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In the following, we give further details of some of the
experimental, imaging, analysis and modelling employed
in the main text.

1. Overview of experimental methods

Cell cultures were obtained from the Scandanavian
Collection of Algae and Protozoa (SCCAP K-0001, P.
octopus Moestrup et Aa. Kristiansen 1987), and grown
in Guillard's F/2 medium under controlled illumination
(14:10 day/night diurnal cycle, at 22◦C). Cells are ob-
long or rectangular in aspect (Fig. 1), with length
(17.05 ± 1.74 µm) and width (9.05 ± 1.23 µm). In their
vegetative state cells have 8 �agella, each of length com-
parable to the longitudinal dimension of the cell body,
which emerge radially from an apical grove Imaging was
conducted under white light illumination on an inverted
microscope (Nikon Eclipse TE2000-U) and high-speed
recordings made at up to 3000 fps (Phantom v311, Vi-
sion Research). Organisms were harvested during expo-
nential growth (at 104 − 105 cells/cm3), and 50− 150 µl
of suspension were pipetted gently into shallow quasi-2D
chambers (top + bottom: glass, side: Frame-Seal slide
chambers � BIO-RAD) for imaging and precision cell and
�agella tracking via customMatlab algorithms and Im-
ageJ extensions � see Supplemental Materials (SM). We
ensured cell viability by minimizing environmental stress
responses: acclimating cells prior to observation, and lim-
iting continuous light exposure to . 15 minutes.

2. A pusher-puller transition

For free-swimming microorganisms such as algae or
bacteria, the motion of the cell is tightly coupled to the
motion of the �agella [2, 3]. Our results show that sharp
reorientations in swimming trajectories in P. octopus are
elicited by dramatic conversion of �agellar beating wave-
forms. Cells have a well-de�ned length-width aspect ratio
β which we determined from a large sample population
O(100) of cells to be β = 1.9± 0.2.
Importantly β 6= 1 which allows us to distinguish the

longitudinal and transverse directions of a organism mov-

ing in the focal plane. The anterior and posterior poles
are de�ned by the user on frame t0 of each movie, but
tracked automatically thereafter.

t = t0 t = t0

FIG. S1. Cell orientation versus direction of swimming: the
puller-pusher dichotomy.

For a given trajectory, we obtain 2D coordinates for the
anterior Ai(t), posterior Pi(t), and centroid of the cell
Ci(t), at discrete times indexed by t0, t1, t2, · · · , (∆t =
tj+1−tj). From this we take the instantaneous swimming
direction v̂ and the instantaneous orientation êR to be

v(tj) =
C(tj+1)−C(tj−1)

2∆t
(1)

eR(tj) = A(tj)−P(tj) (2)

and de�ne v̂ = v/||v||, êR = eR/||eR||.
In Figure S1 the two quantities are plotted following

the same trajectory, starting at t = t0, which shows a
cell switching from a backward swimming, pusher-like
shock gait to a forward, puller-like run gait. The recov-
ery from a �agellar to ciliary beat is concomitant with
a continuous modulation of the swimming direction. At
this magni�cation, we see that v̂ is everywhere tangent
to a helical run trajectory (due to self-rotation).

3. Tracing moving boundaries

At su�ciently high magni�cation, it is possible to dis-
tinguish the cell body from the �agella bundle. For this,
we take advantage of the di�erences in image intensity
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FIG. S2. a) The �agellar envelope is traced for a cell starting from a stopped state. Arrows follow the direction of motion of
the cell body. The processing algorithm used to delineate the inner and outer cell boundaries, used for computing λ (Fig. 2c,
main text), is summarized in b-e).

features between the cell body and �agella. The algo-
rithm was written in Matlab with the aid of the Image
Processing Toolbox (version 9.5). Fig. S2 shows the
morphing outer boundary of the organism (exterior of
the �agella) as it transitions from a stopped state (red),
undergoes a shock response (amber), before moving o�
in a new direction (green). The exterior boundary was
detected from the raw intensity image using the Sobel
method (b) and by morphological dilation and erosion
of the edge-like features, as required. To further detect
the inner boundary (cell body only), we restrict to and
quantize the sub-image bounded by this external border
(d), into the darker central region and the surrounding
pixels that are not part of the background. We estimate
that the edge-detection algorithm introduces an error of
. 0.5µm in the localization of the true boundary. Finally,
the image is binarized to obtain (e).

4. Transition Probabilities between states

The instantaneous swimming speed v is an e�cient
means of segregating the observed dynamics into the
three states of interest. The true speed may di�er slightly
from this as we are observing only a two-dimensional
projection of the fully three-dimensional swimming dy-
namics, but this di�erence is small and has little impact
on the discretization. A combination of signal process-
ing criteria (�ltering by minimum peak height, minimum
peak-to-peak separation etc) was used to discretize v into
the three states: 0 = stop, 1 = run, 2 = shock.

Model formulation In order to analyse the likelihood
of gait-switching, we model the underlying stochastic
process generating the empirical data as a continuous
time, discrete space Markov chain for states X(t) ∈
{0, 1, 2}. In realityX is measured at a succession of times
discretized by imaging frame-rate, which we assume to
be su�cient to provide the necessary temporal resolu-
tion. The Markov assumption is motivated by the data;
in Fig. S3 we plot the interval distributions between suc-
cessive events. In the case of runs and stops, the waiting
times between runs (respectively stops) are seen to be
approximately exponentially distributed. In the case of
shocks the waiting time distributions have a very rapid
decay due to the very fast nature of these reactions. The
latter timescale is at the limit of our imaging resolution
and therefore we do not preclude the possibility that the
occurrence of shocks may not be memoryless. Indeed if
future experiments could prove that interval distributions
for shocks are not memoryless, this would be additional
evidence for non-equilibrium, excitable gait-control rem-

FIG. S3. Waiting time distributions between successive runs
and successive stop events.
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FIG. S4. A sample track showing discrete transitions between three states (0 = stop, 1 = run, 2 = shock), is obtained by
discretizing the instantaneous cell swimming speed.

iniscent of neuronal �ring.
We invoke the Markov model here as a means of mea-

suring transition rates between states and their relative
likelihoods. Multiple tracks are sampled to obtain lon-
gitudinal data in the form {Xmn,m = 1, 2, . . . , N, n =
1, 2, · · · ,mN}, for a total of N -tracks corresponding to
di�erent cells, and in which each track m is observed for
mN frames. The transition intensity is given by

qij(s, t) = lim
s→t

P(X(t) = j|X(s) = i)

t− s
, (3)

which represents the risk of qij of moving into state j at
time t starting from state i at time s. We shall assume
the Markov property, that is for t0 < t1 < · · · < tn,

P(X(tn) = in|X(t0) = i0, · · · , X(tn−1) = in−1) (4)

= P(X(tn) = in|X(tn−1 = in−1) ,

and that the process is homogeneous: P(X(t) =
j|X(s) = i) = P(X(t − s) = j|X(0) = i) =: pij(t −
s). The instantaneous probability distribution Pi(t) =
P(X(t) = i)) (

∑
i Pi(t) = 1) is then completely deter-

mined by the initial distribution p0 = Pi(0) and the in-
�nitesimal transition rate matrix Q = {qij}. O� diagonal
entries qij > 0 for i 6= j are are given by eqn (4), while
diagonal entries

qii = −
∑
j 6=i

qij .

The transition matrix P = {pij} satis�es the Chapman-
Kolomogov equations pij(s, t) =

∑
k pik(s, u)pkj(u, t),

and the matrix di�erential equation dP/dt = P (t)Q (for-
ward equation), with solution

P (t) = exp(Qt) =

∞∑
k=0

Qktk

k!
. (5)

De�ning the sequence {Tn}n∈N of jump times

Tn+1 = inf{t ≥ Tn|X(t) 6= X(Tn)} , (6)

then the sojourn times Sn = Tn−Tn−1 are exponentially
distributed with rate λ = −qii, i.e.

P(Sn ≤ t) = 1− exp(qiit) ,

and moreover this new state is j 6= i with probability

lim
h→0

P(X(t+ h) = j|X(t) = i)

P(X(t+ h) 6= i|X(t) = i)
= −qij

qii
. (7)

Then the stochastic matrix given by:

p̃ij =


1 (qi = 0; j = i)

0 (qi = 0; j 6= i)

−qij/qii (qi 6= 0; j 6= i)

0 (qi 6= 0; j = i)

(8)

de�nes a transition matrix for an embedded Markov

chain, where the p̃ij are the probabilities that given a
transition occurs, the state moves from i to j. The em-
bedded chain has no self-transitions.
Recall that a �nite-state irreducible Markov chain is

positive recurrent, so in this case we expect a unique
stationary distribution π to exist, and to satisfy:

lim
t→∞

P (t) = 1π .

The process is time-reversible i� in detailed balance

πiqij = πjqji

Results We obtained a total of N = 233 tracks each
containing at least one transition event, with mean track
duration 11.5 s and maximum track duration 78.2 s. The
data is reshaped so that there is only one row per tran-
sition, corresponding to observations for a given cell.
Next we sub-sample so that only jump-times are re-
tained {Xmnk

: tnk
corresponding to jump times Tmk } in

the sense of eqn (6). A total of 1377 pairwise transitions
were observed, with the following frequencies

stop run shock stop 0 0.005 0.070
run 0.085 0 0.317
shock 0 0.523 0

The data was �tted to the above Markov state model
using the R-software package msm [1] to obtain maximum
likelihood estimates for unknown parameters. Let {Ti}
be the total time the process is observed in each state,
Ni the total number of observed transitions from state i,
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and Nij the number of transitions from i to j. We can
use eqn (7) to initialize the Q-matrix, where Nij/Ni is
an estimate for −qij/qii and Ti/Ni to estimate the mean

waiting time in state i (expected to be −1/qii). Thus,
q̂ij = Nij/Ti.
The following Q-matrix was obtained (together with

95% con�dence intervals)

stop run shock stop −0.13166 (−0.159709,−0.10854) 0.00767 (0.003446, 0.01707) 0.12399 (0.101617, 0.15129)
run 0.28075 (0.234222, 0.33652) −1.32937 (−1.444803,−1.22315) 1.04862 (0.954768, 1.15169)
shock 0 19.76936 (18.376811, 21.26743) −19.76936 (−21.267428,−18.37681)

(9)

We can also compute the transition matrix P (t), which
estimates the transition probabilities at di�erent times.

P (0.01) =

stop run shock stop 0.9987 0.0002 0.0011
run 0.0028 0.9878 0.0095
shock 0.0003 0.1782 0.8215

(10)

P (0.1) =

stop run shock stop 0.9870 0.0074 0.0055
run 0.0267 0.9299 0.0434
shock 0.0152 0.8163 0.1685

(11)

P (1) =

stop run shock stop 0.8902 0.0992 0.0106
run 0.2201 0.7389 0.0410
shock 0.2109 0.7477 0.0414

(12)

where time is measured in units of seconds, and stochas-
tic matrices are truncated to 4 decimal places. The
above has interesting interpretations, for instance the
shock state is con�rmed to be the most transient, since
the probability of arriving from a shock state to another
shock state dropping from 0.8215 at time t = 0.01 s down
to 0.1685 at t = 0.1 s.
As t→∞, the rows of P converges to:

π(stop, run, shock) = (0.6666, 0.3126, 0.0208) .

The MLEs for diagonal entries q̂ii, by the Markov as-
sumption, give estimates (together with standard errors)
for the mean waiting time in state i:

{E(Ti) =− 1/q̂ii}(stop, run, shock)
= (7.60± 0.75, 0.75± 0.03, 0.05± 0.002) ,

Futhermore, the transition matrix for the embedded
Markov process [eqn (8)] is given by

q̃ij =

stop run shock stop 0 0.0582 0.9418
run 0.2112 0 0.7888
shock 0 1.0000 0

Finally, we can estimate the relative time spent in each
state within a certain time window (t0, t1). This is dif-
ferent from the expected waiting times � which is only

for single stays. In the long time limit as t1− t0 →∞ we
recover the stationary distribution πi. For

1

t1 − t0

∫ 10

0

P (t) dt = (stop : 0.71, run : 0.27, shock : 0.02) .

Our multistate Markov model provides a convenient,
non-invasive, image-based method for computing gait-
transition parameters, and how these depend on the cell's
extrinsic environment. In a separate manuscript, cur-
rently under preparation, we will evaluate and detail
the dependence of transition probabilities (as a measure
of departure from this non-equilibrium steady-state), on
purposeful environmental stimuli.

5. An(other) example of a single-cell trajectory

A cell experiencing multiple shocks in quick succession
makes several sharp turns (Fig. S5). Given a 2D set of
trajectory coordinates r(t) = (x1(t), x2(t)) obtained from
tracking of cell centroids, we measure instantaneously
speeds v = ||v(t)|| as before (recall Eqn. 1). Writing
v(t) = v(cos(θ), sin(θ)), we de�ne the angular speed |ω|
(where |.| denotes absolute value):

ω(t) =
1

2∆t
(θ(t+ ∆t)− θ(t−∆t)) .

However, the orientation variable θ(t) is especially sensi-
tive to noise, and derivative computations become prob-
lematic at high frame rates.

FIG. S5. Cumulative e�ect of shocks on a trajectory.
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We resolve this problem by obtaining a track simpli�-
cation via a recursive Ramer-Douglas-Peucker algorithm
[4] with a relative tolerance of 0.5/γ, where γ is the cal-
ibration for the number of µms per pixel on the image
frame. Brie�y, the algorithm recursively removes points
that are lie within the given tolerance of the line de�ned
by the end points obtained from the previous iteration.
The output polygonal line is then a simpli�cation of the
original trajectory, with the advantage that sharp discon-
tinuities are usually preserved. ω can then be determined
from the simpli�ed track (Fig. S6).

FIG. S6. Angular speed during shocks can reach several hun-
dred radians per second.

6. Velocity pulse alignment

A few additional comments are in order regarding the
signal alignment procedure used in Fig. 3g. In each
case, the alignment must be determined relative to a well-
de�ned feature of interest.

The �rst two sequences (run⇀ shock⇀ run or stop⇀
shock ⇀ run) contain shock events, which correspond to
highly reproducible pulse-like signatures in the timeseries
of speeds, which provide a natural reference point � all
signals are time-shifted so that the origin is at these local
minima. However, we should note that cells can undergo
signi�cant out-of-plane reorientations during shocks so
that the maximum speed reached is highly variable. For
instance the centroid motion of a cell that reverses per-
pendicularly to the focal plane will not be detected in a
2D projection. Future work could seek to improve track-
ing �delity by extend the imaging to 3D.

In Fig. 3g, we focused on determining a common
timescale for shocks by rescaling the ith sequence by
vimax, that is, t = 0 where vimax = maxtmin≤t≤tmax

vi(t).
The most accurate estimate for the maximum speeds
reached during shocks was calculated to be 1, 712 ±
392m/s (see Fig. 2b), accounting for only those indi-
viduals for whom shocks occurred in the focal plane.

However there are no such peaks in run ⇀ stop tran-
sitions. In this case we make use of the derivative of the
velocity instead, obtained by �rst �ltering the signal with
a lowpass �lter. The decay response from run speed to
full stop exhibits a tanh-like or hyperbolic pro�le, cen-
tred about the time point where the derivative is most
negative (Fig. S7).

FIG. S7. Alignment of velocities for run ⇀ stop transitions
using local maxima in acceleration. Peak deceleration occurs
at the time indicated by the asterisk.

7. Flagellar activation versus �agellar deactivation

In the main text, we have discussed the separation in
timescales between a very fast activation and a much
slower deactivation. Here, we show further how activa-
tion generally involves simultaneous bifurcation to full-
amplitude oscillations but yet in the reverse process the
�agella do not stop beating at the same time.
Partial deactivation. A cell undergoing a run ⇀ stop

transition requires several seconds to slow down to rest
from full speed. The continuous convergence of θ(t) to
a �xed orientation angle is shown on Fig. S8. The tra-
jectory loops several times before terminating, as a re-
sult of propulsive forces produces by a subset of �agella
that continues to beat while the remainder have already
stopped.

FIG. S8. Evolution of orientation angle over time, with cor-
responding trajectory (inset).

Simultaneous activation. In Fig. S9 we follow the ex-
terior boundary traced by the �agella during a stop ⇀
shock transition. Within 20 ms, the outline has mor-
phed from the red outline to the green. In particular, by
identifying peaks corresponding to the 8 �agella (from
unwrapped polar angle), we can obtain the trajectories
of each of the �agella tips during this process (dark to
light indicates increasing time coordinate).
Slow small-amplitude oscillations. Finally, recall that

the eight �agella shown in Fig. 4, to varying degrees, ex-
hibit oscillations. To investigate if there is global period-
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FIG. S9. Simultaneous activation of all �agella at shock onset.

icity, Instead of measuring inter�agellar cross-correlation
functions, we consider the total area spanned by the �ag-
ellar envelope (487 ± 9.88 µm), which �uctuates over
time. The existence of a 12 ∼ 14 Hz oscillation is
evident from the auto-correlation function Carea(τ) =
〈X(t)X(t+ τ)〉τ (Fig. S10).

FIG. S10. Area �uctuations (a) and its auto-correlation func-
tion (b) for a cell observed during the stop state.

8. Captions for supplemental movies

MovieSM1 threesequences Examples of the three
primary sequences discussed in the text, namely run ⇀
shock ⇀ run, stop ⇀ shock ⇀ run, and run ⇀ stop.
MovieSM2 quiverandshock A cell is observed dur-

ing the stop state. Despite no cell body motion, the �ag-
ella continue to 'quiver'. Remarkably, these �uctuations
or vibrations are not random, but instead exhibit very
small-amplitude, slow oscillations.
MovieSM3 sixcollisions We show 6 di�erent in-

stances in which mechanical contact by �agella stimualtes
shock reactions in initially stationary P. octopus cells.
The �rst �ve are one-on-one collisions between two in-
dividuals, while the �nal example shows a succession of
collisions involving 4 individuals.
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