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Supplementary Note 1 

Aminoacyl-tRNA synthetase/tRNA pairs which have been used to incorporate non canonical amino 

acids (ncAAs) include Methanococcus janaschii (Mj) tyrosyl–tRNA synthetase (TyrRS)/MjtRNATyr, 

Archaeoglobus fulgidus (Af) TyrRS/AftRNATyr, Methanococcus maripaludis (Mmp) phosphoseryl–

tRNA synthetase (SepRS)/MjtRNASep, Saccharomyces cerevisiae (Sc) tryptophanyl–tRNA synthetase 

(TrpRS)/SctRNATrp), Methanosarcina mazei (Mm) or Methanosarcina barkeri (Mb) pyrrolysyl–tRNA 

synthetase (PylRS)/MmtRNAPyl or MbtRNAPyl, and engineered mutually orthogonal PylRS/tRNAPyl 

pairs such as Candidatus Methanomethylophilus sp.1R26 (1R26)PylRS/Candidatus 

Methanomethylophilus alvus (Alv)tRNAPyl-8 and Methanomassiliicoccus luminyensis 1 

(Lum1)PylRS/Candidatus Methanomassiliicoccus intestinalis (Int)tRNAPyl-17C10.1-12  

 

Supplementary Note 2 

Certain class S pyl tRNAs contain 6-8 base pair D loops, while several class C pyl tRNAs contain long 

variable loops. Previous studies have shown that structural elements can strongly influence 

tRNAPyl:PylRS interactions;3,13 indeed, the orthogonality of the PylRS/tRNAPyl system with respect to 

endogenous aminoacyl-tRNA synthetases in a variety of host organisms has been attributed to the 

compact structure of the tRNAPyl body.14 Notably, expansions of the tRNAPyl variable loop have 

previously been used to attenuate cross-reactivity by a non-cognate PylRS class, while maintaining 

activity with the cognate PylRS class.2,3,15,16  Moreover, multiple pyl tRNAs from both classes contain 

unusual (adenine or uracil) nucleobases at the discriminator base position, which is a known identity 

element for previously characterised PylRS proteins.17,18 

 

Supplementary Note 3 

Six PylRS enzymes (C∆-Nitrososphaeria archaeon (Nitra)PylRS, C∆-Methanonatronarchaeia 

archaeon (Tron)PylRS, S∆-Desulfosporosinus sp. I2 (I2)PylRS, S∆-Clostridiales bacterium 

(Clos)PylRS, S∆-Deltaproteobacteria bacterium (Deb)PylRS, and S∆-Spirochaetales bacterium 

(Spi)PylRS) led to GFP production, at a level at least 50% of the wtGFP control, in the presence of the 

appropriate class C or S tRNAPyl.  

Intriguingly, the active class C PylRS enzymes showed considerable specificity towards certain class C 

pyl tRNAs over class S pyl tRNAs. In particular, C-TronPylRS, which was highly active with the C-

TrontRNAPyl (76% of wtGFP control), had less than 10% activity with all but one class S tRNAPyl tested. 
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Most active class S PylRS enzymes aminoacylated pyl tRNAs within both class C and class S. However, 

C-Candidatus Methanohalarchaeum thermophilum 1 (Therm1)tRNAPyl (and to a lesser extent, C-

Candidate division MSBL1 archaeon SCGC-AAA382A20 (SCGC)tRNAPyl) was poorly recognised by 

most active class S PylRS enzymes but formed a highly active pair with C∆-NitraPylRS. 

With regard to the previously characterised pyl tRNAs,2,3 most class C and class S PylRS enzymes 

proved highly active with B-InttRNAPyl, giving rise to GFP levels over 80% of the wtGFP control in 

some cases. In addition, several class C and class S PylRS enzymes also showed moderate to strong 

activity with N-MmtRNAPyl and A∆-AlvtRNAPyl. Of the previously characterised PylRS enzymes, N+-

MmPylRS was by far the most promiscuous, giving rise to over 50% of wild-type GFP production levels 

in the presence of eleven out of 16 pyl tRNAs (including all but two class S pyl tRNAs). These included 

S-ClostRNAPyl and S-DebtRNAPyl, which showed only modest activity with the most active class S 

PylRS enzymes. To a lesser extent, class A and class B PylRS enzymes also cross-reacted with certain 

class S and class C pyl tRNAs. Despite this, we were pleased to observe that C-SCGCtRNAPyl and C-

Therm1tRNAPyl were orthogonal to N+-MmPylRS, A∆-1R26PylRS, and B∆-Lum1PylRS; this 

demonstrated that naturally occurring tRNAPyl can be found that are orthogonal to PylRS enzymes taken 

from all other classes. 

Two wild-type class S PylRS enzymes, S+- Gemmatimonadetes bacterium (Gem)PylRS and S+-

DebPylRS, were expressed and showed convincing activity. S+-GemPylRS exhibited similar tRNAPyl 

specificity to its S∆ variant. However, S+-DebPylRS, the most active S+ system characterised, showed a 

markedly different activity profile to S∆-DebPylRS, for instance having much higher activity with A-

AlvtRNAPyl (72% versus 2% of wtGFP control, respectively), but much lower activity with C-

TrontRNAPyl (10% vs 64%). This is consistent with reports that PylSn proteins modulate tRNAPyl 

specificity.19,20  
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Supplementary Figure 1 

a. Activity of each combination of ∆N PylRSi (legend) and ∆N tRNAPyl
j, measured by production of 

GFP(150AllocK)His6 from cells bearing a GFP(150TAG)His6 gene in the presence of 4 mM AllocK 1, 

plotted against the sequence identity between ∆N PylRSi and ∆N PylRSj, where ∆N PylRSj is the 

synthetase from the same organism as ∆N tRNAPyl
j. b. Activity of each combination ∆N PylRSi and ∆N 

tRNAPyl
j (legend), plotted against the sequence identity between ∆N tRNAPyl

i and ∆N tRNAPyl
j, where 

∆N tRNAPyl
i is the tRNAPyl from the same organism as ∆N PylRSi. Dots represent the mean of three 

biological replicates, error bars show ± s.d.. All numerical values are provided (Supplementary Table 

2). 

40 60 80 100
103

104

105

106

aaRS Sequence Identity (%)

G
FP

 F
lu

or
es

ce
nc

e 
(a

.u
.)

Lum1PylRS

RumEnPylRS

030PylRS

IntPylRS

Lum2PylRS

ShengPylRS

G1PylRS

TermPylRS

AlvPylRS

H5PylRS

1R26PylRS

70 80 90 100
103

104

105

106

tRNA Sequence Identity (%)

G
FP

 F
lu

or
es

ce
nc

e 
(a

.u
.)

AlvtRNAPyl

G1tRNAPyl

H5tRNAPyl

1R26tRNAPyl

030tRNAPyl

RumEntRNAPyl

Lum1tRNAPyl

TermtRNAPyl

b

a



 5 

 
Supplementary Figure 2 

Schematic representation of the phylogeny of the organisms containing the 351 pyrrolysine systems 

discovered, generated with iTOL v6 software based on the unique taxonomic identifiers of the PylRS 

sequences. The full phylogenetic tree is provided as .txt file and can be interactively studied using iTOL 

v6 software or equivalent programs. 
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Supplementary Figure 3 

Fully annotated dendrogram showing the 37 clusters generated from agglomerative hierarchical 

clustering of the 351 PylRS C-terminal domain amino acid sequences, labelled with the identifiers 

indexed in Supplementary Table 1. Coloured labels correspond to the PylRS sequences chosen as 

cluster representatives. The radial coordinate represents percentage sequence identity (log scale), with 

grey contours corresponding to intervals of 20%. The red contour represents 55% sequence identity, the 

clustering threshold value. Unweighted average linkage clustering was performed using the scikit-learn 

package (version 1.0.1) in the Python programming language (version 3.9.7), with sequence identity 

scores converted to Euclidian distance measures. 
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Supplementary Figure 4 

a. Plot of the number of mutually orthogonal PylRS/tRNAPyl doublets against orthogonality coefficient 

(o.c.). b. Plot of the number of mutually orthogonal PylRS/tRNAPyl doublet families against 

orthogonality coefficient. c. Plot of the number of mutually orthogonal PylRS/tRNAPyl triplets against 

a

d

e

g h

c

f

b
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orthogonality coefficient. d. Plot of the number of mutually orthogonal PylRS/tRNAPyl triplet families 

against orthogonality coefficient. e. Plot of the number of mutually orthogonal PylRS/tRNAPyl 

quadruplets against orthogonality coefficient. f. Plot of the number of mutually orthogonal 

PylRS/tRNAPyl quadruplet families against orthogonality coefficient. g. Plot of the number of mutually 

orthogonal PylRS/tRNAPyl quintuplets against orthogonality coefficient. h. Plot of the number of 

mutually orthogonal PylRS/tRNAPyl quintuplet families against orthogonality coefficient. 

Orthogonality coefficient (o.c.) is the quotient of the lowest intra-pair activity over the highest inter-

pair cross-reactivity. Sets of pairs were considered mutually orthogonal if the lowest intra-pair activity 

was greater than 40% of the wtGFP control, the highest inter-pair cross-reactivity was less than 20% of 

the wtGFP control, and the o.c. was higher than 2.5. We grouped mutually orthogonal sets together into 

families if they involved the same PylRS enzymes. 
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Supplementary Figure 5 

a. Coomassie stained SDS PAGE gel of cell lysate (lanes 1-3) and Nickel NTA purified GFPHis6 (lanes 

4-6) from DH10B E.coli cells expressing GFPHis6 in the presence of MmPylRS/AlvtRNAPyl-21 and 4 mM 

AllocK 1. b. Raw mass spectrum of the purified GFPHis6 shown in panel a. The experiment was carried 

out in biological triplicates with similar results. Peak lists for all replicates are given in Supplementary 

Table 6. c. Deconvoluted mass spectrum of the purified GFPHis6 shown in panel a. Expected mass after 

dehydration 27827.3, mass found 27827.1. Peak labeled with an asterisk corresponds to loss of 

methionine. Peak labeled with a hash corresponds to the 4-(2-Aminoethyl) benzenesulfonyl adduct 

(+183 m/z) resulting from the incubation with cOmplete proteinase inhibitor during purification. d. 

Coomassie stained SDS PAGE gel of cell lysate (lanes 1-3) and Nickel NTA purified Ub(11Ser)His6 

(lanes 4-6) from DH10B E.coli cells expressing Ub(11TCA)His6 in the presence of 

MmPylRS/AlvtRNAPyl-21 and 4 mM AllocK 1. e. Raw mass spectrum of the purified Ub(11Ser)His6 

shown in panel d. The experiment was carried out in biological triplicates with similar results. Peak 

lists for all replicates are given in Supplementary Table 6. f. Deconvoluted mass spectrum of the 

purified Ub(11Ser)His6 shown in panel d. Expected mass 9346.6, mass found 9347.2.  
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Supplementary Figure 6 

a. Coomassie stained SDS PAGE gel of cell lysate (lanes 1-3) and Nickel NTA purified 

GFP(150AllocK)His6 (lanes 4-6) from DH10B E.coli cells expressing GFP(150TAG)His6 in the presence 

of 1R26PylRS/AlvtRNAPyl-21 and 4 mM AllocK 1. b. Raw mass spectrum of the purified 

GFP(150AllocK)His6 shown in panel a. The experiment was carried out in biological triplicates with 

similar results. Peak lists for all replicates are given in Supplementary Table 6. c. Deconvoluted mass 

spectrum of the purified GFP(150AllocK)His6 shown in panel a. Expected mass after dehydration 

27925.4, mass found 27928.3. Peak labeled with an asterisk corresponds to loss of methionine. Peak 

labeled with a hash corresponds to the 4-(2-Aminoethyl) benzenesulfonyl adduct (+183 m/z) resulting 

from the incubation with cOmplete proteinase inhibitor during purification. d. Coomassie stained SDS 

PAGE gel of cell lysate (lanes 1-3) and Nickel NTA purified Ub(11AllocK)His6 (lanes 4-6) from DH10B 

E.coli cells expressing Ub(11TAG)His6 in the presence of 1R26PylRS/AlvtRNAPyl-21 and 4 mM AllocK 

1. e. Raw mass spectrum of the purified Ub(11AllocK)His6 shown in panel d. The experiment was carried 

out in biological triplicates with similar results. Peak lists for all replicates are given in Supplementary 

Table 6. f. Deconvoluted mass spectrum of the purified Ub(11AllocK)His6 shown in panel d. Expected 

mass 9471.7, mass found 9471.2. 
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Supplementary Figure 7 

a. Coomassie stained SDS PAGE gel of cell lysate (lanes 1-3) and Nickel NTA purified 

GFP(150AllocK)His6 (lanes 4-6) from DH10B E.coli cells expressing GFP(150TAG)His6 in the presence 

of DebPylRS/I2tRNAPyl-S52 and 4 mM AllocK 1. b. Raw mass spectrum of the purified 

GFP(150AllocK)His6 shown in panel a. The experiment was carried out in biological triplicates with 

similar results. Peak lists for all replicates are given in Supplementary Table 6. c. Deconvoluted mass 

spectrum of the purified GFP(150AllocK)His6 shown in panel a. Expected mass after dehydration 

27925.4, mass found 27925.7. Peak labeled with an asterisk corresponds to loss of methionine. Peak 

labeled with a hash corresponds to the 4-(2-Aminoethyl) benzenesulfonyl adduct (+183 m/z) resulting 

from the incubation with cOmplete proteinase inhibitor during purification. d. Coomassie stained SDS 

PAGE gel of cell lysate (lanes 1-3) and Nickel NTA purified Ub(11AllocK)His6 (lanes 4-6) from DH10B 

E.coli cells expressing Ub(11TAG)His6 in the presence of DebPylRS/I2tRNAPyl-S52 and 4 mM AllocK 1. 

e. Raw mass spectrum of the purified Ub(11AllocK)His6 shown in panel d. The experiment was carried 

out in biological triplicates with similar results. Peak lists for all replicates are given in Supplementary 

Table 6. f. Deconvoluted mass spectrum of the purified Ub(11AllocK)His6 shown in panel d. Expected 

mass 9471.7, mass found 9472.8. 
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Supplementary Figure 8 

a. Coomassie stained SDS PAGE gel of cell lysate (lanes 1-3) and Nickel NTA purified 

GFP(150AllocK)His6 (lanes 4-6) from DH10B E.coli cells expressing GFP(150TAG)His6 in the presence 

of Lum1PylRS/I2tRNAPyl-B72 and 4 mM AllocK 1. b. Raw mass spectrum of the purified 

GFP(150AllocK)His6 shown in panel a. The experiment was carried out in biological triplicates with 

similar results. Peak lists for all replicates are given in Supplementary Table 6. c. Deconvoluted mass 

spectrum of the purified GFP(150AllocK)His6 shown in panel a. Expected mass after dehydration 

27925.4, mass found 27925.7. Peak labeled with an asterisk corresponds to loss of methionine. Peak 

labeled with a hash corresponds to the 4-(2-Aminoethyl) benzenesulfonyl adduct (+183 m/z) resulting 

from the incubation with cOmplete proteinase inhibitor during purification. d. Coomassie stained SDS 

PAGE gel of cell lysate (lanes 1-3) and Nickel NTA purified Ub(11AllocK)His6 (lanes 4-6) from DH10B 

E.coli cells expressing Ub(11TAG)His6 in the presence of Lum1PylRS/I2tRNAPyl-B72 and 4 mM AllocK 

1. e. Raw mass spectrum of the purified Ub(11AllocK)His6 shown in panel d. The experiment was carried 

out in biological triplicates with similar results. Peak lists for all replicates are given in Supplementary 

Table 6. f. Deconvoluted mass spectrum of the purified Ub(11AllocK)His6 shown in panel d. Expected 

mass 9471.7, mass found 9472.2. 
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Supplementary Figure 9 

a. Coomassie stained SDS PAGE gel of cell lysate (lanes 1-3) and Nickel NTA purified 

GFP(150AllocK)His6 (lanes 4-6) from DH10B E.coli cells expressing GFP(150TAG)His6 in the presence 

of MmPylRS/MettRNAPyl and 4 mM AllocK 1. b. Raw mass spectrum of the purified 

GFP(150AllocK)His6 shown in panel a. The experiment was carried out in biological triplicates with 

similar results. Peak lists for all replicates are given in Supplementary Table 6. c. Deconvoluted mass 

spectrum of the purified GFP(150AllocK)His6 shown in panel a. Expected mass after dehydration 

27925.4, mass found 27928.7. Peak labeled with an asterisk corresponds to loss of methionine. Peak 

labeled with a hash corresponds to the 4-(2-Aminoethyl) benzenesulfonyl adduct (+183 m/z) resulting 

from the incubation with cOmplete proteinase inhibitor during purification. d. Coomassie stained SDS 

PAGE gel of cell lysate (lanes 1-3) and Nickel NTA purified Ub(11AllocK)His6 (lanes 4-6) from DH10B 

E.coli cells expressing Ub(11TAG)His6 in the presence of MmPylRS/MettRNAPyl and 4 mM AllocK 1. e. 

Raw mass spectrum of the purified Ub(11AllocK)His6 shown in panel d. The experiment was carried out 

in biological triplicates with similar results. Peak lists for all replicates are given in Supplementary 

Table 6. f. Deconvoluted mass spectrum of the purified Ub(11AllocK)His6 shown in panel d. Expected 

mass 9471.7, mass found 9471.2. 
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Supplementary Figure 10 

a. Coomassie stained SDS PAGE gel of cell lysate (lanes 1-3) and Nickel NTA purified 

GFP(150AllocK)His6 (lanes 4-6) from DH10B E.coli cells expressing GFP(150TAG)His6 in the presence 

of NitraPylRS/Therm1tRNAPyl and 4 mM AllocK 1. b. Raw mass spectrum of the purified 

GFP(150AllocK)His6 shown in panel a. The experiment was carried out in biological triplicates with 

similar results. Peak lists for all replicates are given in Supplementary Table 6. c. Deconvoluted mass 

spectrum of the purified GFP(150AllocK)His6 shown in panel a. Expected mass after dehydration 

27925.4, mass found 27927.7. Peak labeled with an asterisk corresponds to loss of methionine. Peak 

labeled with a hash corresponds to the 4-(2-Aminoethyl) benzenesulfonyl adduct (+183 m/z) resulting 

from the incubation with cOmplete proteinase inhibitor during purification. d. Coomassie stained SDS 

PAGE gel of cell lysate (lanes 1-3) and Nickel NTA purified Ub(11AllocK)His6 (lanes 4-6) from DH10B 

E.coli cells expressing Ub(11TAG)His6 in the presence of NitraPylRS/Therm1tRNAPyl and 4 mM AllocK 

1. e. Raw mass spectrum of the purified Ub(11AllocK)His6 shown in panel d. The experiment was carried 

out in biological triplicates with similar results. Peak lists for all replicates are given in Supplementary 

Table 6. f. Deconvoluted mass spectrum of the purified Ub(11AllocK)His6 shown in panel d. Expected 

mass 9471.7, mass found 9472.0.  
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Supplementary Table 1 

Database of PylRS and tRNAPyl sequences together with classification resulting from hierarchical 

clustering. The table is provided in a separate excel sheet. 

 
Supplementary Table 2 

Table of numerical values of all fluorescence measurements conducted in this work. The table is 

provided as a separate excel sheet. 

 
Supplementary Table 3 

Sequence information of all DNA constructs used in this work. The table is provided as a separate excel 

sheet.  

 

Supplementary Table 4 

Isolated protein yields for the production of GFP(150AllocK)His6 from GFP(150TAG)His6 with all the 

PylRS/tRNAPyl pairs forming the most orthogonal quintuply orthogonal set. Primary data is given in 

Supplementary Table 7. 

Protein PylRS tRNAPyl yield (mg/L) % GFP(wt) 

GFP(150AllocK)His6 produced 
from GFP(150TAG)His6 

N+-Mm Met 80.2 ± 13.6 97 

A∆-1R26 Alv-21 116.8 ± 11.6 141 

C∆-Nitra Therm1 102.0 ± 15.5 123 

S+-Deb I2-S52 27.3 ± 1.6 33 

B∆-Lum1 I2-B72 96.1 ± 8.9 116 

GFPHis6 produced from GFPHis6 N+-Mm Alv-21 82.6 ± 1.9 100 
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Supplementary Table 5 

Summary of isolated protein yields for the production of Ub(11AllocK)His6 from Ub(11TAG)His6 with 

the all PylRS/tRNAPyl pairs forming the most orthogonal quintuply orthogonal set. Primary data is given 

in Supplementary Table 7. 

 

 

Supplementary Table 6 

Peak lists of all mass spectrometry data acquired in this work. The table is provided as a separate excel 

sheet.  

 
Supplementary Table 7 

Primary data of protein yield determination from Supplementary Tables 4 and 5. The table is provided 

as a separate excel sheet.  

 

  

Protein PylRS tRNAPyl yield (mg/L) % Ub(K11S) 

Ub(11AllocK)His6 produced from 
Ub(11TAG)His6 

N+-Mm Met 37.4 ± 0.1 76 

A∆-1R26 Alv-21 36.9 ± 2.9 75 

C∆-Nitra Therm1 31.0 ± 2.1 63 

S+-Deb I2-S52 22.7 ± 0.7 46 

B∆-Lum1 I2-B72 43.7 ± 2.3 89 

Ub(11Ser)His6 produced from 
Ub(11TCA)His6 N+-Mm Alv-21 49.3 ± 1.6 100 
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