Table of contents

Supplementary Figures

SF1. Supplementary Figure 1. Maximum likelihood phylogenies from Chordata phylum obtained for each COQ, FDXR and FDX2 SF2. Representative Multiple Sequence Alignments of each COQ SF3: Limited proteolysis of COQ6 analysed by UHPL/HRMS and peptide mapping SF4: Fluorescence NAD(P)H calibration line SF5: UV/Vis spectra of 2 and 3 SF6: COQ4 and COQ6 proposed mechanisms of action for C1 modifications SF7: Visible spectra of 4-AAY adducts SF8: Blue Native PAGE analysis of the purified COQ metabolon SF9: Chromatograms of experiments reported in Figure 6b SF10: Chromatograms of experiments reported in Figure 6c **SF11**: Calibration and peak integration of CoQ₁ and CoQ₁H₂ **SF12:** Monitoring inorganic phosphate production using Malachite green assay SF13: Intact protein mass spec on COQ3 SF14: List of ancestral sequences and NCBI entries SF15: NMR spectra of the CoQ compounds SF16: SDS- and Blue Native-PAGE gels

Supplementary Tables

ST1: List of primers for site-directed mutagenesis of COQ4

ST2: Peptide mapping analysis of the purified COQ metabolon

Supplementary Methods

Construct design, cloning, mutagenesis and expression of the COQs, FDXR and FDX2	43
Purification of GST-tagged FDXR, FDX2, COQ3, COQ4, COQ7, COQ8A and COQ8B	44
Purification of HisSUMO tagged COQ6, COQ3, COQ4, COQ7 and COQ9	.45
Purification of Strep tagged COQ5	.47
UV/Visible Spectrometry	48
4-aminoantipyrine spectrophotometric method of phenols/quinones analysis	48
Malachite Green ATPase assay	48
Limited proteolysis and peptide mapping	.49
Intact protein mass spectrometry	50
Micro-Scale Thermophoresis	50
Nano Differential Scanning Fluorimetry	51

Supplementary References

Pages 52

Pages 2-40

Pages 43-51

Pages 41-42

Supplementary Figures

COQ6

COQ3

COQ5

COQ7

COQ8A

COQ8B

FDXR

FDX2

Supplementary Figure 1. Maximum likelihood phylogenies from Chordata phylum obtained for each COQ, FDXR and FDX2. Branches are colored according to the taxonomic groups: Mammalia (red), Aves (yellow), Testudines (orange), Crocodylia (brown), Lepidosauria (light green), Amphibia (dark green), Actinopterygii (cyan) and Chondrichthyes (blue). The root (black) is formed by sequences from hemichordata, echinodermata and cephalochordata groups. The resurrected tetrapod ancestors are marked with yellow circles. The scale bar indicates the substitutions *per* site. For COQ6 a multiple sequence alignment (MSA) including 138 sequences and 480 sites was employed, JTT was the best-fit substitution model and α = 0.81; for COQ3 a MSA including 181 sequences and 359 sites was employed, JTT was the best-fit substitution model and α = 0.92; for COQ4 a MSA including 98 sequences and 287 sites was employed, DUMMY2 was the best-fit substitution model and α = 48; for COQ5 a MSA including 125 sequences and 336 sites was employed, LG was the best-fit substitution model and α = 0.53; for COQ7 a MSA including 149 sequences and 217 sites was employed, JTT was the best-fit substitution model and α = 0.91; for COQ9 a MSA including 183 sequences and 323 sites was employed, JTT was the best-fit substitution model and α = 0.93. For COQ8, first a NJ tree (MSA with 346 sequences) is presented were the paralog duplication (COQ8A and COQ8B) is evidenced at the Chordata emergence (note that COQ8B paralog has been lost in Aves group). Sequences from the related family ACDK1 (aarF domain containing kinase 1) were included in the analysis for rooting purposes (shown in grey branches). For COQ8A a MSA including 170 sequences and 643 sites was employed, JTT was the best-fit substitution model and α = 0.84; for COQ8B a MSA including 140 sequences and 527 sites was employed, JTT was the best-fit substitution model and α = 0.87. For FDXR a multiple sequence alignment including 142 sequences and 500 sites was employed, JTT was the best-fit substitution model and α = 0.83. For FDX2 a multiple sequence alignment including 174 sequences and 180 sites was employed, JTT was the best-fit substitution model and α = 0.92.

	1	10	20	30	40	50
tAncCOQ6	MAARLGL	SGWGRRR <mark>L</mark> RLR	CGARLSLA	RRGLARCC	RRRSSSGPA	VYDVVIS
XP_029454311_Rhinatrema	MA <mark>A</mark> LLAGPRGL	· · · · · · · · · · · · · · · · · · ·	CGFGL	GAASCL	ARRSASSKPD	LYDVVIS
NP_872282_Homo NW076339_Columbina	MAA		CGRGLLAPLAC	RIRACPSAPI	RRWSGASTDT	
	10					
	бò	7 <u>0</u>	80	٥٩	100	110
tAncCOQ6	GGG<mark>M</mark>VGTAMA C	ALGYDPHFQDK	KIL LLEAG HK	VFDQLPESYS	NRVSSITPGS	ATLLSSF
XP_029454311_Rhinatrema	GGGMVGTAMAC	ALGYDPHFSNK	RVLLLEAGHRE	VIDQVADIYS	NRVSAITPGS	TTLLSSL
NWO76339 Columbina	GGGHVGAAMAC	VLGHNIHFHDK	KIALLEAGPRE	E Y DRMPESYS	NRVSSISPGS	ATLLSSF
	120	130	140	150	160	170
tAncCOQ6	GAWDHIC NMRF	KP FRRMQVWD A	C S D A M I T F D K F	NLEDMGYIVE	NDVIMAALTK	QLEAVSD
NP 872282 Homo	GAWDHICSMRV	RAFRRMQVWDG	CSDAMITFDKE CSEALIMFDKI	GLEDMGYIVE	NDVIVAALTR	OLEAVSD
NWQ76339_Columbina	GAWDHVCSLRL	KAFRRMQVWDA	CSEAMIVFEK	DLDDMGYIVE	NDVIMSALTK	OLDAVAD
	180	190	200	210	220	230
tAncCOQ6 XP 029454311 Bhinatrema	RVEVLYRSRAV RVEVEYKCRAV	GYTWPLPYHTA GYTWPLPYHTA	EANPWVQIEL	ADGRRLQTKLL	IGADGONSMV	RKAAGIQ RAATCIH
NP_872282_Homo	RV T V L Y RSK A I	R YTWP C P FPMA	DSSPWVHITL	DG STF QTKLL	IGADGHNSGV	RQAVGIQ
NWQ76339_Columbina	RVQVFYGSR <mark>A</mark> V	G <mark>YTWP</mark> L <mark>P</mark> THNC	DTSPWVQIEL	DGRRLQTKLL	IGADGHNSVV	RKEAE I K
	240	250	260	270	280	290
tAncCOO6	NVOWNYDOSAV	VATLHLSEATD	NNVAWORFLP	GPIALLPLSD	TVSSLVWSTS	HEHAAEL
XP_029454311_Rhinatrema	SLKWSYDQVAV	TATLHLSEATE	NNVAWQRFLP	GPIALLPLSD	TCSSLVWSTS	SEHAAEL
NP_872282_Homo NW076339_Columbina	NVSWNYDQSAV	VATLHLSEATE VATLHLSEATD	NNVAWORF LPS	GPIALLPLSD	TLSSLVWSTS	HEHAAEL
Mg/0555_corumbina	KI SHKI DOGAV	AIDIDOBAI	nu vangar dr	GF INDEF DOD	I ASSIVISIS	
	зоо	310	320	330	340	350
tAncCOQ6	LSMDEESFVDA	INSAFWSNENH	SE FI DT <mark>AG</mark> SME	RSAL <mark>SLL</mark> MPS	GTSARQLPPS	VA RVDPK
NP 872282 Homo	LSMDDERFVDT	INSAFWSNEIH VNSAFWSDADH	SEFINSAGSLE TDFIDTAGAMI	OYAVSLLKPT	GF SARQLPPS KVSAROLPPS	VARIDAK
NWQ76339_Columbina	LAMDEESFVDS	INSAFWSNVNH	TD FI DT <mark>AG</mark> AVE	RSAISLLKPS	GTAVRQLPPS	VAKVDPE
	360	37 Q	380 [.]	390	400	410
XP 029454311 Rhinatrema	SRAMFPLGLGH	ATEYVRHRVAL ATEYIRHRVAL	IGDAAHRVHPI	LAGQGVNMGFG LAGOGVNMGFG	DVACLTHHLS DVASLARHLS	QAAFNGK RAAFNGK
NP_872282_Homo	SR <mark>VL</mark> FPLG <mark>L</mark> GH	A A E Y VRP RVA L	IGDAAHRVHPI	LAGQGVN <mark>M</mark> GFG	DISS <mark>L</mark> AH <mark>HLS</mark>	T <mark>AAF N G</mark> K
NWQ76339_Columbina	SRAMFPLGMGH	ATEYVHHRVAL	IGDAAHRVHPI	AGQGVNLGFG	DIACLAHHLS	AAFNGS
	420	430	440	450	460	470
tAncCOQ6	DLGSTRHLLEY	ETERORHNLPL	MAAIDLLKRLY	STKVAPFVLL	RTLGLQATNA	LSPVKEO
XP_029454311_Rhinatrema	DLGS IR <mark>HL</mark> LAY	ETERQRHNVLL	MSAIDMLNRLY	STKEAPLVLL	RTLGLQATNM	LSPVKEQ
NP_872282_Homo NW076339 Columbina	DIGSVSHITGY	ETERORHNTAL	LAATDLLKRLY	STSASPLVLI STKLAPLVLI	RTWGLQATNA RTWGLOATNA	VSPLKEQ LPPLKVP
					AL A SLIGHT NA	DI CLUMVI

	1 10) 2	20	30 4	10	50
tAncCOQ3	MWGGGR.GSR/	AGRLLV <mark>A</mark> LRO	GRSRGR.GAGC	RRLSLAAAGN	NHYGWTLQMA	PRFKSS
NWQ76719_Columbina						
XP_029451244_Rhinatrema	MUSCRAICSS	AAWLS	SRSGGRYSPQC	RRLTVVAAGE.	RRR	RRWRGADGDE
NF_039117_Holio	MASGKULGSSC	JGWF LKVLGF	GGCN1. NAAK	FLIDDAVIVRI	VQL5GILQIK	FGVENE
	60	70	80	90	100	110
tAncCOQ3	.NRTMWLKSNS	STTFASLTKN	KSSRSAVKRM	YSTSQTT <mark>VD</mark> PH	EMKKFQALA	HKWWDEOGEY
NWQ76719_Columbina		Q I	SLF <mark>R</mark> LTTKRL	F S T S H S S <mark>V D</mark> S I	ELKKFQLLA	H K W W D E E G E Y
XP_029451244_Rhinatrema	MNPGMLLTSAS	SRTFSRLSAI	SS.RCTMKWM	HTAAQ.TVDSI	REMOKEOMHA	YKWWDEEGVY
MF_039117_Homo	.IKIIWIKOII			13130110030		
	120	130	140	150	160	170
tAncCOQ3	AALHSMNDLR	/PFIRDTLLN	MSGDHQL G S <mark>P</mark>	LS <mark>G</mark> MKILDVG	GGGLLSEPL	GRLGASVTGI
NWQ76719_Columbina	SA <mark>LH</mark> SMNDIRV	/PFIRDT <mark>L</mark> LN	MSSNYHL <mark>G</mark> N <mark>P</mark>	L <mark>S</mark> GVKILDVG	CGGGLL <mark>S</mark> EPL	GR <mark>LGA</mark> SVTGI
XP_029451244_Rhinatrema NP_059117_Homo	AALHTMNDLR	/PFIRDTLIN	RKRDHDPGRP	LAGVILDVG	CGGGLL SEPL	GILGAAVTGI CRICASVICI
MF_000117_Homo	AF HISMADER	PPIKDMIMI				GKIGKOVIGI
	180	190	200	210	220	230
tAncCOQ3	DPLEDNIRTA	LHKSFDPVI	DKRIQYKACS	LEEIVEEATEI	FDAVVASEV	VEHVADVETF
NWQ76719_Columbina	dpled <mark>ni</mark> r ta i	QHKSFDPVI	AKRIQYKSS <mark>S</mark>	LEEIV <mark>EE</mark> CME1	FDVIVASEV	VEHVADLEMF
NP 059117 Homo	DPLKENIRTA	CHKSFDPVI	DKRIEYRVCS	LEEIVAESTEA LEEIVEETAEI	FDAVVASEV FDAVVASEV	VEHVGDVESF
MI_00011/_nome						
	240	250	260	270	280	290
tAncCOQ3	IKCCYQVLKP	GSLFITTI	KTQL <mark>SY</mark> A LGI	V VA <mark>E</mark> R I MGI V I	AGTHDWEKF	ISPEELERLL
NWQ76719_Columbina	IKCCSQVLKP	GSLFITTI	KTQLSYILGI	VVAEKIIGVVI	PEGTHEWEKF	VPPEELERLL
NP 059117 Homo	LOCCCOVLKP	GSLFITTI	JKTOLSYALGI	VFSEOIASIVI	RGTHTWERF	VSPETLESTL
	зоо	310	320	330	340	350
tAncCOQ3	ESNGFSVETVI	N <mark>GMLYNP</mark> LSC	GSWSWIEN TS I	NYALHAVKSKV	/QEQSDSTEP	PSEQEQEQHQ
NWQ76719_Columbina	ESNGFSVKTVI	GMLYNPLSO	GSWSWMES TS I Swswment s l	NYALHAVKSGA	AQGQPSPTDA	LSELENDQPS
NP_059117_Homo	ESNGLSVQTV	GMLYNPFSC	SYWHWSENTSL	NYAAYAVKSR	/QEHPASAEF	VLKGETEELQ
	360					
tAncCOQ3 NW076719 Columbing	AETSTSTTV.					
HIGIGITS COTUMDING						

 NWQ76719_Columbina
 ATAGTAV.

 XP_029451244_Rhinatrema
 DSTSSAL.

 NP_059117_Homo
 ANACTNPAVHEKLKK

	tAncCOQ4 Q9Y3A0_Homo NXE46430_Casuarius XP_029467832_Rhinatrema	1 MATLL HPGAGG MAMVTALL	10 RRARGLLI RI SRSPG REVRGCSI	2 C CLRPVLG VLRRLCG 	SP SLP PR RVPRQSVIA	30. GLTGRALCMR. GL ALSAGAVRPRH A <u>AT</u> GKGQRWY.	QAP <mark>AA</mark> .QRP <mark>AA</mark> AGRRA <mark>AA</mark> .QTN <u>KA</u> SY	YDMHEDAFT
	tAncCOQ4 Q9Y3A0_Homo NXE46430_Casuarius XP_029467832_Rhinatrema	40 DSPL EMPL EDGA HMEEDNTK	RAAEEGY RARSDGA AEEQEGC EAAGEKY	50 GPLYPGHI GPLYSHHI CQLYPGHI HPLYPNHI	60 PTSPLQKA PTSPLQKG PTSPLQKA PTNAFQKA	70 LLAAGSACMAL LLAAGSAAMAL LLAAGSAAMAL LLTVGSAMMSL	80 YNPYRHDMV YNPYRHDMV YDPYRHDMV YDPYRHDMI	90 AVLGETTGH AVLGETTGC AVLGETTGP
	tAncCOQ4 Q9Y3A0_Homo NXE46430_Casuarius XP_029467832_Rhinatrema	100 LALQNLRD RILKVLRD LVLPNLRD LVLQNLRD	1: RMRNDPE QMRRDPE KMKHDPE RMRNDPE	IQ GYQILQEP GAQILQEP GYRILREP GNQILQEP	120 PRIRLSTL PRISTSTL PRIRLSTL PRIQMSTL	130 DLAKIRSLPDG DLGKLQSLPEG DVNRLRGLPDG EMHRLRELPDA	140 SFGREYVRF SLGREYLRF TLGREYTRF TFGREYIRF	150 LDDNRVSPD LDVNRVSPD LEDNKVSPD LDVNKVSPD
	tAncCOQ4 Q9Y3A0_Homo NXE46430_Casuarius XP_029467832_Rhinatrema	160 TRAPVKFV TRAPTRFV TRMPAKFV TRMPVKFV	1 DDEELAY DDEELAY DDEELAY DNEELAY	70 VIQRYREV VIQRYREV VIQRYREV VIQRYREV	180 HDLLHTLL HDMLHTLL HDLMHTLL HDLMHTLL	190 GMPTNMLGEVV GMPTNILGEIV GMPTNMLGEVV GMPTNMLGEVV	200 VKWFEAVQT VKWFEAVQT VKWFEAIQT	210 GLPMCILGA GLPMCVLGA GLPMCLGA
	tAncCOQ4 Q9Y3AO_Homo NXE46430_Casuarius XP_029467832_Rhinatrema	220 AFGPIRLS FFGPIRLG AFGPVRLN TFGPLRLN	2: ARKLQVL AQSLQVL ARKLRVL AKRLQVL	30 VTELIPWA VSELIPWA TTELIPWA MMELLPWV	240 VONGRNAR VONGRRAP IOSGRNAN IOCGRNSO	250 CVLNIYYERRW CVLNLYYERRW CILNIYYERRW FVMNVYYEKRW	260 EQSLESLRE EQSLRALRE EQTVESLRE EQTMESLRE	270 ELGITPPPI ELGITAPPM EIGIFSPP ELGITPPPI
	tAncCOQ4 Q9Y3A0_Homo NXE46430_Casuarius XP_029467832_Rhinatrema	RVIGLA HVQGLA IKV						
COQ5								
	tAncCOQ5 NWQ77319_Columbina Q5HYK3_Homo XP_029474956_Rhinatrema	1 MAASMR MAAPGS MAVLAGGR	CAC CALWSYC C.LGGLC	10 SRAI RGI GRGWSRAM SRLI	CGCR IRGCQLLGL GS	20 SGARVCC RSSWPGDLLSA PGKLWFL	30 RAHSTEAAE AAG RLLSQEKRA RQHTDGQY	40 KETHFGFQT PEMHFGFQT AETHFGFET KKASFGFQS
	tAncCOQ5 NWQ77319_Columbina Q5HYK3_Homo XP_029474956_Rhinatrema	50 VSEEEKGE VTEAERRE VSEEEKGG VTEAEKNE	KVYQVFE KIYQVFE KVYQVFE KVHELFDI	60 NVAKKYDI SVAKKYDV SVAKKYDV RVSLKYDI	70 MNDAMSLG MNDSMTLG MNDMMSLG MNDVMTLG	80 IHRLWKDALLH IHRVWKDILVH IHRVWKDLLLW IHRLWKDSLLR	90 QMNPYPGTQ KMNPSPGTL KMHPLPGTQ LMNPYPGTQ	100 LLDVAGGTG LLDVAGGTG LLDVAGGTG LLDVAGGTG
		110	:	120	130	140	150	160
	tAncCOQ5 NWQ77319_Columbina Q5HYK3_Homo XP_029474956_Rhinatrema	DIAFRFIN DIAFRFIN DIAFRFLN DIAFLFLD	YVRSQREI YVRSVREI YVQSQHQI YIHSQRE	RQVRQE <mark>L</mark> K RQLQRK L F RKQKRQ <mark>L</mark> F VQLRRD L K	SH <mark>QNLSW</mark> Q HH <mark>QNLSW</mark> Q AQ <mark>QNLSW</mark> E SY <mark>QNLSW</mark> L	EISKSYQEEEQ EIAESYQEDKS EIAKEYQNEE. EVSKSYQKTRQ	DSLGGSQAV KSLGGSQVV DSLGGSRVV DLLGGSHVV	ICDINKEML VCDINKEML ICDVNQKMM

	170	180	190	200	210	220
tAncCOQ5	KV <mark>G</mark> KQ <mark>KAQQLGY</mark>	SEGLSWVVG	NAEELPFDDDK	FDVYTIAFGI	RNVTHIDQAI	QEAYRVLK
NWQ77319_Columbina	KV <mark>G</mark> KEKAQNLGY	TEGLSWVLG	NAEELPFDDDK	FDVYTIAFGI	RNVTRIDLAI	QEAYRVLK
Q5HYK3_Homo	KVGKQKALAQGY	RAGLAWVLG	DAEELPFDDDK	FDIYTIAFGI	RNVTHIDQAI	QEAHRVLK
XP_029474956_Rhinatrema	AIGEKKAQHLGY	TEGLSWVVG	NAEELPFTADK	FDVYSVAFGI	RNMTHIKQAI	QEAYRVLK

	230	240	250	260	270	280
tAncCOQ5	PGGRFLCLEFSQ	VN <mark>NPL</mark> I <mark>S</mark> RL	YDLYSFQVIPV	LGEVIAGDWK	SYQYLVESIR	R F P S Q E E F
NWQ77319_Columbina	PGGRFLCLEFSH	V S <mark>N P L</mark> L <mark>S S</mark> L	YDLYSFQVIPV	LGEVIAGDWK	SYQYLVESIR	RFPPQEEL
Q5HYK3_Homo	PGGRFLCLEFSQ	VN NPL I S RL	YDLYSFQVIPV	LGEVIAGDWK	SYQYLVESIR	RFPSQEEF
XP_029474956_Rhinatrema	PGGRFLCLEFS	AS <mark>NPL</mark> I <mark>S</mark> RI	YDLYSFQVIPV	LGEVIAGEWC	SYQYLVESIR	LFPTQEEF

	290	300	310
tAncCOQ5	KAMIEDAGFFKVE	YHNLTSGIV	AIHSGFKL
NWQ77319_Columbina	KAMIEDAGFLKVD	YQNLNLGIV	AIHSGFKL
Q5HYK3_Homo	KDMIEDAGFHKV T	YESLTSGIV	AIHSGFKL
XP_029474956_Rhinatrema	K <mark>amiedagf</mark> mkvd	YHNLTSGVV	AIHSGFKL

tAncCOQ7 Q99807_Homo XP_029432753_Rhinatrema PKK24439_Columba	1 M M MPRRGANRNRD	ER <mark>A</mark> AA SC <mark>A</mark> GA AR <mark>A</mark> AL RAGWRRE <mark>A</mark> GA	10 AAVRRGWRAHO AAAPRLW AALRRASCACS EAARRDDALAS	20 RRLRLGAGPF RLRPGAF RRCLIGA.PC /RRGGGGVGP.	30 RRPCCAQARR RRSLSAYGRR GFGCCAPADR 	40 ISVRFCSTG ISVRFRSSG ISVRSFSIG VSLRLCGTG
tAncCOQ7 Q99807_Homo XP_029432753_Rhinatrema PKK24439_Columba	50 MTLDNVDKAVI MTLDNISRAAV MTLDNVDKAVV RVPGDINKPVI	60 DRIIRVDHAG DRIIRVDHAG HPIIRVDHAG ERIIRVDHAG	70 EYGA <mark>NRIYAGO</mark> EYGANRIYAGO EYGANRIYAGO EYGA <mark>N</mark> RIYAGO	80 DMAVLGRTSVG DMAVLGRTSVG DMAVLGRTTVG DMAVLGRSSVG	90 PVIQQMWDQ LVIQKMWDQ PVIQQMWDQ PVIQQMWNQ	100 EKEHLKKFN EKDHLKKFN EKEHLKTFN EKDHLKKFN
tAncCOQ7 Q99807_Homo XE_029432753_Rhinatrema PKK24439_Columba	110 ELMVAHRVRPT ELMVTFRVRPT ELMIAHRVRPT DLMVAYRVRPT	120 ILMPFWNVAG VLMPLWNVLG ILLPFWNVG VLLPFWNVAG	130 FVLGAGTALLO FALGAGTALLO FALGAGTALLO FVLGAGSALLO	140 KEGAMACTVA KEGAMACTVA SKEGAMACTVA RKGAMACTVA	150 VEESISEHYI VEESISEHYI VEESISEHYI VEESISDHYI	160 NNQIRTLME NNQIRTLME NNQIRTLME NSQIRTLVE
tAncCOQ7 Q99807_Homo XF_029432753_Rhinatrema PKK24439_Columba	170 EDPEKYKELLQ EDPEKYKELLQ EDPEKYKELLQ	180 IIKKFRDEEL IKKFRDEEL IIKQFRDDEL IIKQFRDDEL	190 EHHDTGLEHDZ EHHDIGLDHDZ EHHDTGLEFDZ EHHDIGLEHDZ	200 AELAPAYSLLK AELAPAYAVLK AELAPAYSLLK AKGAPAYSVLK	210 NVIQIGCKA SIIQAGCRV NVIQIGCRA TAIQLGCKA	220 AIYLSERI AIYLSERL AVFLSQRI AIFLSERI

COQ9

tAncCOQ9 075208_Homo NWQ80522_Columbina_picui XF_029464793_Rhinatrema_bivittatum	1 MMAAAVAGLI MAAAAVSGAI KMAAAAAGSI .MGAVVLI	20 RRAGWRLLOLR GRAGWRLLOLR RRAGWRLLA. SRVGWRLLO.R	30 CRVVVRCQLSP CLPVARCRQAL SLSVLRCQLSV CEPVLKCQLIP	40 VQ <mark>RAFHASAV</mark> LRR VPRAFHASAVGLR PQRALQASAVLRR KR <mark>RPFCKSSVIWR</mark>	50 VSDEQKQQPPI SSDEQKQQPPI VSDEQKQQPPI ASDENKR.PJ	60 P <mark>S</mark> SSQ N <mark>S</mark> FSQ A <mark>S</mark> SSQ L <mark>S</mark> SVK
tAncCOQ9 O75208_Homo NWQ80522_Columbina_picui XF_029464793_Rhinatrema_bivittatum	7 OHSESQPT.E OHSETOGA.E OHFDSHPTDC OHPETOQPDE	Q 80 E P P P S S Q P	90 SYTDQGEESE RYTDQGEEEE SSTGQGQESE SYTDQSGNESE	100 DYESEEQLQHRIL DYESEEQLQHRIL DYESEEQLQHRIL GYESEEQLQQRIL	110 TAALEFVPEH TAALEFVPAH TAALEFVPEH SASLEFVPKY	GWTAE GWTAE GWTAE GWTSE
1 075208_Homo NWQ80522_Columbina_picui XF_029464793_Rhinatrema_bivittatum	20013 AIAEGAKSIG AIAEGAQSIG AIAEGAKTIG AIAEGAKSIN	0 140 LSAAAAGMFGN LSSAAASMFGK LSAASAGMFRN LSTAAMGMFSS	150 DGSDLILHFVS DGSELILHFVT DGSELILHFVS DGSDLIFHFVS	160 QCNSKLSELLEE QCNTRLTRVLEEE QCNTKLTELLEQE QCNTRLTELLEEE	170 HKLVQLGQAEI QKLVQLGQAEI QKQVQLGEAEI CKQVQLGQAEI	KKKTD KRKTD KKPLD KKKTD
1 O75208_Homo NWQ80522_Columbina_picui XP_029464793_Rhinatrema_bivittatum	80 19 QFLRDAVEAR QFLRDAVEAR QFLRDAVEAR QFLRDAIEVR	0 200 LRMLIPYIEKW LRMLIPYIEKW LRMLIPYIEKW	210 PQALSILLPH PRALSILMIPH PQALSVLLPH PQALSILLFPQ	220 NIPASLNLITSMV NIPSSLSLLTSMV NIPASLSLITSMI NIPAALNLLTSMV	230 DDMWHYAGDQ DDMWHYAGDQ DDIWHYAGDQ DDIWHYAGDQ	STDIN STDFN STDFN STNIN
2 tAncCOQ9 075208_Homo NWQ80522_Columbina_picui XP_029464793_Rhinatrema_bivittatum	40 25 WYTRRAVLAG WYTRRAMLAA WYTRRAVLTG WYTRRAILAG	Q 260 IYNTTELVMMQ IYNTTELVMMQ YYNTTELVMMQ IYNTTELVMLQ	270 DSSPDFEDTWR DSSPDFEDTWR DSSPDFEDTWR DSSPDYEDTWR	280 Flenrindamnmg Flenrvndamnmg Flenrvtdamnmg Flenrldnamkmg	290 HTAKQVKSTG HTAKQVKSTG NTANKVQSTG HAAKQV	EALVQ EALVQ EALVQ DAIVQ
3 tAncCOQ9 075208_Homo NWQ80522_Columbina_picui XP_029464793_Rhinatrema_bivittatum	00 31 GLMGAAVTLK GLMGAAVTLK GLMGAAVTVS GLMGATVTLK	9 NLTGLNQ <mark>R</mark> R NLTGLNQRR NAETRR NMTGLNQ <mark>R</mark> G				

COQ8A

tAncCOQ8A NWX02076_Caloenas XP_029448900_Rhinatrema Q8NI60_Homo	1 IC MAGDAIMLMF .SVMAGDAIMVVR MASDAIMLLF MAAILGDIIMVAR	2 GLAKLSKAV GLTKLSKAV GLWKLSRAV GLVKLTQAA	• LETQAGQLR. LETQAGQLRQL LETQAGQLQR VET.	30 LGGEAVAII /LMGGDAVTI GLAGKAAGL GIGGELIMA	40 ARTWQATAEI AKTLQATAEI TRKWQVTAE(ARALQSTAVI	50 EGFSAAMGK EQFSSALGK QGFSAAMER EQIGMFLGK
tAncCOQ8A NWX02076_Caloenas XP_029448900_Rhinatrema Q8NI60_Homo	60 MOELGKQQENLSE MOELGKQQENLTE MOELGKQQENVSE VOGQDKHEEYFA.	70. IGED FG LSED FG PG FG EN FG GPE	80 SEYDFSGPESS KDYDFSAREPS TEYDFSEPVLE GEFHFSVPHAP	90 SSANKDFSSP SDASMDFSTA SSIGKNPPPI AGASTDFSSA	S G Q P H E P G K P H E D S W P E E S A P D Q S A P P S	100 HSGAEG HS.SEG SHG SLGHAHSEG
tAncCOQ8A NWX02076_Caloenas XP_02948900_Rhinatrema Q8NI60_Homo	110 PAYSYATNGPFR PAHSYTTNGPFRS STDGHVES PAPAYVASGPFR	120 NTGDSSR SVGETGDSGM SKEMGGSGR EA <mark>G</mark> FPGQ	130 ADSPVSAKGNO GQKPFPPKVDA ADTPT.PEGNF ASSPL.GRANO	140 KLFGGFRDPG RLFGGFRDFG ERVVERKDSI RLFANPRD.	150 GNPFAAAFG GNPFAATFG RDLF.AAWG SFSAMGF	160 2TRAFHQDH 2NRAFHQDH 2TRAFHQDH 2RRFFHQDQ
tAncCOQ8A NWX02076_Caloenas XP_029448900_Rhinatrema Q8NI60_Homo	170 SSVGGLTAEDIEK SSVGGLTAEDIEK SSVSRLTAEDIEK SPVGGLTAEDIEK	180 AREAKANPE ARQAKTGSE AREAKADTE ARQAKARPE	190 NKPHKQMLSE QKPYKQMLSE NKPYKQTLSE NKQHKQTLSE	200 ARERKVPVTI ARERKVPVTI ARERKVPVTI ARERKVPVTI	210 RIGRLANFG RIGRLANFG RIGRLANFG RIGRLANFG	220 SLAVGLGIG SLAVGLGIG SLAVGLGIG SLAVGLGFG
tAncCOQ8A NWX02076_Calcenas XP_029448900_Rhinatrema Q8NI60_Homo	230 Alaevakkslr Alaevakkslr Alaevakkslrs Alaevakkslrs Alaevakkslrs	240 ERNGKKAVL ERNGKKAVM EHTGKKAVL DPSGKKAVL	250 DSSPFLSEANA DSSPFLSEANA DSSPFLSEANA GSSPFLSEANA	260 AERIVRTLCK AERIVRTLCK AERIVRTLCK AERIVRTLCK	270 VRGAALKLGO VRGAALKLGO VRGAALKLGO	280 QMLSIQDDA QMLSIQDDA QMLSIQDDA QMLSIQDDA
tAncCOQ8A NWX02076_Caloenas XP_029448900_Rhinatrema Q8NI60_Homo	290 FINPQLOKIFERV FINPLORIFERV FINPHLAKIFERV	300 VRQSADFMPT VRQSADFMPI VRQSADFMPI VRQSADFMPL	310 KQMMKTLNNDI KQMMKTLNNDI KQMMKTLNNDI KQMMKTLNNDI	320 LGPNWRDKLE LGPNWRDKLE LGPNWREKLE LGPNWRDKLE	330 FFEERPFAA FEERPFAA FEERPFAA YFEERPFAA	340 ASIGQVHLA ASIGQVHLA ASIGQVHLA ASIGQVHLA
tAncCOQ8A NWX02076_Caloenas XP_029448900_Rhinatrema Q8NI60_Homo	350 Rikdgrevamkic Rikngrevamkic Rikdgrevamkic RMKggrevamkic	360 YPGVAQSIN YPGVAQSIN YPGVAQSIN YPGVAQSIN	370 SDVNNLMTVLS SDVNNLMTVLS SDVNNLMTVLN SDVNNLMAVLN	380 MSNALPEGL MSNILPEGL MSNALPEGL MSNMLPEGL	390 FPEHLIEVL FPEHLIEVL FPEHLIEVL FPEHLIDVL	400 SRELALECD SRELALECD SRELALECD RRELALECD
tAncCOQ8A NWX02076_Caloenas XP_029448900_Rhinatrema Q8NI60_Homo	410 Yk Reaacakkfke Ye Reaacakkfe Yk Reaacakkfke Yoreaacakkfre	420 LLKDHPFFY LLKDHPFFY LLKDHPFFY LLKGHPFFY	430 VPAVVDELCS IPRVVDELCS VPAVVDELCS VPEIVDELCS	440 HVLTTELVS HVLTTELVS HVLTTELVS HVLTTELVS	450 GFPLDQAEGI GFPLDQGVGI GFPLDQAEGI GFPLDQAEGI	460 LSQEIRNEI LSQEIRNEI LSQEIRNEI LSQEIRNEI
tAncCOQ8A NWX02076_Caloenas XP_029448900_Rhinatrema Q8NI60_Homo	470 CHNILVLCLRELF CHNILVLCLRELF CHNILVLCLRELF CYNILVLCLRELF	480 EFRFMQTDP EFRFMQTDP EFRFMQTDP EFHFMQTDP	490 NWSNFFYDP01 NWSNFFYDP01 NWSNFFYDP02 NWSNFFYDP02	500 HKVALLDFG HKVALLDFG HKVALLDFG HKVALLDFG	510 ATRGFDEDF ATRGFDEKF ATRGFDEEF ATREYDRSF	520 TDIYIEVIK TDVYIEVIK TDIYIEVIK TDLYIQIIR
tAncCOQ8A NWX02076_Caloenas XP_029448900_Rhinatrema Q8NI60_Homo	530 AAAD DD DE RVLK AAAD MD RE RVLK AAAEKD RE RLLK AAAEKD RE TVRA	540 SIEMKFLTG SIEMKFLTG SIEMKFLTG SIEMKFLTG	550 YESKAMENAHI YEVKEMEDAHI YESKTMENAHI YEVKVMEDAHI	560 DAVLILGEA NAVLILGEA EAVLILGEA DAILILGEA	570 FASEEPFDFO FASEEPFDFO FASDEPFDFO FASDEPFDFO	580 GSQSTTERI GSQSTTEKI GHQSTTERI GTQSTTEKI
tAncCOQ8A NWX02076_Caloenas XP_029448900_Rhinatrema Q8NI60_Homo	590 HGLIPVMLKHRLV HGLIPVMLKHRLV HGLIPIMLKHRLI HNLIPVMLRHRLV	600 PPPEETYSL PPPEETYSL PPPEETYSL PPPEETYSL	610 HRKMGGSFLIC HRKMGGSFLIC HRKMGGSFLIC	620 SKLKAKIPC TKLKAKIPC SKLKAQISC SKLKARFPC	630 KNMFQEAYS KNMFQEAYS SNMFQESYS KAMFEEAYS	640 KYWSRRAKK KYWSSRGKK KYWRGREDK NYCKRQAQQ

 tAncCOQ8A
 QEQ

 NWX02076_Calcenas
 PED

 XP_029448900_Rhinatrema
 RK.

 Q8NI60_Homo
 ...

COQ8B

tAncCOQ8B XP_029475956_Rhinatrema Q96D53_Homo XP_033014419_Lacerta	1. M.WSEVGSV M.WREVGSA M.WLKVGGL MPWK	10 LRGAGRVGQ LRGTARIGQ LRG .RGLRFLGS	20 AFAETQGEQLE . AEMPGELVQ 	30 LLMARSSALG LLVARSSALE RLARPS	40 AGLKRAQESV PGLKFVQGAI SGTHSSEGRE	50 YEQCLSSLLASRQ RQHSSLLLANYK
tAncCOQ8B XP_029475956_Rhinatrema Q96D53_Homo XP_033014419_Lacerta	60 RGARDEFSE RMARDCS RQESVELPA	79 ASEEEDASRU QAVDGDESHU SPREEQENLI	80 NGVASEMPPDI NGMRLEWSPKI CLGRWFP	90 S.LPEAAAG S.LLEEAASG 	100 AGSAQSPGGF EPKSSSCSG GQLGQTVGW HTTSAT.GW	110 RPHPPAHGARGEG . PDTSGGRKPD . PCGALGPGP. . AADLSGDRPL
tAncCOQ8B XP_029475956_Rhinatrema Q96D53_Homo XP_033014419_Lacerta	120 WPSGS AGQRWPAGY HRWGP PMPRLRGG.	130 PSFSGRG CVWNRISCC 	140 PGMGQTRSFH SDVGRARSFH CGGSWAQKFY SSFGRPCLIH	150 DAAVRGLTA DTVVRGLTD DGPGRGLGE SAPLRGLTV	160 EDIKK <mark>ARE</mark> AF EEMKK <mark>ARE</mark> SF EDIRRAREAF EDIQKARESI	QKQS <mark>K</mark> PP ETTENESQSKPP PRKTP PRKDPESLGK.M
tAncCOQ8B XP_029475956_Rhinatrema Q95D53_Homo XP_033014419_Lacerta	170 RQKLSERAR RQKLNERSR RPQLSDRSR RQKLSERAR	180 ERKVPASRIS ERKVPASRIS ERKVPASRIS ERKVPVTRVO	190 RLANFGGLAV RLANFGGLAV RLANFGGLAV	200 SLGLGALAE SLGLGTLTE GLGLGVLAE GLGFGALVE	210 VAKKSLNGE MARKSLNSE MAKKSMPGGF VARNSLNGE	220 XEPKDTRSLIDSS KEPKDTRSILDSK LQSEGGSGLDSS KTKDAGFLLESN
tAncCOQ8B XP_029475956_Rhinatrema Q96D53_Homo XP_033014419_Lacerta	230 PFLSEANAE PFLSEANAE PFLSEANAE PFLSEANAK	240 RIVDTLCKV KIVNTLCRV RIVOTLCTV RIVDTLCKM	250 RGAALKIGQMI RGAALKIGQMI RGAALKIGQMI RGAALKIGQMI	260 SIQDNSFIS SIQDNSLIS SIQDNSFIS SIQDNSFIS	270 PQLQKIFERV PQLQRIFERV PQLQHIFERV PQLQQIFERV	280 VRQSADFMPAWQM VRQSADFMPTWQM VRQSADFMPRWQM VRQSADFMPPSQM
tAncCOQ8B XP_029475956_Rhinatrema Q96D53_Homo XP_033014419_Lacerta	290 MKVLAEELG TEVLVEELG LRVLEEELG MGVLVEELG	300 PDWREKLAS PEWQSKLAS RDWQAKVAS ADWRDRVAS	310 EERPFAAASI ESRPFAAASI EEVPFAAASI EETPFAAASI	320 GQVHLGVLR GQVHLGVLN GQVHQGLLR GQVHLGVLK	330 DGREVAMKI DGTEVAMKI DGTEVAVKI DGTEVAVKI	340 YPGIAQSIRSDV YPGIAQSIQSDV YPGIAQSIQSDV YPGIAQSIRSDV
tAncCOQ8B XP_029475956_Rhinatrema Q96D53_Homo XP_033014419_Lacerta	350 DNLLSVLKM DNLLSLLKM QNLLAVLKM DNLLAVLKM	360 SVVL <mark>PEGLF</mark> NLVFPEGLF SAALPAGLF SMVLPEGLF	370 AdnsiQVLQRE DnsiQVLRRE AeqslQALQQE AdntlQVLQKE	380 LEWECDYKR LEWECDYTR LAWECDYRR LEWECDYOR	390 EAACARRFR EAECARRFR EAACAONFR EALCARKFR	400 LLKDDPFFYVPE LLANDPFFYVPK LLANDPFFRVPA LLEGDPFFVPK
tAncCOQ8B XP_029475956_Rhinatrema Q96D53_Homo XP_033014419_Lacerta	410 VIDELTTKR VIDDLTTRR VVKELCTTR VVEELSTHR	420 VLTMELVSG VLTMELVSG VLGMELAGG VLSMELAGG	430 /PLDQCVGLDQ /PLDHCVGLPQ /PLDQCQGLSQ /PLDRCQELSQ	440 DIRNEICFN DIRNEICYN DLRNQICFQ ELRNEICSH	450 ILRLCLRELE ILRLCLREVE LLTLCLRELE ILRLCLREVE	460 EFRFMQTDPNWS EFRFMQTDPNWS EFRFMQTDPNWS
tAncCOQ8B XP_029475956_Rhinatrema Q96D53_Homo XP_033014419_Lacerta	470 NFFYDAEKH NFFYDDQKH NFLYDASSH NFFYDAERH	480 KVTLLDFGA KVTLLDFGA VTLLDFGA KVTLLDFGA	490 SREFGKEFTDH SREFGTEFTDH SREFGTEFTDH SRDFSKEFTDN	500 YIEVVKAAA YIEVVKAAA YIEVVKAAA YIEVVRAAA	510 DGDRAKVLQE DGDRARVLQE DGDRDCVLQE DGDRAKVLQE	520 (SKDLKFLTGFET (SRDLKFLTGFET (SRDLKFLTGFET (SKDLKFMTGFET
tAncCOQ8B XP_029475956_Rhinatrema Q96D53_Homo XP_033014419_Lacerta	530 KVFEEAHVD KAFSDAHVE KVFEDAHVD	540 AVMILGEAF AVMILGEAF AVMILGEPF AVMILGEAF	550 ASPEPFDFGTQ ASSEPFDFGTQ ATQGPYDFGSG 5TPGPFDFGTQ	560 NTTRRIQNL STTRRIHNL ETARRIQDL RTTRCIQDL	570 IPVMLKHRL VPVMLKHRL IPVLLRHRL IPVMLKHRL	580 PPPEESYSLHRK PPPEESYSLHRK PPPEETYALHRK PPPEESYSLHRK
tAncCOQ8B XP_029475956_Rhinatrema Q96D53_Homo XP_033014419_Lacerta	590 Magsflica Magsflica Lagaflaca Iagsflica	600 KLGAVIPCRI KLGAIMPCQ(HLRAHIACRI RLGAAIPCRI	610 EMFQEIYGRYW QMFLDTYKKYW DLFQDTYHRYW EMFEEAYARYI	620 ARERAAPLE VEQDRPAPGD VASRQPDAAT AGERPAPM.	AATA AVTV AGSLPTKGDS AGRA	WVDPS

FDXR

	1 I	0	20	30	40	50
tAncFDXR XP_029456456_Rhinatrema XP_013222637_Columba NP_077728_Homo	MGAPRGAVC MGPCR MEPVR	WLWGV WTWSVSSRCV	RSLARSLPRA LRSLLARLQTA	AGSPGVRRLLS AGALGLRKRLS EAVRRWLS	TASPTPQICI TAPSSPLVCI SAAPLPRLCV	VGSGPAGFYT VGSGPAGFYT VGSGPAGFYT VGSGPAGFYT
NF_077728_H0110	V. ASKCWKW	MGMOR	WFRIRDFFA	551F5 <u>FCn</u> n <mark>F</mark> D		VGSGFAGFII
t Angenyp	6 Q		80	9 Q		
XP_029456456_Rhinatrema XP_013222637_Columba NP_077728 Homo	AQHLLKHHK AQHILKHHG AOHILK HP	QVQVDIYEKI GAHVDIYEKI OAHVDIYEKI	PVPFGLVRFG PVPFGLVRFG PVPFGLVRFG	APDHPEVKNV APDHPEVKNV APDHPEVKNV	INSFTQTAS INSFTQTAS INSFTQTARS INTFTOTAHS	NRCAFYGNVI ERCAYYGNVI GRCAFWGNVE
tAncFDXR		130 LOOAYHAVVI		150 IPGENLPGVY	160 SARAFVGWYN	170 GLPENRDLNP
XP_029456456_Rhinatrema XP_013222637_Columba NP_077728_Homo	VGKDISVEE VGRDVTVAE VGRDVTVPE	LQOAYHAVVI LQOAYHAVVI LQEAYHAVVI	SYGAEDNRQLO SYGAEDNRVLO SYGAEDHRALF	GIPGENLPGVY GIPGENLSGVY EIPGEELPGVC	SARAFVGWYN Sarafvgwyn Sarafvgwyn	GLPENQNLEP GLPENRDLKP GLPENQELEP
	180	190	200	210	220	230
tAncFDXR XP 029456456 Rhinatrema	DLSSETAVI		ARILLSPLDLI	KKTDITQHSL	EALAQ <mark>S</mark> K <mark>VK</mark> R KATAH S K VK C	VWLVGRRGPL VWLIGRRGPL
XP_013222637_Columba NP_077728_Homo	DLSCETALI DLSCDTAVI	LGHGNVALD LGQGNVALD	ARILLSPLHLI ARILLTPPEHI	ROTDITEGSI ERTDITKAAI	AALAC <mark>SKVK</mark> R GVLRQ <mark>SRVK</mark> T	VWLVGRRGPL VWL <mark>V</mark> GRRGPL
	240	250	260	270	280	290
tAncFDXR XP_029456456_Rhinatrema	QVAFTIKEL QVAFTIKEL	REMINLPGTH REMISLPGTH	RPLLDPSDFEGI KPLLHPSDFEGI	GDAIKDLPRP GDVIKDLPRP	RKRLTELMIK RKRLTELMVK	T <mark>ALEKP</mark> GEKE S <mark>ALEKP</mark> SEKD
XP_013222637_Columba NP_077728_Homo	QVAFTIKEL QVAFTIKEL	REMI <mark>NLPG</mark> TF REMIQLPGAF	XPVLNPADF TGI XPILDPVDFLGI	ENAVKDVPRP QDKIKEVPRP	RKRLTEL <mark>MIK</mark> RKRLTELLLR	T <mark>ALEKP</mark> GEKA TATEKPGPAE
	3 0 Q	310	320	330	340	35 Q
tAncFDXR XP_029456456_Rhinatrema	AARW <mark>ASATR</mark> SARWASATR	EWGLRFLRSE EWGLKFLSSE	VEVLPSADGKI	RAA <mark>GIRL</mark> AVTR RVA <mark>GIRL</mark> AINR	LEGSGESARA LEGSGESAVA	VPTGEVEDIE VPTGRFENLE
NP_077728_Homo	AARQASASR	AWGLRFFRSE		RARGVRLSLIH RAAGV <mark>RL</mark> AVTR	LEGSGDSARA LEGVDEATR <mark>A</mark>	VPTGDVEELE VPTGDMEDLP
	3 6 Q	37 <u>0</u>	380	390	400	410
tAncFDXR XP_029456456_Rhinatrema XP_013222637_Columba NP_077728_Homo	CGLILSSIG CGLILSSIG CGLVLSSIG CGLVLSSIG	YKSLPIDPS YKSLPIATS YRSLPLDPA YKSRPVDPS	/PFDPKQGIIP /PFDAKQGIIP /PFDTQRGIIP /PFDSKLGVIP	NSMGRVQGAPG NTMGRVHNVPG NSSGRVEGVPG NVEGRVMDVPG	LYCSGWVKRG LYCSGWVKRG LYCSGWVKRG LYCSGWVKRG	PTGVIITTMN PTGVIITTMN PTGVIITTMN PTGVIATTMT
	420	430	440	450	460	470
tAncFDXR XP_029456456_Rhinatrema XP_013222637_Columba NP_077728_Homo	DSFDTAQSV DSFDTAQSV DSFDTAQSV DSFLTGQML	LEDLQSGVLI LDDLCSGRMI LEDLQAGVLI LQDLKAGLLI	DVSAPKPGFQA1 DPSVPKLGFQSI DVATSREGFGAV SGPRPGYAA1	IRALLOQ RGV H RNTLQL RGV H /ESILCS RGV R IQALLSS RGV R	PVSFSDWEKI PVSFSDWEKI PVSFSDWEKI PVSFSDWEKI	DAAETARGKA NASETAKGKE DAAEVARGKA DAEEVARGQG
	480	490				
tAncFDXR	VGKPREKIL	DVEEMLOLAS	50			

 tAncPDXR
 VGKPREKILDVEEMLQLASQ

 XP_029456456_Rhinatrema
 VGKPREKILDVEEMLQLASQ

 XP_013222637_Columba
 AGKPREKILDVEEMLQLASQ

 NP_077728_Homo
 TGKPREKLVDPQEMLRLIGH

FDX2

Supplementary Figure 2. Representative Multiple Sequence Alignments of each COQ. For each COQ a multiple-sequence alignment was constructed including the ancestral sequence reconstructed (full-length) from the tetrapoda superclass plus representative extant sequences from each of the three classes: amphibia (*Rhinatrema bivittatum* in all cases), reptilia (*Columba livia, Columbina picui, Casuarius casuarius, Caloenas nicobarica, Lacerta agilis* or *Taeniopygia guttata*) and mammalia (*Homo sapiens* in all cases). For each selected sequence the GenBank accession code is given in the name. The multiple-sequence alignments are colored according to the percentage of equivalence among residues calculated from their physical-chemical properties.

Ма	atched peptides sh	iown in Red					
1	MGSSHHHHHH	GSGLVPRGSA	SMSDSEVNQE	AKPEVKPEVK	PETHINLKVS		
51	DGSSEIFFKI	KKTTPLRRLM	EAFAKRQGKE	MDSLRFLYDG	IRIQADQTPE		
101	DLDMEDNDII	EAHREQIGGS	SGGPAVYDVV	ISGGGMVGTA	MACALGYDPH		
151	FQDKKILLLE	AGHKKVFDQL	PESYSNRVSS	ITPGSATLLS	SFGAWDHICN		
201	MRFKPFRRMQ	VWDACSDAMI	TFDKENLEDM	GYIVENDVIM	AALTKQLEAV		
251	SDRVEVLYRS	RAVGYTWPLP	YHTAEANPWV	QIELADGRRL	QTKLL IGADG		
301	QNSMVRKAAG	IQNVQWNYDQ	SAVVATLHLS	EATDNNVAWQ	RFLPTGPIAL		
351	LPLSDTVSSL	VWSTSHEHAA	ELLSMDEESF	VDAINSAFWS	NENHSEFIDT		
401	AGSMFRSALS	LLMPSGTSAR	QLPPSVARVD	PKSRAMFPLG	LGHATEYVRH		
451	RVAL IGDAAH	RVHPLAGQGV	NMGFGDVACL	THHLSQAAFN	GKDLGSTRHL		
501	LEYETERORH	NLPLMAAIDL	LKRLYSTKVA	PFVLLRTLGL	QATNALSPVK		
551	EQIMAFASK		L				
Color Code: >=80% >=60% >=40% >=20% >=5%							

Supplementary Figure 3. Limited proteolysis of COQ6 analysed by UHPLC-HRMS and peptide mapping. The peptide in the red box was removed in the COQ6 construct employed for most of the experimental work.

Supplementary Figure 4. Fluorescence NAD(P)H calibration line built by measuring $F_{460 \text{ nm}}$ of known concentrations of NAD(P)H. All data are presented as mean values ± s.d. The error bars correspond to the standard deviations in n = 2 independent measurements for each datum.

Supplementary Figure 5. UV/Vis spectra of 2 and 3. a. Visible spectra of **2** and **3**; the absorption peak at 430 nm disappears after O-methylation in position 5. **b.** Calibration line for the absorbance of **2** at 430 nm at known concentrations determined an extinction coefficient of 9.924 cm⁻¹mM⁻¹.

Supplementary Figure 6. COQ4 and COQ6 proposed mechanisms of action for C₁ modifications. a. Proposed mechanism for the Zn-dependent decarboxylase activity of COQ4 based on the inspection of the predicted AlphaFold model and mutagenesis experiments. **b.** Proposed mechanism for C₁-hydroxylase activity of COQ6, based on previous literature on flavin dependent monooxygenases [25,27].

Supplementary Figure 7. COQ6 is responsible for C₁-hydroxylation. a. Comparison of the GC/MS analysis of the the overnight reaction of **4a** to **4b** with the blank injection. The extracted-ion chromatograms of **4b** recorded after the injection of 500 ppm analytical standard (red), blank injection (violet), reactions performed by truncated (green) and full-length (black) COQ6 are shown above. The full-scan mass spectra of corresponding to the peak of **4b** in the standard injection (red) and in the reaction by full-length COQ6 (black) are shown below. **b.** Visible spectra of 4-aminoantipyrine adducts with the analytical standards of **4a** (black) and **4b** (red).

Supplementary Figure 8. Native PAGE analysis of the purified COQ metabolon. The gel filtered metabolon (see Extended Data Fig. 7) was submitted to Native PAGE analysis (14% polyacrylamide) at increasing concentrations (from left to right, 10, 25 and 50 μ M, respectively, see Supplementary Fig. 16). The two top bands visible in the gel were found to contain all the COQ proteins as shown by peptide mapping (see Supplementary Table 2). In-house MW marker was prepared by vortexing Bovine Serum Albumin and generating dimeric and trimeric oligomeric states. Dashed lines indicate where lanes have been moved and rearranged in the gel to ease visual comparison; original gels can be found in Supplementary Figure 16. Native-PAGE analyses were repeated in n = 2 independent experiments.

RT: 0.00 - 32.53

g

h

RT: 0.00 - 32.52 NL: 18.34 100-4.69E6 19,34 m/z= 50-205.50-206.50 MS 1<u>9.</u>72 21.45 14.83 17.51 28.57 30.22 3.55 8.47 11.55 M10 0-في والد ما قوم 19.74 NL: 100-2.62E7 m/z= 221.50-222.50 MS 50-13.32 16.64 18.32 19.93 Relative Abundance 5.46 8.98 25.22 27.36 29.89 M10 18.95 NL: 5.72E6 m/z= 235.50-236.50 MS 20,20 17.10 18.08 2<u>0.</u>98 2<u>4.</u>91 3.66 7.49 9.83 29.88 m10 15.66 NL: 5.20E7 m/z= 50-191.50-192.50 MS 18.34 19.74 22.53 27.36 31.39 M10 4.49 8.62 10.95 15.51 0-18.92 NL: 100-3.24E7 m/z= 50-207.50-208.50 MS 27.00 29.42 31.10 M10 15.23 17.51 19.98 4.49 8.61 9.79 0-18.34 NL: 100-1.15E7 m/z=219.50-220.50 MS 50-19.98 <u>20</u>.47 24.03 3.07 5.75 8.04 13.11 15.32 29.89 M10 0-15 25 30 0 5 10 20 Time (min)

19.53

19.72

1<u>9.</u>64

19.81

20,20

19.53

20,00

20

18.93

Τ

2<u>1.19</u>2<u>3.87</u>

<u>21.</u>58

20.68

20.97

25.24

25

28.02

29,91

29.89

30.49

29.72

30

27.37

27.35

27.82

24.52

19.48

18.93

18.32

1 des 18.95 NL: 2.91E7

m/z= 205.50-

M9

NL:

.m9

NL: 5.99E6 m/z= 235.50-236.50 MS

-m9

NL: 5.58E7 m/z=

M9

NL: 4.91E7 m/z=

M9

191.50-192.50 MS

207.50-

208.50 MS

5.13E6 m/z= 221.50-

206.50 MS

222.50 MS

Supplementary Figure 9. Chromatograms of experiments reported in Figure 6b. a. Metabolon without FDXR: from top to bottom, GC XIC of 1 (m/z=206). b. Metabolon without FDX2: GC XIC of 1 (m/z=206). c. Metabolon without COQ6: GC XIC of 1 (m/z=206). d. Metabolon without COQ3: GC XIC of 1 (m/z=206) and 2 (m/z=222). e. Metabolon without COQ4: UHPLC/ESI+ XIC of 1 (m/z=207), 2 (m/z=223) and 3 (m/z=237). f. Metabolon without COQ6 starting from 2: UHPLC/ESI+ XIC of 2 (m/z=223), 3 (m/z=237) and 4a (m/z=193). g. Metabolon without COQ5: GC XIC of 1 (m/z=206), 2 (m/z=222), 3 (m/z=236), 4a (m/z=192) and 4b (m/z=208). h. Metabolon without COQ7: GC XIC of 1 (m/z=206), 2 (m/z=222), 3 (m/z=236), 4a (m/z=192), 4b (m/z=208) and 5 (m/z=220). i. Metabolon without COQ9: GC XIC of 1 (m/z=206), 2 (m/z=222), 3 (m/z=236), 2 (m/z=222), 3 (m/z=236), 4a (m/z=192), 3 (m/z=236), 4a (m/z=192), 3 (m/z=236), 4a (m/z=192), 4b (m/z=208), 5 (m/z=220), CoQ₁ (m/z=250) and CoQ₁H₂ (m/z=252).

Supplementary Figure 10. Chromatograms of experiments reported in Figure 6c. a. Metabolon with COQ8B and ATP: from top to bottom, GC XIC of 1 (m/z=206), 2 (m/z=222), 3 (m/z=236), 4a (m/z=192), 4b (m/z=208), 5 (m/z=220), CoQ₁ (m/z=250) and CoQ₁H₂ (m/z=252). b. Metabolon with COQ8B without ATP: GC XIC of 1 (m/z=206), 2 (m/z=222), 3 (m/z=236), 4a (m/z=192), 4b (m/z=208), 5 (m/z=200), CoQ₁ (m/z=250) and CoQ₁H₂ (m/z=252). c. Metabolon without COQ8B and ATP: GC XIC of 1 (m/z=206), 2 (m/z=222), 3 (m/z=236), 4a (m/z=192), 4b (m/z=200), CoQ₁ (m/z=220), CoQ₁ (m/z=252). c. Metabolon without COQ8B and ATP: GC XIC of 1 (m/z=206), 2 (m/z=222), 3 (m/z=236), 4a (m/z=192), 4b (m/z=200), CoQ₁ (m/z=200), CoQ₁ (m/z=200), CoQ₁ (m/z=200), 2 (m/z=220), CoQ₁ (m/z=200), 2 (m/z=220), CoQ₁ (m/z=200), 4a (m/z=192), 4b (m/z=200), 5 (m/z=200), CoQ₁ (m/z=250) and CoQ₁H₂ (m/z=252). d. Metabolon with COQ8B and ADP: GC XIC of 1 (m/z=206), 2 (m/z=200), 2

(m/z=222), **3** (m/z=236), **4a** (m/z=192), **4b** (m/z=208), **5** (m/z=220), CoQ₁ (m/z=250) and CoQ₁H₂ (m/z=252).

Supplementary Figure 11. Calibration curves and automated peak integration of $CoQ_1(H_2)$. a. Quadratic calibration curve employed for CoQ_1 quantitation. b. CoQ_1 peak integration showed for a 100 µM analytical standard. c. Linear calibration curve employed for CoQ_1H_2 quantitation. d. CoQ_1H_2 peak integration showed for a 100 µM analytical standard.

Supplementary Figure 12. Monitoring inorganic phosphate production using Malachite green assay. Calibration of the inorganic phosphate adduct with Malachite Green dye and Michaelis-Menten curve describing the K_M of ATP for COQ8B. All data are presented as mean values \pm s.d. The error bars correspond to the standard deviations in n = 3 independent measurements for each datum.

Supplementary Figure 13. COQ3 is phosphorylated by COQ8B. Intact protein mass-spectrometry analysis shows that COQ3 is phosphorylated by COQ8B in five positions. Raw and deconvoluted mass spectra collected after the injection of 50 μ g of the reaction (red) and of the negative control (black) are shown.

Length= 478 amino acids

Ambiguously reconstructed sites (alternative state PP > 0.2) = 41 (8.6%)

Sequence identity to human COQ6 = 75.3%

Deposited sequence - tAncCOQ6_tr - with the N-terminal cleavage site shown in bold and red.

Accession code: OQ859713

>Tetrapod ancestor COQ6

MAARLGLSGWGRRRLRLRCGARLSLARRGLARCCRRRSSSGGPAVYDVVISGGGMVGTAMACALGYDPHFQDKKILLLEA GHKKVFDQLPESYSNRVSSITPGSATLLSSFGAWDHICNMRFKPFRRMQVWDACSDAMITFDKENLEDMGYIVENDVIM AALTKQLEAVSDRVEVLYRSRAVGYTWPLPYHTAEANPWVQIELADGRRLQTKLLIGADGQNSMVRKAAGIQNVQWNY DQSAVVATLHLSEATDNNVAWQRFLPTGPIALLPLSDTVSSLVWSTSHEHAAELLSMDEESFVDAINSAFWSNENHSEFID TAGSMFRSALSLLMPSGTSARQLPPSVARVDPKSRAMFPLGLGHATEYVRHRVALIGDAAHRVHPLAGQGVNMGFGDV ACLTHHLSQAAFNGKDLGSTRHLLEYETERQRHNLPLMAAIDLLKRLYSTKVAPFVLLRTLGLQATNALSPVKEQIMAFASK

COQ3

Length= 362 amino acids

Ambiguously reconstructed sites (alternative state PP > 0.2) = 44 (12.15%)

Sequence identity to human COQ3 = 64.7%

Deposited sequence - tAncCOQ3_tr - N-terminal cleavage site shown in bold and red.

Accession code: OQ859710

>Tetrapod ancestor COQ3

MWGGGRGSRAGRLLVALRGRSRGRGAGCRRLSLAAAAGNHYGWTLQMAPRFKSSNRTMWLKSNSTTFA SLTKMKSSRSAVKRMYSTSQTTVDPKEMKKFQALAHKWWDEQGEYAALHSMNDLRVPFIRDTLLNMSGDH QLGSPLSGMKILDVGCGGGLLSEPLGRLGASVTGIDPLEDNIRTAELHKSFDPVLDKRIQYKACSLEEIVEEAT ETFDAVVASEVVEHVADVETFIKCCYQVLKPGGSLFITTINKTQLSYALGIVVAERIMGIVPAGTHDWEKFISPE ELERLLESNGFSVETVNGMLYNPLSGSWSWIENTSINYALHAVKSKVQEQSDSTEPPSEQEQEQHQAETST STTV

COQ4

Length= 279 amino acids

Ambiguously reconstructed sites (alternative state PP > 0.2) = 21 (7.5%)

Sequence identity to human COQ4 = 77%

Deposited sequence - tAncCOQ4_tr - N-terminal cleavage site shown in bold and red.

Accession code: OQ859711

>Tetrapod ancestor COQ4

MATLLRRARGLLPLLRPVLGSPGLTGRALCMRQA**P**AADSPLRAAEEGYGPLYPGHIPTSPLQKALLAAGSAC MALYNPYRHDMVAVLGETTGHLALQNLRDRMRNDPEGYQILQERPRIRLSTLDLAKLRSLPDGSFGREYVR FLDDNRVSPDTRAPVKFVDDEELAYVIQRYREVHDLLHTLLGMPTNMLGEVVVKWFEAVQTGLPMCILGAAF GPIRLSARKLQVLVTELIPWAVQNGRNARCVLNIYYERRWEQSLESLREELGITPPPIRVTGLA

COQ5

Length= 312 amino acids

Ambiguously reconstructed sites (alternative state PP > 0.2) = 23 (7.4%)

Sequence identity to human COQ5 = 75%

 $\label{eq:loss_loss} Deposited \ sequence - tAncCOQ5_tr - N-terminal \ cleavage \ site \ shown \ in \ bold \ and \ red.$

Accession code: OQ859712

>Tetrapod ancestor COQ5

MAASMRCACSRALCGCRSGARVCCRAHSTEAAEKETHFGFQTVSEEEKGEKVYQVFENVAKKYDIMNDAM SLGIHRLWKDALLHQMNPYPGTQLLDVAGGTGDIAFRFINYVRSQRERQVRQELKSHQNLSWQEISKSYQE EEQDSLGGSQAVICDINKEMLKVGKQKAQQLGYSEGLSWVVGNAEELPFDDDKFDVYTIAFGIRNVTHIDQA LQEAYRVLKPGGRFLCLEFSQVNNPLISRLYDLYSFQVIPVLGEVIAGDWKSYQYLVESIRRFPSQEEFKAMIE DAGFFKVEYHNLTSGIVAIHSGFKL

COQ7

Length= 224 amino acids

Ambiguously reconstructed sites (alternative state PP > 0.2) = 20 (8.9%)

Sequence identity to human COQ7 = 77.7%

Deposited sequence - tAncCOQ7_tr - N-terminal cleavage site shown in bold and red.

Accession code: OQ859714

>Tetrapod ancestor COQ7

MERAAAAAVRRGWRAHCRRLRLGAGPRRPCCAQARRTSVRFCSTGMTLDNVDKAVIDRII RVDHAGEYGANRIYAGQMAVLGRTSVGPVIQQMWDQEKEHLKKFNELMVAHRVRPTILMP FWNVAGFVLGAGTALLGKEGAMACTVAVEESISEHYNNQIRTLMEEDPEKYKELLQIIKK FRDEELEHHDTGLEHDAELAPAYSLLKNVIQIGCKAAIYLSERI

COQ9

Length= 318 amino acids

Ambiguously reconstructed sites (alternative state PP > 0.2) = 18 (5.7%)

Sequence identity to human COQ9 = 84.3%

Deposited sequence – tAncCOQ9_tr_N79 – N-terminal cleavage site shown in bold and red.

Accession code: OQ859717

>Tetrapod ancestor COQ9

MMAAAVAGLLRRAGWRLLQLRCRVVVRCQLSPVQRAFHASAVLRRVSDEQKQQPPPSSSQQHSESQPTE EPDPESQRSHPSYTDQGGEESEDYESEEQLQHRILTAALEFVPEHGWTAEAIAEGAKSLGLSAAAAGMFGN DGSDLILHFVSQCNSKLSELLEEEHKLVQLGQAEKKKTDQFLRDAVEARLRMLIPYIEKWPQALSILLPHNIP ASLNLLTSMVDDMWHYAGDQSTDINWYTRRAVLAGIYNTTELVMMQDSSPDFEDTWRFLENRINDAMNMG HTAKQVKSTGEALVQGLMGAAVTLKNLTGLNQRR

$$PP = 0.95$$

Length= 645 amino acids

Ambiguously reconstructed sites (alternative state PP > 0.2) = 47 (7.3%)

Sequence identity to human COQ8A = 73.9%

Deposited sequence - tAncCOQ8A_tr - N-terminal cleavage site shown in bold and red.

Accession code: OQ859715

>Tetrapod ancestor COQ8A

MAGDAIMLMRGLAKLSKAVLETQAGQLRLGGEAVAIARTWQATAEEGFSAAMGKMQELGKQQENLSDIGE DFGSEYDFSGPESSSANKDFSSPSGQPHEHSGAEGPAYSYATNGPFRNTGDSSRADSPVSAKGNGKLFG GFRDPGNPFAAAFGQTRAFHQDHSSVGGLTAEDIEKAREAKANPENKPHKQMLSERARERKVPVTRIGRLA NFGGLAVGLGIGALAEVAKKSLRPEERNGKKAVLDSSPFLSEANAERIVRTLCKVRGAALKLGQMLSIQDDAF INPQLQKIFERVRQSADFMPIKQMMKTLNNDLGPNWRDKLEFFEERPFAAASIGQVHLARLKDGREVAMKIQ YPGVAQSINSDVNNLMTVLSMSNALPEGLFPEHLIEVLSRELALECDYKREAACAKKFKELLKDHPFFYVPAV VDELCSQHVLTTELVSGFPLDQAEGLSQEIRNEICHNILVLCLRELFEFRFMQTDPNWSNFFYDPQLHKVALL DFGATRGFDEDFTDIYIEVIKAAADQDRERVLKKSIEMKFLTGYESKAMENAHLDAVLILGEAFASEEPFDFGS QSTTERIHGLIPVMLKHRLVPPPEETYSLHRKMGGSFLICSKLKAKIPCKNMFQEAYSKYWSRRAKKQEQ

COQ8B

<u>PP</u> = 0.89

Length= 629 amino acids

Ambiguously reconstructed sites (alternative state PP > 0.2) = 77 (12.2%)

Sequence identity to human COQ8B = 63.8%

Deposited sequence - tAncCOQ8B_tr - N-terminal cleavage site shown in bold and red.

Accession code: OQ859716

>Tetrapod ancestor COQ8B

MWSEVGSVLRGAGRVGQAFAETQGEQLRLMARSSALGAGLKRAQESVEQCLSSLLASRQRGARDEFSEA SEEEDASRWGVASEMPPDISLPEAAAGAGSAQSPGGRPHPPAHGARGPGWPSGSPSFSGRGPGMGQTR SFHQDAAVRGLTAEDIKKAREAKQKQSKPPRQKLSERARERKVPASRISRLANFGGLAVSLGLGALAEVAKK SLNGEQKPKDTRSLLDSSPFLSEANAERIVDTLCKVRGAALKIGQMLSIQDNSFISPQLQKIFERVRQSADFM PAWQMMKVLAEELGPDWREKLASFEERPFAAASIGQVHLGVLRDGREVAMKIQYPGIAQSIRSDVDNLLSVL KMSVVLPEGLFADNSIQVLQRELEWECDYKREAACARRFRQLLKDDPFFYVPEVIDELTTKRVLTMELVSGV PLDQCVGLDQDIRNEICFNILRLCLRELFEFRFMQTDPNWSNFFYDAEKHKVTLLDFGASREFGKEFTDHYIE VVKAAADGDRAKVLQKSKDLKFLTGFETKVFEEAHVDAVMILGEAFASPEPFDFGTQNTTRRIQNLIPVMLKH RLTPPPEESYSLHRKMAGSFLICAKLGAVIPCREMFQEIYGRYWARERAAPLEAATA

Length= 494 amino acids

FDXR

Ambiguously reconstructed sites (alternative state PP > 0.2) = 47 (9.5%)

Sequence identity to human FDXR = 73%

Deposited sequence – tAncFDXR_tr – N-terminal cleavage site shown in bold and red.

Accession code: OQ859718

>Tetrapod ancestor FDXR

MGAPRGAVCWLWGVRSLARSLPRAGSPGVRRLLSTASPTPQICIVGSGPAGFYTAQHLLKHHKQAQVDIYE KLPVPFGLVRFGVAPDHPEVKNVINTFTQTAHSDRCSFYGNVTVGKDVTVEELQQAYHAVVLSYGAEDNRT LGIPGENLPGVYSARAFVGWYNGLPENRDLNPDLSSETAVILGQGNVALDVARILLSPLDLLKKTDITQHSLEA LAQSKVKRVWLVGRRGPLQVAFTIKELREMINLPGTRPLLDPSDFEGLGDAIKDLPRPRKRLTELMIKTALEK PGEKEAARWASATREWGLRFLRSPVEVLPSADGKRAAGIRLAVTRLEGSGESARAVPTGEVEDIECGLILSSI

GYKSLPIDPSVPFDPKQGIIPNSMGRVQGAPGLYCSGWVKRGPTGVIITTMNDSFDTAQSVLEDLQSGVLDV SAPKPGFQAIRALLQQRGVHPVSFSDWEKIDAAETARGKAVGKPREKILDVEEMLQLASQ

FDX2 - tAncFDX2

Length= 182 amino acids

Ambiguously reconstructed sites (alternative state PP > 0.2) = 22 (12.1%)

Sequence identity to human FDX2 = 70.5%

Deposited sequence – tAncFDX2_tr – N-terminal cleavage site shown in bold and red.

Accession code: OQ859719

>Tetrapod ancestor FDX2

MAASMVARGVAAGCLLRACGGCLFSRPGGCRRRSRAASRAPARGFQTAGAHQAEEESQAPEPSDDVVNV VFIDRSGQRIPVKGKVGDNVLYLAHKHGIDLEGACEASLACSTCHVYVSEEFLDKLPEPDEREDDMLDMAPL LQENSRLGCQIILTKELEGAEFTLPKITRNFYVDGHVPKPH

Supplementary Figure 14. List of reconstructed sequences. Each ancestral sequence used in this study is shown separately including: the posterior probability for reconstruction, final amino acid length, the number of ambiguously reconstructed sites, sequence identity compared to the human orthologue, accession code and sequence description, and final sequence. The amino acid labelled in red corresponds to the final residue removed in the truncated construct. The graphs shown illustrate the posterior probability for the reconstructed amino acid at each site across the polypeptide. The final posterior probability for the entire reconstruction is shown as PP.

Supplementary Figure 15. NMR spectra of the CoQ compounds. NMR spectra of all compounds employed in this study: 1; 2; close-up spectrum for the aromatic H atoms illustrating their J coupling (J - 2 Hz); 3; 4a; 4b; 5; 5_{0x}; 5_{0x} non-prenylated (denoted as 5_{0x0}); CoQ₁.

Supplementary Figure 16. SDS- and Blue Native-PAGE gels. Each lane used in a separate figure is indicated with a red arrow. The molecular weight ladder has its bands labelled with their individual respective molecular weights (kDa) shown. Where necessary, gels that have individual lanes cut out and reassembled for a separate figure are labelled and numbered in red in accordance with their respective figure panel. Expected molecular weights for each COQ protein are shown in Supplementary Table 2, except for COQ8B which has an expected molecular weight of 55.553 kDa. Panels a-g can be found in Extended Data Fig. 1; Panel h is displayed in Extended Data Fig. 7; Panel i is present in Supplementary Fig. 8. a. SDS-PAGE analysis of COQ3 after size exclusion chromatography. b. SDS-PAGE analysis of COQ4 after size exclusion chromatography. c. SDS-PAGE analysis of COQ5 after size exclusion chromatography. d. SDS-PAGE analysis of COQ6 truncated after size exclusion chromatography. Due to the presence of a large band skewing the molecular weight ladder, in Extended Data Fig. 1d an identical ladder is used to depict the molecular weights e. SDS-PAGE analysis of COQ7 after size exclusion chromatography. f. SDS-PAGE analysis of COQ9 after size exclusion chromatography. g. SDS-PAGE analysis of COQ8B after size exclusion chromatography. h. SDS-PAGE analysis of the COQ metabolon after size exclusion chromatography. i. Blue Native-PAGE analysis of the COQ metabolon after size exclusion chromatography.

Supplementary Tables

Target mutation	Mutagenesis cycle number	Target strand	Sequence
H142A	1	F	AGAGAAGTAGCGGACTTATTGCATACGTTACTTGG
H142A	1	R	CAATAAGTCCGCTACTTCTCTATAACGCTGGATCAC
H146A	2	F	GACTTATTGGCGACGTTACTTGGCATGCCAACTAA
H146A	2	R	AAGTAACGTCGCCAATAAGTCGTGTACTTCTCTAT
D143A	1	F	GAAGTACACGCGTTATTGCATACGTTACTTGGCATG
D143A	1	R	ATGCAATAACGCGTGTACTTCTCTATAACGCTGG
E158A	2	F	ATGTTAGGAGCGGTCGTCGTAAAGTGGTTTGAAGC
E158A	2	R	TACGACGACCGCTCCTAACATATTAGTTGGCATG
Sequencing primer		F	AACAGAGTCTCGCCAGAC

Supplementary Table 1. List of primers employed for site-directed mutagenesis of COQ4 (GST construct).

Protein	m/z	z	Peptide	Mass (Da)	Mr (Calc)	Delta	Start	End
	384.2254	2	RLYSTK	766.4362	766.4337	0.002502441	404	409
	425.743	2	FKPFRR	849.4715	849.49725	-0.025756836	84	89
	457.7953	2	VAPFVLLR	913.5761	913.5749	0.001159668	410	417
	511.7891	2	VALIGDAAHR	1021.564	1021.56683	-0.003234863	333	342
	528.2665	3	KVFDQLPESYSNR	1581.778	1581.7786	-0.000976563	46	58
	535.6498	3	HNLPLMAAIDLLKR	1603.928	1603.9233	0.004394531	391	404
	554.6213	3	AMFPLGLGHATEYVR	1660.842	1660.8396	0.002441406	316	330
6005	559.6355	3	QLEAVSDRVEVLYR	1675.885	1675.8892	-0.004394531	127	140
	561.3557	2	ILLLEAGHKK	1120.697	1120.6968	0	37	46
AR 205 kD2	595.2949	2	HLLEYETER	1188.575	1188.5776	-0.002319336	380	388
48.255 KDa	687.3651	2	LLIGADGQNSMVR	1372.716	1372.7131	0.002441406	175	187
	695.8727	2	SALSLLMPSGTSAR	1389.731	1389.7285	0.002319336	288	301
	706.9097	2	TLGLQATNALSPVK	1411.805	1411.8032	0.001708984	418	431
	724.92	2	HNLPLMAAIDLLK	1447.826	1447.8223	0.003295898	391	403
	727.8485	2	VFDQLPESYSNR	1453.682	1453.6836	-0.001220703	47	58
	806.7721	3	TLGLQATNALSPVKEQIMAFASK	2417.294	2417.2986	-0.004150391	418	440
	838.95	2	QLEAVSDRVEVLYR	1675.885	1675.8892	-0.00378418	127	140
	316.2001	2	VPFIR	630.3857	630.3853	0.000366211	45	49
	349.6957	2	TAELHK	697.377	697.37585	0.001098633	103	108
	359.5301	3	SFDPVLDKR	1075.569	1075.5662	0.002441406	109	117
6000	407.7319	2	FQALAHK	813.4492	813.4497	-0.000488281	20	26
	518.5967	3	IMGIVPAGTHDWEK	1552.768	1552.7708	-0.002319336	190	203
Score 99%	557.2978	3	LGASVTGIDPLEDNIR	1668.872	1668.8682	0.003417969	87	102
31 086 kDa	560.2889	2	FISPEELER	1118.563	1118.5608	0.002563477	204	212
51.000 KBd	760.4287	2	TQLSYALGIVVAER	1518.843	1518.8403	0.002441406	176	189
	835.4404	2	LGASVTGIDPLEDNIR	1668.866	1668.8682	-0.001953125	87	102
	1051.008	2	DTLLNMSGDHQLGSPLSGMK	2100.001	2099.998	0.002441406	50	69
	430.7578	2	LSTLDLAK	859.5011	859.5014	-0.000305176	91	98
	468.2332	2	SLPDGSFGR	934.4518	934.45087	0.000976563	101	109
COQ4	557.2978	3	NARCVLNIYYERR	1668.872	1668.8518	0.01977539	212	224
Score 99%	664.8837	2	CVLNIYYERR	1327.753	1327.6707	0.08215332	215	224
Coverage 23.7%	742.3789	3	AAEEGYGPLYPGHIPTSPLQK	2224.115	2224.1165	-0.001708984	13	33
27.871 kDa	798.8998	2	FVDDEELAYVIQR	1595.785	1595.783	0.002075195	130	142
	835.4404	2	NARCVLNIYYERR	1668.866	1668.8518	0.014404297	212	224
	363.7337	2	VLKPGGR	725.4529	725.4548	-0.00189209	194	200
COQ5	553.2802	3	NVTHIDQALQEAYR	1656.819	1656.822	-0.003417969	180	193
Score 99%	598.8177	2	VYQVFENVAK	1195.621	1195.6238	-0.002929688	26	35
Coverage 20.3%	629.3242	2	SYQYLVESIR	1256.634	1256.6401	-0.006347656	239	248
32.653 kDa	842.4482	3	LYDLYSFQVIPVLGEVIAGDWK	2524.323	2524.3252	-0.002441406	217	238
COQ7	589.8202	2	IYAGQMAVLGR	1177.626	1177.6277	-0.001831055	32	42
Score 91%	790.0207	2	YKELLQIIKKFR	1578.027	1577.9656	0.061279297	130	141
Coverage 20.3% 20.581 kDa								
20.001 KBU	553.2802	3	INDAMNMGHTAKQVK	1656.819	1656.8076	0.010986328	198	212
CO09	559.6355	3	KKTDQFLRDAVEAR	1675.885	1675.9004	-0.015625	97	110
Score 15%	621.3946	2	LVQLGQAEKKK	1240.775	1240.7502	0.024414062	88	98
Coverage 22.6%	838.95	2	KKTDQFLRDAVEAR	1675.885	1675.9004	-0.015014648	97	110
26.686 kDa	1051.008	2	QVKSTGEALVQGLMGAAVTLK	2100.001	2100.1614	-0.16088867	210	230
		_						

Supplementary Table 2. Peptide mapping analysis of the purified COQ metabolon. The table lists the peptides obtained from the labelled band excised from the Blue Native Gel shown in **Supplementary Figure 8.** COQ9 shows a weaker signal suggesting that it could be less well retained by the metabolon during migration.

Supplementary Methods

Construct design, cloning, mutagenesis and expression of the COQs, FDXR and FDX2 - The ancestral sequences were submitted to the Mitofates server for inspection [1]. Ancestral COQ systems - COQ6, COQ3, COQ4 and COQ7 - were all truncated at the end of their mitochondrial targeting sequences. Differently, COQ9 was aligned against the human construct, COQ9_N79 [2], as a reference to determine the cleavage site in the highly disordered N-terminal region. FDXR, FDX2, COQ5, COQ8A and COQ8B were all designed after the release of AlphaFold2 [3]. They were constructed based on a combination of both AlphaFold2 and Mitofates to predict the mitochondrial targeting sequences and additional disordered regions at N-terminus or C-terminus. All sequences have been deposited in the NCBI database (see Data Availability and Supplementary figure 14).

COQ6 was constructed as two forms: COQ6, accounting for the full-length sequence and truncated COQ6 bearing a 35 residue C-terminal truncation. The determination of this truncation was based on limited proteolysis by trypsin digestion experiments that suggested this region was highly flexible. Additionally, the truncation was very similar to that introduced for the successfully crystallized bacterial homologue Ubil [4].

All genes were synthesised, codon optimized for expression in *E. coli* and cloned directly into several different destination vectors (see below) by Genscript. COQ4, truncated COQ6, COQ6 and COQ7 were synthesized with an N-terminal His₆-SUMO tag and cloned into pET-11d pre-destination vectors bearing ampicillin resistance. COQ3, COQ4 and COQ9 were synthesised with N-terminal His₆-SUMO tag and cloned into pET-24a(+) pre-destination vectors possessing Kanamycin resistance. COQ5 was synthesised with an N-terminal Twinned-Strep tag bearing a PreScission protease cleavage site and cloned into a kanamycin-resistant pET-24(a)+ pre-destination vector. COQ3, COQ4, COQ5, COQ7, COQ8A, COQ8B, FDXR and FDX2 were all synthesized as tag-less proteins and inserted into a pGEX-6P-1 destination vector possessing an N-terminal GST-tag and PreScission protease cleavage site together with ampicillin resistance.

COQ4 double mutants were obtained by two subsequent cycles of site-directed mutagenesis PCR using the pGEX-6P-1 construct as template. Primers were purchased from Metabion (Supplementary Table 1). Mutagenesis was performed using the QuickChange methodology, as reported [5]. Briefly a PCR mix (25 μ l) was prepared as follows: 12.5 μ l PFuUltra II Hotstart PCR Master Mix (Agilent), 1 μ l primer forward 10 μ M, 1 μ l primer reverse 10 μ M, 1 μ l of template plasmid 100 ng μ l⁻¹, 0.4 μ l DMSO and 9.1 μ l MQ water. Mutations were checked at each cycle by Sanger sequencing (Mycrosynth).

Plasmids containing COQ6 (both full-length and truncated), COQ3, COQ4 (wild-type and double point mutants), COQ7 and COQ9, were transformed by heat shock into *E. coli* BL21 cells (25 s, 42 °C). COQ5, FDXR, FDX2, COQ8A and COQ8B were transformed by heat shock into *E. coli* BL21-CodonPlus-RP cells (25 s, 42 °C). Cells from the resulting colonies were pre-inoculated into 100 ml of LB broth containing 100 μ g ml⁻¹ of ampicillin and grown overnight at 37 °C. The following morning, 10 mL of the precultures were then transferred to 1 L Terrific Broth and grown at 37 °C, 200 r.p.m. for *ca*. 3 h until the optical density (OD₆₀₀) reached 0.5-0.7. The protein expression was then induced with isopropyl β -D-1-thiogalactopyranoside, (0.1 mM final), and incubated for 16 h at various temperatures at 200 r.p.m. More specifically, COQ6 full-length, truncated COQ6, COQ3, COQ4 (wild type and double point mutants), COQ7 and COQ9 were expressed at 30 °C; COQ8B, FDXR and FDX2 were expressed at 24 °C; COQ5 and COQ8A were expressed at 16 °C. Cells were harvested by centrifugation (5,000 *g*, 15 min, 10 °C), flash frozen in liquid nitrogen, and stored at -80 °C.

Purification of GST-tagged FDXR, FDX2, COQ3, COQ4, COQ7, COQ8A and COQ8B - Cells (ca. 25 g) were resuspended 1:5 in Buffer A (50 mM HEPES pH 7.2, 250 mM NaCl, 10% (v/v) glycerol) supplemented with protease inhibitors (1 mM phenylmethylsulphonyl fluoride, 10 μ M leupeptin, 10 μ M pepstatin) and 5 μ g/g of cells of DNAse I. The cell resuspension was incubated at 4 °C under stirring for 30 min prior to cell lysis performed with a high-pressure homogeniser (Emulsiflex c-3, ATA Scientific) in three cycles.

For soluble proteins (FDXR, FDX2, COQ3) the cell lysate was centrifuged (4 °C, 56,000 *g*, 1 h) using an Avanti J-26 XP centrifuge equipped with a JA-25.15 rotor (Beckman Coulter). The resulting supernatant was filtered through a 0.45 μ m filter and loaded onto a gravity column containing Glutathione Sepharose 4B resin (Cytiva) pre-equilibrated with Buffer A. The crude extract was incubated with the resin for 1 h at 4 °C on a rotating plate. Subsequently, the resin was washed with at least five column volumes of Buffer A. The protein was then eluted out with at least ten column volumes of Buffer A supplemented with 50 mM of freshly prepared reduced glutathione. The purified protein sample was concentrated using an Amicon Ultra (Merck) with an appropriate cutoff to 2.5 ml. The reduced glutathione was then removed with a PD-10 desalting column (Cytiva) pre-equilibrated with Buffer A. To cleave the GST-tag the desalted sample was concentrated down to 1 ml and 1 U of GST-tagged PreScission Protease (Cytiva) was added and the sample was incubated overnight at 4 °C on a rotating wheel. The sample was then loaded onto an Äkta Pure system (Cytiva) equipped with a GSTrap-HP 5 ml column (Cytiva). The elution of the tag-less protein

was monitored by following the absorbance at 280 nm for all the proteins. To monitor the flavin cofactor incorporation, the absorbance at 370 nm and 450 nm for FDXR was monitored. The 2Fe-2S cluster absorption at 340 nm and 414 nm for FDX2 was measured.

For membrane proteins (COQ4, COQ7, COQ8A and COQ8B), the cell lysate was exposed to a lowspeed centrifugation step (4 °C, 1,200 g, 10 min) to remove cell debris using a C0650 rotor and an Allegra X-30R centrifuge (Beckman Coulter). The supernatant was centrifuged (4 °C, 56,000 g, 45 min) to the collect membrane pellet. Pellets were homogenised in Buffer A with a Potter-Elvehjem homogeniser. The total protein concentration was assayed with Biuret reagent based on a calibration line with BSA and adjusted to 10 mg/ml. *n*-Dodecyl β-D-maltoside (DDM, Anatrace) was added to the membrane suspension at 1% (w/v) final concentration and incubated overnight at 4 °C. The detergent solubilised extract was obtained by centrifugation (4 °C, 56,000 g, 45 min) collecting the supernatant. The recombinant GST-tagged membrane COQ proteins were then purified as described above for soluble systems, supplementing 0.05% (w/v, final) DDM to all buffers.

The purified proteins were then concentrated down to about 150 μ M, assessing the concentration using a NanoDrop ND-100 UV/Vis spectrophotometer (Thermo Scientific) based on the absorption of the prosthetic groups (ϵ 450 nm = 10.9 mM⁻¹cm⁻¹ for FDXR, ϵ 414 nm = 11 mM⁻¹cm⁻¹ for FDX2) or on the absorption at 280 nm for the other proteins (ϵ 280 nm predicted by ProtParam tool - Expasy). Purity of the samples were evaluated by SDS-PAGE. The purified proteins were then aliquoted, flash frozen in liquid nitrogen and stored at -80 °C.

Purification of HisSUMO tagged COQ6, COQ3, COQ4, COQ7 and COQ9 - Cells (ca. 25 g) were resuspended 1:5 in Buffer A (50 mM HEPES pH 7.2, 250 mM NaCl, 10% (v/v) glycerol) supplemented with protease inhibitors (1 mM phenylmethylsulphonyl fluoride, 10 μ M leupeptin, 10 μ M pepstatin) and 5 μ g/g of cells of DNAse I. The cell resuspension was incubated at 4 °C under stirring for 30 min prior to cell lysis performed with a high-pressure homogeniser (Emulsiflex c-3, ATA Scientific) in three cycles.

For soluble proteins (truncated COQ6, COQ3, and COQ9) the cell lysate was centrifuged (4 °C, 56,000 g, 1 h) using an Avanti J-26 XP centrifuge equipped with a JA-25.15 rotor (Beckman Coulter). The resulting supernatant was filtered through a 0.45 μ m filter and loaded onto a gravity column containing Nickel Sepharose High Performance IMAC resin (Cytiva) pre-equilibrated with Buffer A. The crude extract was incubated with the resin for 1 h at 4 °C on a rotating plate. Subsequently, the

resin was washed with at least five column volumes of Buffer A. The protein was then washed with 5 column volumes of Buffer A supplemented with increasing concentrations of imidazole including 5- and 30-mM wash steps. The protein was then eluted out with at least ten column volumes of Buffer A supplemented with 300 mM imidazole. The purified protein sample was concentrated using an Amicon Ultra (Merck) with an appropriate cut-off to 2.5 ml. The imidazole was then removed with a PD-10 batch desalting column (Cytiva) pre-equilibrated with Buffer A. To cleave the His-SUMO tag the desalted sample was concentrated down to 1 ml and the sample was then mixed with a 6×His-tagged SUMO protease (1.2 mg ml⁻¹) to a volume ratio of 100:1 and incubated overnight at 4 °C on a rotating well. The sample was then loaded onto an Äkta Pure system (Cytiva) equipped with a Ni HiTrap-HP 5 ml column (Cytiva) pre-equilibrated in Buffer A. Proteins were eluted out using an imidazole concentration gradient of 2% buffer B (Buffer A supplemented with 300 mM imidazole) corresponding to 6 mM imidazole. The elution of the tag-less protein was monitored with a multiwavelength detector following the absorbance at 280 nm for all the proteins. For COQ6, the absorption at 370 nm and 450 nm for COQ6 were also measured to account for FAD retention.

For membrane proteins (COQ3, COQ4, COQ6, COQ7) the cell lysate was exposed to a low-speed centrifugation step (4°C, 1,200 *g*, 10 min) to remove cell debris using a C0650 rotor and an Allegra X-30R centrifuge (Beckman Coulter). The supernatant was centrifuged (4 °C, 56,000 *g*, 45 min) to the collect membrane pellet. Pellets were homogenised in Buffer A with a Potter-Elvehjem homogeniser. The total protein concentration was assayed with Biuret reagent based on a calibration line with BSA and adjusted to 10 mg/ml. *n*-Dodecyl β -D-maltoside (DDM, Anantrace) was added to the membrane suspension at 1% (w/v) final concentration and incubated overnight at 4 °C. The detergent solubilised extract was obtained by centrifugation (4 °C, 56,000 *g*, 45 min) collecting the supernatant. The recombinant His-SUMO-tagged membrane COQ proteins were then purified as described above for soluble systems, supplementing 0.05% (w/v, final) DDM to all buffers.

The purified proteins were then concentrated down to about 150 μ M, assessing the concentration using a NanoDrop ND-100 UV/Vis spectrophotometer (Thermo Scientific) based on the on the absorption at 280 nm (ϵ 280 nm predicted by ProtParam tool - Expasy). Purity of the samples was evaluated by SDS-PAGE. The purified proteins were then aliquoted, flash frozen in liquid nitrogen and stored at -80 °C.

Purification of Strep tagged COQ5 - Cells (ca. 15 g) were resuspended 1:5 in Buffer A (50 mM HEPES pH 7.2, 250 mM NaCl, 10% (v/v) glycerol) supplemented with protease inhibitors (1 mM phenylmethylsulphonyl fluoride, 10 μ M leupeptin, 10 μ M pepstatin) and 5 μ g/g of cells of DNAse I. The cell resuspension was incubated at 4 °C under stirring for 30 min prior to cell lysis performed with a high-pressure homogeniser (Emulsiflex c-3, ATA Scientific) in three cycles.

The cell lysate was exposed to a low-speed centrifugation step (4°C, 1,200 g, 10 min) to remove cell debris using a C0650 rotor and an Allegra X-30R centrifuge (Beckman Coulter). The supernatant was centrifuged (4 °C, 56,000 g, 45 min) using an Avanti J-26 XP centrifuge equipped with a JA-25.15 rotor (Beckman Coulter) to the collect membrane pellet. Pellets were homogenised in Buffer A with a Potter-Elvehjem homogeniser. The total protein concentration was assayed with Biuret reagent based on a calibration line with BSA and adjusted to 10 mg/ml. FOS-choline 12 (Anatrace) was added to the membrane suspension at 1% (w/v) final concentration and incubated overnight at 4 °C. The detergent solubilised extract was then obtained the following day by centrifugation (4 °C, 56,000 g, 45 min) using an Avanti J-26 XP centrifuge equipped with a JA-25.15 rotor (Beckman Coulter) and collecting the supernatant. The crude extract was loaded on 1 ml of Strep-Tactin XT Sepharose (Cytiva) after an incubation of approximately 1 h. Subsequently, the resin was washed with at least five column volumes of Buffer A + 0.05% (w/v, final) DDM. The protein was then eluted with 5 column volumes of Buffer A supplemented with 0.05% (w/v) DDM and 5 mM Biotin. The purified protein sample was concentrated using an Amicon Ultra (Merck) with an appropriate cut-off to 2.5 ml. The Biotin was then removed with a PD-10 batch desalting column (Cytiva) pre-equilibrated with Buffer A + 0.05% (w/v, final) DDM.

To cleave the Twinned-Strep-Prescission tag the desalted sample was concentrated down to 1 ml and the sample was then mixed with 1 U of GST-tagged Prescission Protease (Cytiva) and incubated overnight at 4 °C on a rotating well. The sample was then loaded onto an Äkta Pure system (Cytiva) equipped with a GSTrap-HP 5 ml column (Cytiva) attached *in-tandem* to a Strep-XT-Trap 5 mL column (Cytiva). The tag-less protein eluted in the flow-through using Buffer A + 0.05% (w/v) DDM and monitored with a multi-wavelength detector following the absorbance at 280 nm. The purified protein was then concentrated down to about 150 μ M, assessing the concentration using a NanoDrop ND-100 UV/Vis spectrophotometer (Thermo Scientific) based on the on the absorption at 280 nm (ɛ280 nm predicted by ProtParam tool - Expasy). Purity of the sample was evaluated by SDS-PAGE. The purified protein was then aliquoted, flash frozen in liquid nitrogen and stored at -80 °C.

UV/Visible Spectrometry - UV/Vis spectra of FDXR and FDX2 were recorded using a Diode Array 8453 UV/Vis Spectrophotometer (Agilent) equipped with 10.00 mm quartz cuvettes (Hellma). About 30 μ M FDXR was reduced with a five-fold excess of sodium dithionite. Oxidation was attempted by adding oxygenated buffer. After 30 minutes an equimolar concentration of FDX2 was added to attempt FDXR oxidation. Separately, about 30 μ M FDX2 was reduced with a five-fold excess of sodium dithionite. Oxidation was elicited by adding oxygenated buffer. UV/Vis spectra were recorded at each step.

4-aminoantipyrine spectrophotometric method of phenols/quinones analysis (HRP assay) - HRP endpoint assay was performed after 10 min reaction of 5 μ M truncated COQ6 final volume of 150 μ l in Buffer A with 5 μ M FDXR, 5 μ M FDX2, 1 mM **4a**, 50 μ M FAD and 1 mM NADPH at 30 °C 200 rpm in a bench-top incubator. The reaction mixture was supplemented with 2 mM hydrogen peroxide, 0.01 mg ml⁻¹ HRP, 0.1 M 4-aminoantipyrine. The quenching reaction was carried out at 30 °C 200 rpm for 30 min. The assay was exploited to catalyse the formation of a quinone-imide adduct between the amide moiety of 4- aminoantipyrine and the 4-hydroxy group of the CoQ₁ intermediates using HRP. The various adducts produced various chromophores: Adducts with 4hydroxybenzoate (such as **3**) or phenols (such as **4a**) produce chromophores with maxima at λ = 490 nm; Adducts formed with immature hydroquinones (such as **4b**) produce chromophores with λ = 450 nm. Activity was assessed by comparing the shift of the adduct peaks after COQ6 reaction compared to the spectra of the adducts obtained with standard solutions of **4a** and **4b** (Supplementary Fig. 7b). Spectra were recorded using a Diode Array 8453 UV/Vis Spectrophotometer (Agilent) equipped with 10.00 mm quartz cuvettes (Hellma).

Malachite Green ATPase assay - Malachite Green assay was performed after 10 min of reaction of 1 μ M COQ8B with 0.1 mM ATP at 30 °C 200 rpm in a bench-top incubator. Activity was tested in the presence of 0.1 mM of each intermediate, or of 1 μ M of individual COQ proteins, or a combination of both. Moreover, it was assayed in the presence of the following COQ protein multimers: COQ6-COQ3, COQ7-COQ9 and the COQ metabolon. Basal ATPase activity of COQ8B was assayed by incubating with ATP only. The reactions were quenched by adding 2/3 final of the dye provided by the Malachite Green Phosphate Assay Kit (Sigma-Aldrich). After 10 min of incubation at RT in the dark the absorbance at 620 nm was measured using a ClarioStar plate reader (BMG Labtech) with Greiner 96 transparent flat wells plates. A dilution of the dye in the assay buffer was used as blank.

Absorbance values were converted into μ M concentration of phosphate by building a calibration line using 4-40 μ M of phosphate analytical standard provided with the kit (Supplementary Fig. 12). Data were analysed by subtracting the basal activity of COQ8B in the absence of any ligand. Linear regression of the standards and data analysis was performed with GraphPad Prism 9. To determine the K_M of ATP for COQ8B, we incubated the enzyme (1 μ M) with a range of ATP concentrations (5 – 300 μ M) for 10 minutes at 30 °C at 200 rpm (Supplementary Fig. 12). The analysis was performed as described above. GraphPad Prism 9 was used to perform non-linear regression.

Limited proteolysis and peptide mapping - Protein bands were isolated, cut into small fragments and transferred into Eppendorf tubes. The sample was then incubated with (200 μ l) of 100 mM ammonium bicarbonate buffer pH 7.8, 50% acetonitrile, to destain the gel fragments. Acetonitrile (100 µl) was then added to dehydrate the gel pieces. The organic solvent was removed by air-drying and 100 μ l of 10 mM dithiothreitol solution was added to reduce the sample (30 min at 37 °C). 100 μ l of 55 mM iodoacetamide was added in place of dithiothreitol and incubated for 45 min at 60 °C. The solution containing gel pieces was decanted and then immersed twice with 200 μ l of 100 mM ammonium bicarbonate with 10 minute incubation periods in between. This solution was decanted, and gel pieces re-dehydrated with acetonitrile (100 μ l) until opaque-white in colour. The organic solvent was then removed and the fragments air-dried. Gels were immersed and rehydrated using 100 mM ammonium bicarbonate buffer pH 7.8 (100 μ l), with the addition of sequencing grade trypsin (20 ng/ μ l) (Promega, Madison, WI, USA) for digestion was left overnight at 37 °C. The resultant peptides were extracted using 50% acetonitrile, 5% formic acid solution in water (100 μ). This was performed twice with each step consisting of vortexing for 15 mins. The original supernatant and sequential extractions were collected, dried, and stored at -20 °C. MS analyses were conducted with peptides solubilized in water and 0.1% formic acid (50 μ l).

A LC unit (ExionLC TM AD) was employed for all analyses. The unit possessed an accompanying column oven set at 40 °C, in addition to a temperature controlled autosampler (10 °C) and a binary gradient pump system. MS instrument comprises a high resolution QTOF mass spectrometer (AB Sciex X500B) with an accompanying Turbo V Ion source and a Twin Sprayer ESI (electrospray ionization) probe, controlled by SCIEX OS 2.1 software. Peptides were separated using Reverse phase (RP) HPLC using a Hypersil Gold (Thermo Fisher Scientific, USA) C18 column (150 × 2.1 mm, 3 μ m particle size, 175 Å pore size) using a linear gradient (2-50% solvent B in 15 min), flow rate of 0.2 ml min⁻¹, with solvents A and B being a 0.1% aqueous FA solution in water and a 0.1% FA solution

made up in acetonitrile, respectively. Positive polarity was employed for mass spectra generation using the following instrument parameters throughout: declustering potential 100 V, curtain gas 30 psi, temperature 350 °C, ion source gas 1 40 psi, ion source gas 2 45 psi, ion spray voltage 4500 V, collision energy 10 V. SCIEX OS 2.1 software was used to acquire spectra, and processed with Peaks studio 4.5 software for protein identification. Resulting masses were then initially searched and screened against the SwissProt and *ad hoc* databases, followed by specific peptide mapping against the ancestral sequences.

Intact protein mass spectrometry – 10 mg ml⁻¹ COQ3 was incubated O/N at 30 °C 200 rpm in a benchtop incubator with 1 μ M COQ8B and 1 mM ATP in a final volume of 50 μ l Buffer A with 0.05% DDM (w/v, final). A negative control reaction was performed by removing ATP from the mixture. Sample was diluted up to 2.5 ml Buffer A; buffer was exchanged to Buffer A with a PD10 batch desalting column (Cytiva) to remove any residual detergent. Sample was then concentrated up to 50 mg ml⁻¹ with Amikon Ultra 10K (Merck). Proteins were unfolded by diluting the sample up to 10 mg ml⁻¹ in water: acetonitrile 1:1 containing 0.1% FA. A LC unit (ExionLC TM AD) was employed for all analyses. The unit possessed an accompanying column oven set at 40 °C, in addition to an autosampler (10 °C) and a binary gradient pump system. MS instrument comprises a high resolution QTOF mass spectrometer (AB Sciex X500B) with an accompanying Turbo V Ion source and a Twin Sprayer ESI (electrospray ionization) probe, controlled by SCIEX OS 2.1 software. Injection volume was 5 μ l (50 μg). Chromatographic separation was carried out with a bioZenTM WidePore C4 column (100 mm length X 2.1 mm diameter, 2.6 µm particle size; Phenomenex). The mobile phase consisted of water (A) and acetonitrile (B) both including 0.1% (v/v) formic acid. Flow rate was set at 0.35 ml min⁻¹. Gradient elution was performed as follows: 15% B at 0.0-0.1 minutes, 15-98% B at 0.1-5.0 minutes, 98% B at 5.0-15.0 minutes, 98-15% B at 15.0-18.0 minutes, 15% B at 18.0-23.0 minutes. Positive polarity was employed for mass spectra generation using the following instrument parameters throughout: declustering potential 100 V, curtain gas 30 psi, temperature 350 °C, ion source gas 1 40 psi, ion source gas 2 45 psi, ion spray voltage 4500 V, collision energy 10 V. Mass deconvolution was performed using BiotoolKit extension of SciexOS 2.1 software: input m/z range 500-5000 Da, mass range 20-70 kDa, isotope resolution 30000.

Micro-Scale Thermophoresis - COQ3 was labelled with a 2^{nd} generation RED-NHS dye (NanoTemper GmbH) following the kit instructions. Briefly, 10 μ M protein was incubated at RT in the dark with

 μ M dye. The excess of dye was removed with a B-column pre-equilibrated in buffer A with 0.05% DDM (w/v, final). The labelled protein concentration and the degree of labelling were evaluated based on the absorbance at 280 and 650 nm. Binding assays were carried out in Buffer A supplemented with 0.05% DDM (w/v, final), 0.05% (v/v, final) Tween-20 and 0.1% (w/v, final) Pluronic acid. Final protein concentration was 40 nm. **2** was titrated in serial dilution in the 5 mM - 150 nM range. Binding experiments were performed in the presence and absence of 150 μ M MgCl₂ and in the presence of 1 mM EDTA as a control.

Nano Differential Scanning Fluorimetry - Thermo-stability analyses were carried out using a TychoTMNT.6 system (NanoTemper GmbH). The proteins were diluted to 1 mg/ml in Buffer A. The protein was pre-incubated with ligands in ice for 15 minutes prior to experiments. Melting curves were obtained following the intrinsic fluorescence of Tryptophan and Tyrosine residues (emission 350 nm and 330 nm, respectively) applying a temperature gradient from 35 °C to 95 °C for a time range of three minutes. Data were analysed as F₃₅₀/F₃₃₀ ratio and derived to determine the inflection temperature (T_m). All measurements were performed in duplicate. The following condition were tested: COQ3 in the presence of 150 µM CuSO₄, FeSO₄, MnSO₄, MnCl₂, CaSO₄, CaCl₂, ZnSO₄, ZnCl₂, MgSO₄, MgCl₂ and 1 mM EDTA; COQ4 in the presence of 25 µM CuSO₄, FeSO₄, MnSO₄, MnSO₄, MnCl₂ in the 0.095-24.4 µM range. EC₅₀ values were determined by plotting the difference between melting temperature in presence and absence of ligand versus the logarithm of the molarity of the ligand and analysing the data by non-linear regression.

References

- 1. Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. *Mol. Cell Proteomics* **14**, 1113-1126 (2015).
- 2. Lohman D. C. et al. Mitochondrial COQ9 is a lipid-binding protein that associates with COQ7 to enable coenzyme Q biosynthesis. *Proc. Natl. Acad. Sci. U. S. A.* **111**, e4697-705 (2014).
- 3. Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583–589 (2021).
- 4. Hajj C.M. et al. Ubil, a new gene in Escherichia coli coenzyme Q biosynthesis, is involved in aerobic C5-hydroxylation. *J. Biol. Chem.* **288**, 20085-20092 (2013).
- 5. Kunkel, T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. *Proc. Natl. Acad. Sci. U. S. A.* **82**, 488–492 (1985).