, Halsey J, et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 2007; **370**(9602): 1829-39.
Thiebaut AC, Benichou J. Choice of time-scale in Cox's model analysis of epidemiologic cohort data: a simulation study. Statistics in medicine. 2004; **23**(24): 3803-20.

7. D'Agostino RB, Sr., Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA. 2001; **286**(2): 180-7.

8. Dawber TR, Meadors GF, Moore FE, Jr. Epidemiological approaches to heart disease: the Framingham Study. American journal of public health and the nation's health. 1951; **41**(3): 279-81.

9. Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP. An investigation of coronary heart disease in families. The Framingham offspring study. American journal of epidemiology. 1979; **110**(3): 281-90.

10. Kjelsberg MO, Cutler JA, Dolecek TA. Brief description of the Multiple Risk Factor Intervention Trial. The American journal of clinical nutrition. 1997; **65**(1 Suppl): 191S-5S.

11. Garcia-Palmieri MR, Feliberti M, Costas R, Jr., Colon AA, Cruz-Vidal M, Cortes-Alicea M, et al. An epidemiological study on coronary heart disease in Puerto Rico: The Puerto Rico Heart Health Program. Boletin de la Asociacion Medica de Puerto Rico. 1969; **61**(6): 174-9.

12. Worth RM, Kagan A. Ascertainment of men of Japanese ancestry in Hawaii through World War II Selective Service registration. Journal of chronic diseases. 1970; **23**(5): 389-97.

13. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Controlled clinical trials. 1998; **19**(1): 61-109.

14. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. American journal of epidemiology. 1989; **129**(4): 687-702.

15. Tell GS, Fried LP, Hermanson B, Manolio TA, Newman AB, Borhani NO. Recruitment of adults 65 years and older as participants in the Cardiovascular Health Study. Annals of epidemiology. 1993; **3**(4): 358-66.

16. Kagan A, Harris BR, Winkelstein W, Jr., Johnson KG, Kato H, Syme SL, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: demographic, physical, dietary and biochemical characteristics. Journal of chronic diseases. 1974; **27**(7-8): 345-64.

17. Lewsey JD, Lawson KD, Ford I, Fox KA, Ritchie LD, Tunstall-Pedoe H, et al. A cardiovascular disease policy model that predicts life expectancy taking into account socioeconomic deprivation. Heart. 2014.

18. Dunstan DW, Zimmet PZ, Welborn TA, Cameron AJ, Shaw J, de Courten M, et al. The Australian Diabetes, Obesity and Lifestyle Study (AusDiab)--methods and response rates. Diabetes research and clinical practice. 2002; **57**(2): 119-29.

19. Tohidi M, Mohebi R, Cheraghi L, Hajsheikholeslami F, Aref S, Nouri S, et al. Lipid profile components and incident cerebrovascular events versus coronary heart disease; the result of 9 years follow-up in Tehran Lipid and Glucose Study. Clinical biochemistry. 2013; **46**(9): 716-21.

20. Azizi F, Rahmani M, Emami H, Mirmiran P, Hajipour R, Madjid M, et al. Cardiovascular risk factors in an Iranian urban population: Tehran lipid and glucose study (phase 1). Sozial- und Praventivmedizin. 2002; **47**(6): 408-26.