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Single cells

So-called ‘slow-swimmer’ S. rosetta unicells, similar in morphology to the individual
cells that comprise a colony, clearly exhibit random walk behaviour. Fig. 1 shows the
mean squared displacement of 32 S. rosetta slow-swimmers, each filmed for ∼1.5 min-
utes. The behaviour is well-described by the equation for conventional active random
walkers,

〈∆r2〉 = (2v2/D2
r )
(

Drt + e−Drt − 1
)

. (1)
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Figure 1: Squared distance moved averaged over 32 S. rosetta single cells. Overlayed fit
(dashed) is to Eq. (1). Parameters: v = 12.3 µm/s, Dr = 0.15 s−1.

The active rotational diffusion constants for both single cells and colonies (main
text) are on the order of 0.1 s−1. With a beat frequency f ∼ 40 Hz, this corresponds to
a distribution of angular deviations per beat with standard deviation ∼

√
Dr/ f = 3°.

The thermal rotational diffusion constant Dthermal
r = kBT/8πµa3 ranges from 0.012 to

0.0014 s−1 for radii 2.5 to 5.0 µm, at least an order magnitude below the active one.

Noise induced drift

The Langevin equations

dv(t) = ω(t)× v(t)dt +
√

2Dr dWr(t)⊗ v(t) (2)

dω(t) =
√

2Dr dWr(t)⊗ω(t) (3)
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must be interpreted in the Stratonovich sense for the magnitude of v and ω to not grow
indefinitely. Using dWr(t) = (dW1(t), dW2(t), dW3(t)), Eq. (3) can be written as

dω(t) =
√

2Dr

 0 ω3(t) −ω2(t)
−ω3(t) 0 ω1(t)
ω2(t) −ω1(t) 0

 ◦
dW1(t)

dW2(t)
dW3(t)

 ≡ σ(t) ◦

 dW1(t)
dW2(t)

dW3(t) ,

 .

(4)
and likewise for Eq. (2). The corresponding Itō equation becomes

dω(t) = σ(t) ·

dW1(t)
dW2(t)
dW3(t)

+
1
2
((σ(t) · ∇ω)

T σ(t))T dt (5)

where T denotes transpose. The last term is the noise-induced drift, evaluating to

1
2
[(σ(t) · ∇ω)

T σ(t)]i =
1
2

3

∑
k=1

3

∑
j=1

σkj
∂σij

∂ωk
= −2Drωi, (6)

The calculation of v(t) follows the same procedure, and yields −2Drvi.

Derivation of random walker functions

Since the rotation angles α, β, and γ are Markov processes we can write the probability
distribution functions as e.g. P(α(t′)) = N(α0, 2Dr t′) and P(α(t)|α(t′)) = N(α(t′),
2Dr (t− t′)) for t′ < t, where N(µ, σ2) is the normal distribution. Using P(α(t), α(t′))
= P(α(t)|α(t′))P(α(t′)) we obtain averages such as

〈cos α(t) cos α(t′)〉 =
∫ ∞

−∞
dx
∫ ∞

−∞
dy cos(x) cos(y) (7)

× Nx(α0, 2Dr min(t, t′)|)Ny(x, 2Dr|t− t′|)

=
1
2

e−Dr |t−t′ |(1 + cos(2α0)e−4Drmin(t,t′) ),
which in the stationary limit can be used to find the velocity autocorrelations, e.g.

〈vx(t)vx(s)〉 =
〈(

vω cos(β(t)) cos(γ(t)) cos(ω0t) + vp sin(β(t)) (8)

− vω cos(β(t)) sin(γ(t)) sin(ω0t)
)
×
(
vp sin(β(s))

+ vω cos(β(s)) cos(γ(s)) cos(ω0s)− vω cos(β(s)) sin(γ(s)) sin(ω0s)
)〉

=
1
2

v2
p e−Dr |t−s| +

1
4

v2
ωe−2Dr |t−s| cos(ω0(t− s)).

The function only depends on the time difference t− s, which is the case for stationary
autocorrelations (this is the very definition of a weakly stationary process). From

vy(t) = −vp sin(α(t)) cos(β(t)) + vw
([

sin(α(t)) sin(β(t)) cos(γ(t)) (9)

+ cos(α(t)) sin(γ(t))
]

cos(ω0t) +
[

cos(α(t)) cos(γ(t))

− sin(α(t)) sin(β(t)) sin(γ(t))
]

sin(ω0t)
)

we find in a similar manner

〈vy(t)vy(s)〉 =
1
4

v2
p e−2Dr |t−s| +

1
8

v2
ω

(
e−3Dr |t−s| + 2e−2Dr |t−s|) cos(ω0(t− s)), (10)
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and the same for 〈vz(t)vz(s)〉. We project on to a random 2D plane by summing the
x, y, z results followed by multiplication of 2/3 (this gives a different result than simply
summing the x and y components due to the asymmetry induced by the approxima-
tion). We thus find

〈v(∆t) · v(0)〉 = e−2Dr |∆t|

6

[
2v2

p

(
1 + eDr |∆t|

)
+ v2

ω

(
3 + e−Dr |∆t|

)
cos(ω0∆t)

]
. (11)

The mean squared displacement is obtained by integrating the autocorrelation twice

〈∆r2(t)〉 =
∫ t

0

∫ t

0
〈v(t′) · v(t′′)〉dt′dt′′ (12)

=
v2

pe−2Drt

6D2
r

(
1 + 4eDrt

)
+ 4D∞t− a0

+ v2
ωe−2Drt

( 4D2
r −ω2

0
(4D2

r + ω2
0)

2
+

9D2
r −ω2

0
3(9D2

r + ω2
0)

2
e−Drt

)
cos ω0t

− v2
ωe−2Drt

( 4ω0Dr

(4D2
r + ω2

0)
2
+

2ω0Dr

(9D2
r + ω2

0)
2

e−Drt
)

sin ω0t,

where

a0 =
5v2

p

6D2
r
+ v2

ω

(
4D2

r −ω2
0

(4D2
r + ω2

0)
2
+

9D2
r −ω2

0
3(9D2

r + ω2
0)

2

)
. (13)

As t→ ∞, 〈∆r2〉 ∼ 4D∞t, where

D∞ = lim
t→∞

〈∆r2〉
4t

=
v2

p

4Dr
+

v2
ωDr

4

(
1

9D2
r + ω2

0
+

2
4D2

r + ω2
0

)
. (14)

The existence of the above (non-zero) limit confirms the diffusive behaviour.

Comparison of fit parameters
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Figure 2: Comparison of fit parameters of 36 tracks. Tracks where ω0, vω could be
determined in red and tracks where ω0, vω are forced to zero in blue.
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Figure 3: Comparison of fit parameters of 36 tracks to size of colony. Tracks where
ω0, vω could be determined in red and tracks where ω0, vω are forced to zero in blue.
ω0 plot additionally includes estimates from the short track data in blue crosses.

Fig. 2 shows scatter plots of fit parameters of the model to 36 different S. rosetta
colonies, indicating the high variances of all parameters. We note, however, that the
determination of some parameters is difficult in certain regions. For instance, ω0 and
vω are hard to determine when either one becomes small, and accordingly we have
forced them to zero in these cases and plotted them in blue. Naturally, these cases will
have a higher vp as is clear in the two plots in the left part of Fig. 2.

Applying the same area estimator as in Fig. 4 of the main text, the parameters can
also be plotted as a function of size. Just as with swimming speed, Fig. 3 shows that
the model parameters have very high variances and no clear dependence on size. For
a subset of the short tracks we were able to fit the model well enough to estimate ω0
and these are shown as blue crosses. However, the short track colonies for which good
estimates could be obtained are biased towards high ω0 (and vω). Nonetheless, there
is no clear tendency for larger colonies to rotate slower as is the case for e.g. bacterial
clumps [1]. For an interesting example of a big fast-spinning colony see the end of
Supplemental Video 2, in which a colony has formed a dumbbell shape.
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