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Evaluation of neural network interpretability for MRD-EDGESNV. To assess behavior of 16 

individual MRD-EDGESNV features within a neural network, we converted all features to tabular 17 

values (see Comparison of MRD-EDGESNV deep learning classifier performance to other 18 

machine learning models, Methods) and trained MLPs for CRC, melanoma, and NSCLC 19 

according to the training sample paradigms in Supplementary Table 1. Aggregate feature 20 

importances (Supplementary Fig. 1a) and individual feature Shapley values (Supplementary 21 

Fig. 1b) were obtained from the application of GradientExplainer from the python SHAP85 library 22 

(v0.37.0) to the trained model from each cancer type.  23 

Discrimination of MRD-EDGE between in silico mixing TFs. We generated in silico TF 24 

admixtures (Methods) from the melanoma plasma sample MEL-100 mixed into cfDNA from an 25 

individual with no known cancer (Fig. 1e, Supplementary Table 4). In this in silico study, MRD-26 

EDGESNV provided effective discrimination between mixing fractions, demonstrating accurate 27 

quantification of tumor burden (SNV AUCs in Supplementary Fig. 3a, P values from Student’s t-28 

test in Supplementary Fig. 3b). We further evaluated discrimination between mix fractions for 29 

the read depth, BAF, and fragment length entropy classifiers of MRD-EDGECNV (Supplementary 30 

Fig. 4). 31 

Application of tumor-informed MRD-EDGE to HiSeq re-analysis cohorts. Though MRD-32 

EDGE was trained on Illumina NovaSeq plasma samples, to demonstrate generalizability we also 33 

tested the platform on our previously reported14 clinical cohort of Illumina HiSeq plasma samples 34 

from patients with CRC (“HiSeq CRC” n=19 patients, including 6 with microsatellite instability 35 

(MSI), Supplementary Table 6), compared with controls without known cancer (n=38) and from 36 

the same sequencing platform. As further proof of generalizability, we used the same detection 37 

thresholds as in our preoperative stage III CRC NovaSeq cohort. Composite MRD-EDGE and 38 

MRD-EDGESNV produced comparable performance to MRDetect in the preoperative setting 39 

(Supplementary Fig. 5). Moreover, the ability to evaluate cnLOH with MRD-EDGECNV allowed 40 



us to apply CNV-based detection to 18 / 19 samples in this cohort, compared to 15 / 19 samples 41 

with MRDetectCNV without any loss of performance. Postoperative plasma was drawn for each of 42 

these patients at a median of 43 days after surgery. In this postoperative setting, MRD-EDGE 43 

was highly specific for disease recurrence in microsatellite stable (MSS, n=13) samples 44 

(Supplementary Fig. 5) and was associated with shorter disease-free survival over a median 45 

follow up of 49 months (range 18-76). False positives in the postoperative setting were confined 46 

to a patient who received adjuvant chemotherapy and a patient with overall survival time below 47 

the median time to recurrence in CRC86. Among the broader cohort, association between 48 

postoperative ctDNA detection with MRD-EDGE and shorter disease-free survival did not reach 49 

statistical significance (P=0.0546, Supplementary Fig. 5) due to false positives among MSI 50 

samples with MRD-EDGE (6 of 6 MSI samples detected with MRD-EDGESNV). This suggests that 51 

due to distinct mutational signatures18, patients with MSI tumors may require a separate SNV 52 

training paradigm or should only be evaluated with MRD-EDGECNV, which detected no false 53 

positives among MSI samples. Integrating the two CRC cohorts in a survival analysis, MRD-54 

EDGE was highly sensitive and specific for disease recurrence in patients with MSS tumors 55 

(P=7*10-4 logrank, Supplementary Fig. 6), demonstrating the outstanding potential for MRD 56 

detection with plasma WGS.  57 

To demonstrate generalizability in another tumor type, we applied MRD-EDGE to a cohort of 58 

early-stage NSCLC patients evaluated previously14 (“HiSeq NSCLC”, Supplementary Table 5). 59 

Composite MRD-EDGE and MRD-EDGESNV performed similarly to MRDetect in the preoperative 60 

setting while MRD-EDGECNV had superior performance (Supplementary Fig. 7). MRD-EDGE 61 

performed comparably to MRDetect in the detection of postoperative MRD associated with shorter 62 

disease-free survival (logrank HR 6.4, P=1.2*10-2 for MRD-EDGE vs HR 8.4, P=3.7*10-3 for 63 

MRDetect, Supplementary Fig. 8). 64 



Assessing statistical significance for adenoma detections. Detections for MRD-EDGE for 65 

pT1 lesions and adenomas were significantly above our expected false positive rate of 5% 66 

(binomial P=3*10-4 and 1.1*10-3, respectively, accounting for detection opportunities with both 67 

MRD-EDGESNV and MRD-EDGECNV,). To more stringently demonstrate detection, we evaluated 68 

our detections against the lower limit of the 95% confidence intervals for specificity for MRD-69 

EDGESNV (0.934) and MRD-EDGECNV (0.923) and found that detections surpassed the expected 70 

false positive rate in both cases (SNV: binomial P=1.2*10-3 for pT1 lesions and 4.6*10-3 for 71 

adenomas; CNV: binomial P=2.6*10-3 for pT1 lesions and 1.0*10-2 for adenomas).  72 

For the detection of ctDNA shedding in adenomas and pT1 lesions, we further sought to provide 73 

orthogonal validation for our TF estimates using our in silico mixing analysis for CRC (Extended 74 

Data Fig. 2a), as the TFs of these lesions may be of interest to early detection efforts. For TF 75 

admixtures at 1*10-5, comparable to the median adenoma estimated TF of 8.0*10-6, 95% 76 

confidence interval was 7.3*10-6-1.1*10-5 as calculated from a normal distribution and standard 77 

error of the mean of n =27 seeds with ≥ 1 fragment detected, similar to the TF range for detected 78 

adenomas range 5.7*10-6-1.6*10-5, from Tumor-informed MRD-EDGE detects ctDNA 79 

shedding in precancerous adenomas and minimally invasive pT1 carcinomas). This 80 

suggests that an assay sensitivity of 1*10-5 may be needed to detect precancerous lesions. 81 

Specificity threshold for de novo mutation calling. To determine an appropriate de novo 82 

specificity threshold for our MRD-EDGESNV deep learning classifier (Fig. 1d) in melanoma we 83 

used the same in silico admixtures as in the tumor-informed setting (validation melanoma sample 84 

MEL-100 admixed with a held-out healthy control plasma sample, Fig. 1e). We compared signal-85 

to-noise enrichment with detection AUC at different specificity thresholds imposed on the MRD-86 

EDGESNV ensemble model output to find an optimal threshold for de novo classification of 87 

ultrasensitive TFs (TF 5*10-5). As expected, our empirically chosen threshold in the de novo 88 



classification context (0.995) was higher than the balanced threshold (0.5) used in the tumor-89 

informed setting (Extended Data Fig. 9a-b, Methods). 90 

MRD-EDGE additional fragment classification and generalizability analyses 91 

Evaluation of fragment-level classification on sample level results. To evaluate the 92 

contribution of MRD-EDGESNV fragment-level classification to sample level results, we compared 93 

our tumor-informed WGS pipeline with and without application of the MRD-EDGESNV individual 94 

fragment classifier (“No WGS error suppression). All quality filters and recurrent artifact filters 95 

were conserved between the two approaches. Fragment-level classification with MRD-EDGESNV 96 

significantly improved sensitivity vs. controls in preoperative stage III CRC plasma samples 97 

(Supplementary Fig. 12). 98 

Fragment-level variability for non-cancer (control) samples. We performed several analyses 99 

to demonstrate generalizability between non-cancer (control) populations at the fragment level for 100 

MRD-EDGESNV. In our NovaSeq stage III perioperative CRC cohort, our ctDNA detection 101 

threshold of 95% specificity against held-out controls was highly conserved among 4 control noise 102 

distributions including: (i) Aarhus controls (95.0% in n=40 controls, 5 controls were held out for 103 

CRC SNV model training, sequenced on Illumina NovaSeq with 1.5 flow cells at Aarhus 104 

University), (ii) NYGC controls (94.9% in n=35 controls, sequenced on Illumina NovaSeq with 105 

v1.0 flow cells at the New York Genome Center), (iii) HiSeq controls, (95.4% in n=38 controls, 106 

sequenced on Illumina HiSeq X at the New York Genome Center), and (iv) a cross-patient noise 107 

distribution (95.2% n=14 cross patient controls from patients with stage III colorectal cancer, 108 

sequenced on Illumina NovaSeq with v1.5 flow cells at Aarhus University, Supplementary Fig. 109 

13). Therefore, applying the prespecified Z score threshold defined using the NovaSeq stage III 110 

CRC cohort provided highly conserved estimates of the sensitivity (100%) and specificity (~95%) 111 

when investigated in 4 different control noise distributions. This indicates that MRD-EDGESNV 112 

sample classification is highly generalizable with different control cohorts. Furthermore, our 113 



analysis indicates that future implementations of MRD-EDGESNV are unlikely to need a new panel 114 

of control samples at every application of the platform, though this will have to be confirmed in 115 

future studies. We further found broadly similar side-by-side trends for detection rate noise 116 

distributions for each patient-specific mutation profile (n=15) (Supplementary Fig. 14a) and 117 

detection rate variance (Supplementary Fig. 14b). 118 

As a further evaluation of MRD-EDGESNV generalizability, we assessed the performance of our 119 

MRD-EDGESNV platform on HiSeq cancer samples against non-cancer control plasma samples 120 

sequenced on 2 different sequencing platforms. We applied our prespecified NovaSeq stage III 121 

perioperative CRC cohort Z score detection threshold (95% specificity against held-out controls 122 

from the same center and sequencing platform), to the same controls used in the stage III CRC 123 

analysis (Aarhus controls, n=40), as well as the HiSeq controls (n=38) as described above in 124 

“Application of tumor-informed MRD-EDGE to HiSeq re-analysis cohorts“. We found similar 125 

AUC when either set of cohorts was used as the noise distribution for the patient-specific SNV 126 

profiles (Aarhus controls AUC 0.97, 95% CI: 0.92 - 1.00, HiSeq controls AUC 0.98, 95% CI: 0.95 127 

- 1.00; Supplementary Fig. 15). The prespecified 95% specificity threshold from our NovaSeq 128 

stage III CRC analysis reflected a Z Score specificity of 0.963 in Aarhus controls and 0.957 in 129 

HiSeq controls. 130 

Evaluating for fragment-level biases due to sequencing batch. We evaluated potential batch 131 

effects related to DNA extraction date, library preparation date and sequencing date in MRD-132 

EDGESNV sample level classification. We performed an analysis of variance (ANOVA) on 133 

neoadjuvant NSCLC plasma, as these samples were processed in our laboratory at different 134 

timepoints over two years (July 2020 to May 2022). No significant differences were found for 135 

extraction, library preparation dates, or sequencing dates. However, time of collection within 136 

treatment course, such as whether a sample was drawn prior to treatment, during radiation, or 137 

postoperatively, produced statistically significant differences in the prediction of MRD-EDGESNV Z 138 



score (P=0.014, Supplementary Table 16), which conforms to our expectation of changing plasma 139 

TF throughout treatment. Standard checking plots are included as Supplementary Fig. 16. 140 

Evaluating the role of sequencing batch in MRD-EDGESNV performance. We performed a 141 

series of training experiments on the melanoma classifier, in which cases and controls are 142 

sequenced in the same batch, to evaluate whether training batch in the positive or negative label 143 

confounds results. We compared our original training paradigm to a series of different control 144 

batches (Supplementary Fig. 17).  We found that the sequencing batch of the negative label 145 

(whether on same batch or different batches) did not significantly affect model performance, as 146 

validation accuracy scores remained similar for each group. As a negative control, we trained a 147 

model in which the positive and negative labels in training are from separate batches (as in 148 

experiment two). However, in the validation set, the positive and negative labels are both derived 149 

from control samples. The validation positive labels are non-cancer controls from the same batch 150 

as the melanoma sample in the training positive label, and the negative labels are from the same 151 

batch as the training negative label. Therefore, if the model learned technical features of the 152 

positive label batch or the negative label batch, we would expect the validation set to show 153 

performance above noise. Instead, validation accuracy approached 0.5, suggesting that the 154 

model does not learn significant differences between control batches (Supplementary Fig. 17).  155 

Read depth PON generalizability. To ensure generalizability of read-depth PONs among control 156 

samples, we performed random sampling of plasma samples in the PON vs. held-out of the PON 157 

and evaluated results in pretreatment, preoperative plasma samples from our neoadjuvant 158 

immunotherapy and SBRT NSCLC cohort. Compared to results from our original PON (Extended 159 

Data Fig. 4a), we saw no significant differences in preoperative sensitivity or AUC performance 160 

(Supplementary Data Fig. 18). 161 

Evaluation of drop-out rate and training sample selection in MRD-EDGESNV. To mitigate 162 

overfitting, we locked our model at training and validated performance in held-out validation and 163 



test sets for each cancer type (Supplementary Table 1). We further performed a sparsity analysis 164 

in which we evaluated accuracy at different dropout rates, which randomly drop nodes within 165 

neural networks to reduce overfitting87, in our melanoma held-out validation set. Here, we found 166 

that our dropout rate of 0.5 appeared to be appropriately fit (not under or overfit) for optimal 167 

performance (Supplementary Fig. 19a). Finally, we performed random sampling with 168 

replacement in CRC to confirm that our number of training samples was poised for optimal 169 

performance. We found that performance (as measured by classification accuracy) in our 170 

fragment-based training paradigm plateaued at 4 or higher positive label training samples or 171 

150,000 total ctDNA fragments, suggesting that training with a small number of clinical samples 172 

is appropriate due to the large number of fragments in high-burden disease (Supplementary 173 

Data Fig. 19b). 174 

  175 



Supplementary Fig. 1, Widman et al. 176 

 177 
 178 

Supplementary Fig. 1: Shapley feature importance for MRD-EDGESNV in different tumor 179 
types 180 

a) Shapley feature importance plots for MRD-EDGESNV features in (left) cutaneous 181 
melanoma (middle) CRC, and (right) NSCLC. SNV model features were converted to 182 
tabular features for Shapley evaluation. Feature groups were aggregated through sum of 183 
mean feature importance to determine category-level aggregate feature importance. B) 184 
Top ten individual Shapley features in (left) cutaneous melanoma (middle) CRC, and 185 
(right) NSCLC ordered according to importance (impact on model output). Each X-axis 186 
point is a Shapley value (Methods) for a feature within the neural network at a given feature 187 
value. Color represents the value of the feature from low to high. 188 

 189 
  190 



Supplementary Fig. 2, Widman et al. 191 

 192 

Supplementary Fig. 2: Discriminating in silico mix fractions with MRD-EDGESNV 193 

In silico studies of cfDNA from the metastatic cutaneous melanoma sample MEL-100 mixed into 194 
cfDNA from a healthy plasma sample (CTRL-216) at mixing fractions TF = 10-7–10-4 at 16X 195 
coverage depth, performed in 20 technical replicates with independent sampling seeds. a) An 196 
AUC heatmap benchmarks discrimination between different mixed TFs as measured by MRD-197 
EDGESNV detection rate. b) A P-value heatmap benchmarks significant differences between 198 
detection rates at different mixed TFs (two-sided Student’s t-test).  199 



Supplementary Fig. 3, Widman et al. 200 

 201 
Supplementary Figure 3: Discriminating in silico mix fractions with MRD-EDGECNV 202 

In silico studies of cfDNA from the metastatic colorectal cancer sample CRC-930 mixed into 203 
cfDNA from a healthy plasma sample (CTRL-443) at mixing fractions TF = 10-6–10-3 at 29X 204 
coverage depth, performed in 25 technical replicates with independent sampling seeds for read 205 
depth (a), BAF (b), and fragment length entropy (c) classifiers. Top) An AUC heatmap 206 
benchmarks discrimination between different mixed TFs. Bottom) A P-value heatmap 207 
benchmarks significant differences between read depth, BAF, and fragment length entropy signal 208 
at different mixed TFs (two-sided Student’s t-test).  209 

 210 

  211 



Supplementary Fig. 4, Widman et al. 212 

 213 

Supplementary Figure 4: MRD-EDGE preoperative performance in colorectal cancer 214 
plasma sequenced with Illumina HiSeq X (HiSeq CRC cohort) 215 

a) ROC analysis on MRD-EDGE (combined detection model of SNV and CNV mutations) in 216 
pretreatment early-stage colorectal cancer. Preoperative plasma samples with matched tumor 217 
mutation profiles (n=19, Supplementary Table 5) are compared with control plasma samples 218 
assessed against all unmatched HiSeq CRC tumor mutation profile (n=15 tumor profiles assessed 219 
across 10 control samples from HiSeq controls cohort, n=190 control-comparisons). Twenty-eight 220 
control samples used in the HiSeq read depth panel of normals were withheld from downstream 221 
analysis. b) (left) ROC analysis for MRD-EDGE (blue) as detailed in (a) and MRDetect (gray), a 222 



composite of MRDetectSNVand MRDetectCNV. For MRDetect, preoperative plasma samples with 223 
matched tumor mutation profiles (n=19, Supplementary Table 5) are compared against control 224 
plasma samples assessed against all unmatched HiSeq CRC tumor mutation profile (n=19 tumor 225 
profiles assessed against 29 controls from HiSeq controls, n=551 comparisons). Nine control 226 
samples used in the MRDetectCNV panel of normals were withheld from downstream analysis 227 
(Supplementary Table 14). (middle) ROC analysis on preoperative HiSeq colorectal SNVs for 228 
MRD-EDGESNV (blue) and MRDetectSNV (gray). Preoperative plasma samples with matched tumor 229 
mutation profiles (n=19, Supplementary Table 5) are compared with control plasma samples 230 
assessed against all unmatched HiSeq CRC tumor mutation profiles (for MRD-EDGE, 19 231 
mutation profiles assessed across 38 control samples for n=722 control-comparisons; for 232 
MRDetect, 19 mutation profiles assessed across 29 control samples for n=551 control-233 
comparisons). (right) ROC analysis on preoperative colorectal CNVs for MRD-EDGECNV (blue) 234 
and MRDetectCNV (gray). Preoperative plasma samples (n=18 for MRD-EDGECNV with 1 sample 235 
excluded due to insufficient aneuploidy; n=15 for MRDetect, 4 samples excluded due to 236 
insufficient aneuploidy) with matched tumor mutation profiles are compared with control plasma 237 
samples assessed against all HiSeq CRC tumor mutation profiles (n=18 tumor profiles assessed 238 
across 10 control samples from HiSeq controls cohort, n=180 control-comparisons). Twenty-eight 239 
samples from HiSeq controls included in the read depth classifier panel of normal samples were 240 
held out from the MRD-EDGECNV ROC analysis. c) Cross-patient ROC analysis on HiSeq CRC 241 
plasma samples demonstrates similar performance to control (non-cancer) plasma ROC analysis. 242 
Preoperative plasma samples (n=19) with matched tumor mutation profiles are compared with 243 
HiSeq CRC plasma samples assessed against all unmatched HiSeq CRC tumor profiles (n=19 244 
tumor profiles assessed across 18 cross-patient samples, n=342 cross-comparisons) d) ROC 245 
analysis performed on CNV-based Z-score values for read depth (left), BAF (middle), and 246 
fragment length entropy (right) CNV classifiers in preoperative HiSeq CRC. Preoperative plasma 247 
samples with matched tumor profiles (n=15 for read depth and fragment length entropy, n=18 for 248 
BAF) are compared with control plasma samples assessed against all unmatched tumor profiles 249 
(n=150 comparisons for read depth, 15 tumor profiles assessed across 10 control samples; n=684 250 
comparisons for BAF, 18 mutation profiles assessed across 38 control samples; n=570 251 
comparisons for fragment length entropy, 15 tumor profiles assessed across 38 control samples). 252 
Twenty-eight control samples included in the read depth panel of normal samples were withheld 253 
from read-depth analysis.  254 



Supplementary Fig. 5, Widman et al. 255 

 256 

Supplementary Fig. 5: Postoperative MRD detection in HiSeq CRC 257 

a) (top) Kaplan–Meier disease-free survival analysis was performed for MRD-EDGE across 258 
patients with detected (n=5) and non-detected (n=8) postoperative ctDNA in MSS HiSeq 259 
colorectal samples (n=13). Postoperative ctDNA detection was associated with shorter 260 
recurrence-free survival (two-sided log-rank test). (bottom) Survival analysis was performed on 261 
all HiSeq CRC patients (n=6 patients with MSI tumors and n=13 patients with MSS tumors) with 262 
detected (n=11) and non-detected (n=8) postoperative ctDNA. Association between 263 
postoperative ctDNA detection and shorter recurrence-free survival was not statistically significant 264 
(P=0.0546, two-sided log-rank test). b) The same survival analyses were performed with 265 
MRDetect per published results14 including one sample that recurred in subsequent follow up. 266 
(top) Survival analysis was performed on patients with detected (n=5) and non-detected (n=8) 267 
postoperative ctDNA in MSS HiSeq colorectal samples (n=13). Postoperative ctDNA detection 268 
was associated with shorter recurrence-free survival (two-sided log-rank test). (bottom) Survival 269 
analysis was performed on all patients (n=19) with detected (n=7) and non-detected (n=12) 270 
postoperative ctDNA. Postoperative ctDNA detection was associated with shorter recurrence-free 271 
survival (two-sided log-rank test). Adjustments were not made for multiple comparisons. MSS, 272 
microsatellite stable. MSI, microsatellite instability.   273 



Supplementary Fig. 6, Widman et al. 274 

 275 

Supplementary Fig. 6: Postoperative MRD detection in combined CRC and stage III CRC 276 
cohorts 277 

a) Kaplan–Meier disease-free survival analysis for MRD-EDGE in combined HiSeq CRC and 278 
NovaSeq stage III CRC cohorts was performed over all patients with MSS tumors with detected 279 
(n=14) and non-detected (n=14) postoperative ctDNA. b) Kaplan–Meier disease-free survival 280 
analysis for MRDetect in the same patients was performed over patients with detected (n=12) and 281 
non-detected (n=16) postoperative ctDNA. Postoperative ctDNA detection was associated with 282 
shorter recurrence-free survival (two-sided log-rank test) for both platforms. MSS, microsatellite 283 
stable.  284 



Supplementary Fig. 7, Widman et al. 285 

286 
Supplementary Fig. 7: Re-analysis of HiSeq NSCLC data with MRD-EDGE 287 

a) ROC analysis on MRD-EDGE (combined detection model of SNV and CNV mutations) in 288 
pretreatment early-stage NSCLC. Preoperative plasma samples with matched tumor mutation 289 
profiles (n=35, Supplementary Table 5) are compared with control plasma samples assessed 290 
against all unmatched HiSeq CRC tumor mutation profile (n=15 tumor profiles assessed across 291 
10 control samples from HiSeq controls cohort, n=350 control-comparisons). Twenty-eight control 292 
samples used in the HiSeq read depth panel of normals were withheld from downstream analysis. 293 



b) (left) ROC analysis for MRD-EDGE (blue) as detailed in (a) and MRDetect (gray), a composite 294 
of MRDetectSNVand MRDetectCNV. For MRDetect, preoperative plasma samples with matched 295 
tumor mutation profiles (n=35, Supplementary Table 5) are compared against control plasma 296 
samples assessed against all unmatched HiSeq NSCLC tumor mutation profile (n=36 tumor 297 
profiles assessed against 29 controls from HiSeq controls, n=1,044 comparisons). Nine control 298 
samples used in the MRDetectCNV panel of normals were withheld from downstream analysis. 299 
(middle) ROC analysis on preoperative HiSeq NSCLC SNV mutation profiles for MRD-EDGESNV 300 
(blue) and the MRDetectSNV SVM (gray). Preoperative plasma samples samples with matched 301 
tumor mutation profiles (n=33 for MRD-EDGESNV, 3 samples were excluded due to an absence 302 
of high-confidence SNVs in tumor tissue due to low tumor purity; n=36 for MRDetect) are 303 
compared with control plasma samples assessed against all unmatched HiSeq NSCLC tumor 304 
mutation profiles (for MRD-EDGESNV; 33 mutation profiles assessed across 38 HiSeq control 305 
samples, n=1,254 comparisons; for MRDetectSNV SVM; 36 mutation profiles assessed across 29 306 
HiSeq control samples, n=1,044 comparisons). For MRDetect, 9 controls used to train the 307 
MRDetectCNV CNA panel of normals were excluded from downstream analysis. (right) ROC 308 
analysis on preoperative NSCLC CNVs for MRD-EDGECNV (blue) and MRDetectCNV CNA (gray). 309 
Preoperative plasma samples with matched tumor mutation profiles (n=32 for MRD-EDGECNV; 2 310 
samples were excluded due to insufficient aneuploidy and 2 samples were excluded due to the 311 
absence of a matched normal sample; n=36 for MRDetect) are compared with control plasma 312 
samples assessed against all unmatched HiSeq NSCLC tumor mutation profiles. Twenty-eight 313 
samples from HiSeq controls included in the read depth classifier panel of normal samples were 314 
held out from the CNV ROC analysis. c) Cross-patient ROC analysis on HiSeq NSCLC plasma 315 
samples demonstrates similar performance to control (non-cancer) plasma ROC analysis. 316 
Preoperative plasma samples (n=33) with matched tumor mutation profiles are compared with 317 
HiSeq NSCLC plasma samples assessed against all unmatched HiSeq NSCLC tumor profiles (33 318 
mutation profiles assessed across 35 cross-patient samples, n=1,260 cross-comparisons). d) 319 
ROC analysis performed on CNV-based Z-score values for read depth (left), BAF (middle), and 320 
fragment length entropy (right) CNV classifiers in preoperative HiSeq NSCLC. Preoperative 321 
plasma samples with matched tumor profiles (n=32) are compared with control plasma samples 322 
assessed against all unmatched tumor profiles (n=320 comparisons for read depth, 32 tumor 323 
profiles assessed across 10 control samples; n=1,216 comparisons for BAF and fragment length 324 
entropy, 32 mutation profiles assessed across 38 control samples). Twenty-eight control samples 325 
included in the read depth panel of normal samples were withheld from read-depth analysis.   326 



Supplementary Fig. 8, Widman et al. 327 

 328 

Supplementary Fig. 8: Re-analysis of previous NSCLC data accounting for updated results 329 
with MRD-EDGE. 330 

Kaplan–Meier disease-free survival analysis was performed over all patients with detected and 331 
non-detected postoperative ctDNA for MRD-EDGE (a) and MRDetect (b). Postoperative ctDNA 332 
detection showed association with shorter recurrence-free survival (two-sided log-rank test) for 333 
both platforms. Results were updated to account for one additional recurrence in extended follow 334 
up. This sample (NSCLC-111, Supplementary Table 6) was detected by both MRD-EDGE and 335 
MRDetect.  336 



Supplementary Fig. 9, Widman et al. 337 

 338 

Supplementary Fig. 9: Determination of MRD-EDGE de novo mutation calling classification 339 
threshold 340 

a) Fragment-level signal-to-noise enrichment, defined as the fraction of remaining ctDNA 341 
fragments (signal) over remaining cfDNA SNV artifacts (noise), for different MRD-EDGEdnSNV 342 
classification thresholds in the melanoma held-out validation set derived from tumor-confirmed 343 
ctDNA SNVs from the melanoma patient MEL-100 and post-quality filtered cfDNA artifacts from 344 
healthy control plasma (Supplementary Table 1). The MRD-EDGESNV deep learning classifier 345 
uses a sigmoid activation function that outputs the likelihood between 0 and 1 that a candidate 346 
SNV fragment is a mutated ctDNA fragment or cfDNA harboring a sequencing error, and the 347 
classification threshold is used as a decision boundary for these two classes. Signal-to-noise 348 
enrichment increases at higher classification thresholds, as expected. b) As increased specificity 349 
will ultimately eliminate most of the signal, to choose an optimal threshold for classification, we 350 



compared sensitivity vs. TF=0 in an in silico study of cfDNA from the metastatic melanoma sample 351 
MEL-100 mixed in n=20 replicates against cfDNA from a healthy plasma sample (TF=0) at 5*10-352 
5 at 16X coverage depth. We found optimal performance at a classifier threshold of 0.995 as 353 
measured by AUC of mixed replicates against TF=0. This threshold was subsequently applied in 354 
de novo mutation calling analyses. Error bars indicate Delong AUC variance.  355 



Supplementary Fig. 10, Widman et al. 356 

 357 

Supplementary Fig. 10: Fragment size distribution for melanoma samples +/- bead cleanup 358 

Fragment size distribution for melanoma samples that did and did not undergo bead cleanup. A 359 
subset of melanoma plasma samples (blue, n=66) stored in an immunotherapy biobank 360 
underwent 0.4x magnetic bead cleanup to remove contamination. No differences were seen in 361 
fragment length distribution compared to samples from the same cohort that did not undergo 362 
cleanup (orange, n=18). Fragment size was estimated from paired-end sequencing. 363 
  364 



Supplementary Fig. 11, Widman et al. 365 

 366 
Supplementary Figure 11: Rate of shared SNVs between WGS tumor samples. 367 

Rate of shared tumor SNVs between any 2 samples in 4 WGS cohorts: stage III CRC (n=15 368 
patients, median rate=0, mean=4*10-5), neoadjuvant NSCLC (n=22, 0, 2*10-4), PCAWG LUAD 369 
cohort (n=37, 0, 2*10-5), and PCAWG COAD (n=52, 6*10-5, 3*10-3). Error bars indicate 95% CI. 370 
  371 



Supplementary Fig. 12 [referenced in Methods], Widman et al. 372 

 373 
Supplementary Figure 12: Impact of individual fragment classification on MRD-EDGESNV 374 
performance in preoperative stage III colorectal cancer 375 

ROC analysis with MRD-EDGESNV (blue), and without WGS error suppression (gray) in stage III 376 
CRC cohort. Preoperative plasma samples (n=15) were used as the true label (Supplementary 377 
Table 5).  Control plasma samples (n=40) from the Aarhus controls cohort assessed against all 378 
stage III CRC tumor mutation profiles (n=15) were used as the false label (n=600 comparisons). 379 
Five control samples included in SNV model training were withheld from this analysis 380 
(Supplementary Table 14).  381 



Supplementary Fig. 13 [referenced in Methods], Widman et al. 382 

 383 

Supplementary Fig. 13: MRD-EDGESNV Z scores compared to 4 non-cancer control plasma 384 
cohorts  385 

ROC analysis on preoperative colorectal SNV mutation profiles for MRD-EDGESNV (blue) vs. 386 
noise distributions from different sequencing centers and sequencing platforms. Preoperative 387 
stage III colorectal plasma samples (n=15) were used as the true label, and the panel of control 388 
plasma samples assessed against all stage III CRC tumor mutation profiles was used as the false 389 
label. Aarhus controls (n=40) that were sequenced at the same sequencing center (Aarhus 390 
University) and the same sequencing platform (NovaSeq) were used as the baseline noise 391 
distribution. The 95.0% specificity threshold is marked in red in the other noise distributions: 392 
NYGC controls, sequenced on Illumina NovaSeq at the New York Genome Center (94.9% 393 
specificity); HiSeq controls, sequenced on Illumina HiSeq X at the New York Genome Center 394 
(95.4% specificity); and cross-patient controls from other stage III CRC patients from the same 395 
center and sequencing platform (specificity 95.2%).  396 



Supplementary Fig. 14, Widman et al. 397 

 398 
Supplementary Fig. 14: Mean detection rate and variance in 4 non-cancer control cohorts 399 

a) Side-by-side comparison of mean detection rates in non-cancer (control) noise distributions for 400 
15 stage III CRC patient-specific SNV mutation profiles. Whiskers represent standard error for 401 
detection rate for each control noise distribution. b) Detection rate variance for each control noise 402 
distribution. Error bars indicate Bayesian 95% confidence interval for population variance.   403 
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 405 
Supplementary Figure 15: Comparison of non-cancer control plasma samples sequenced 406 
on 2 different sequencing platforms in preoperative early-stage colorectal cancer re-407 
analysis cohort 408 

ROC analysis on preoperative HiSeq colorectal SNV mutation profiles for MRD-EDGESNV (blue) 409 
vs. noise distributions from different sequencing centers and sequencing platforms. Preoperative 410 
early-stage colorectal plasma samples (n=19) re-analyzed from prior work14 were used as the 411 
true label, and the panel of control plasma samples assessed against all HiSeq CRC tumor 412 
mutation profiles was used as the false label. The Z Score ctDNA detection threshold was 413 
prespecified in the stage III CRC cohort (Fig. 3a-b). The threshold is marked in red for two noise 414 
distributions: Aarhus controls (n=40), sequenced on Illumina NovaSeq at Aarhus University 415 
(96.3% specificity), and HiSeq controls, sequenced on Illumina HiSeq X at the New York Genome 416 
Center (95.7% specificity). Preoperative ctDNA sensitivity is 89.5% (17/19 samples detected 417 
above the threshold) when either control cohort is used as the control noise distribution.  418 
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 420 
Supplementary Figure 16: ANOVA model checking plots. 421 



Residuals vs. Fitted, Normal Q-Q, Scale Location, and Residuals vs. Leverage plots for two-way 422 
ANOVA for relationship between categorical variables and MRD-EDGESNV Z score in 423 
neoadjvuvant NSCLC (n=44) cancer samples. ANOVA was performed using stats package in R 424 
to model the continuous variable MRD-EDGESNV Z score as the dependent variable and the 425 
variables ‘DNA extraction date’, ‘Library Preparation Data’, ‘Sequencing date’, and ‘Timepoint’ as 426 
independent variables. MRD-EDGESNV Z Scores were capped at 20 to exclude outliers. a) 427 
residuals vs fitted plot, x-axis is fitted values from the model (Predicted values), y-axis is residuals 428 
(Difference between observed and predicted values). b) normal Q-Q Plot: x-axis is theoretical 429 
quantiles from a standard normal distribution, y-axis is ordered residuals from the model 430 
(Quantiles of the residuals). c) scale-location plot: x-axis is fitted values from the model (Predicted 431 
values), y-axis is square root of standardized residuals. d) residuals vs leverage plot: x-axis is 432 
leverage values (Measure of influence of each data point on the model), y-axis is standardized 433 
residuals (Measure of how far each observed value is from the expected value). Plots were 434 
constructed from R stats package.  435 
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 440 
Supplementary Figure 17: Assessment of validation accuracy in 4 different melanoma 441 
deep learning model training set approaches. 442 

a) Classifiers (n=6 per experiment) were trained with the same training and validation positive 443 
labels as used in our MRD-EDGESNV melanoma classifier (Supplementary Table 1). In our original 444 
training paradigm, negative labels for training and validation were drawn from NYGC controls, 445 
which were sequenced within the same batch as our training positive label (New York Genome 446 
Center, Illumina NovaSeq, Supplementary Table 5). In Experiment 1 and Experiment 2, negative 447 
labels for validation and training were drawn from samples sequenced within different batches on 448 
different platforms (Experiment 1: HiSeq controls, Illumina HiSeq, New York Genome Center) or 449 
different sequencing centers (Experiment 2: Aarhus controls, Illumina NovaSeq, Aarhus 450 
University). As a negative control, we trained the original melanoma positive label (batch 2020-451 
08-25) against controls from a different batch (Aarhus controls) and substituted the validation 452 
positive label with non-cancer controls from the training positive label batch (batch 2020-08-25). 453 
We observed minimal discriminatory signal in this setting. Box plots represent median, lower and 454 
upper quartiles; whiskers correspond to 1.5 x interquartile range. b) Color table demonstrating 455 
sequencing batches used in classifier training and validation in panel a). Each color denotes a 456 
distinct sequencing batch.   457 
 458 

  459 
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 461 
Supplementary Figure 18: Comparison of read depth panel of normal samples (PONs) in 462 
pretreatment, preoperative neoadjuvant non-small cell lung cancer 463 

ROC analysis performed on read-depth Z-score values with 4 different PONs. Preoperative 464 
plasma samples (n=22) were used as the true label, and the patient-specific mutation profiles 465 
assessed against unmatched plasma samples (22 mutation profiles assessed across 20 control 466 
samples) was used as the false label (n=440 comparisons). Non-cancer plasma samples were 467 
randomly sampled to be in the PON or held-out from the PON. Performance in the original read-468 
depth PON (blue) is highly generalizable compared to randomly sampled PONs in which controls 469 
were included in the PON vs. held-out of the PON. In each PON, control samples were held out 470 
of the PON and 65 samples were included in the PON. The 95.0% specificity threshold is marked 471 
in red in the randomly sampled PONs. 472 
  473 
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 475 

Supplementary Fig. 19: Sparsity and random sampling with replacement analyses for 476 
MRD-EDGESNV 477 

a) Sparsity analysis for MRD-EDGESNV in melanoma. Melanoma models were trained at different 478 
dropout rates (0 to 0.9, blue line) and classification accuracy was evaluated in a held-out 479 
cutaneous melanoma validation set (Supplementary Table 1). Our chosen dropout rate of 0.5 480 
(yellow dashed line) produced optimal accuracy in the held-out validation set. B) Random 481 
sampling with replacement for all possible combinations of training samples within the MRD-482 
EDGESNV classifier. Models were trained on 1 to 5 high-burden colorectal samples against n=5 483 
controls and performance was evaluated based on fragment classification accuracy in a test set 484 
held out from training (n=2 high-burden samples and n=2 non-cancer controls). The final MRD-485 
EDGESNV classifier used the 5 high-burden samples with the most ctDNA fragments as the train 486 
set. Box plots represent median, lower and upper quartiles; whiskers correspond to 1.5 x 487 
interquartile range. 488 
  489 
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 492 



Flowchart Fig. 1: Overview of plasma WGS cohorts  493 

Boxed description of clinical cohorts used throughout the study. Boxes indicate clinical context, 494 

sequencing preparation and number of WGS samples. Color indicates which MRD-EDGE 495 

workflow was applied (blue: tumor-informed MRD-EDGE, green: MRD-EDGECNV, orange: MRD-496 

EDGEdnSNV). T/N, tumor-normal pairs. 497 

  498 
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 500 

Flowchart Fig. 2: MRD-EDGESNV model training flowchart 501 

Disease-specific ctDNA SNV fragments (positive label) are collected from patient plasma samples 502 

with high-burden metastatic disease. cfDNA SNV fragments (negative label) are sourced from 503 



patient plasma samples from patients without cancer. Relevant features are extracted from 504 

genomic information and fragments are passed through our quality filters and blacklists 505 

(Methods). Data are partitioned into train, validation, and test datasets as described for each 506 

cancer type in Supplementary Table 1. The train dataset is used to train the MRD-EDGESNV 507 

ensemble of the Fragment CNN and Regional MLP (Fig. 1d, training is performed jointly as the 508 

ensemble evaluates the latent space outputs of the fragment and regional components) to classify 509 

cancer ctDNA vs. SNV artifact. Following training, the ensemble classifier undergoes performance 510 

evaluation in a held-out validation dataset. After optimization, the model is locked and undergoes 511 

performance evaluation in a held-out test set. The final result is a disease-specific (e.g., NSCLC, 512 

cutaneous melanoma, or CRC) SNV fragment classifier that is applied to clinical samples. 513 

Supplementary Table 1 provides train, validation, and test set performance metrics. 514 

  515 
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 517 

Flowchart Fig. 3: Flowchart for tumor-informed MRD-EDGESNV evaluation of plasma cfDNA 518 



A patient-specific SNV profile captures SNVs in tumor tissue. Plasma at matching genetic loci is 519 

evaluated for matching SNV fragments, which are subsequently filtered by quality metrics and a 520 

recurrent SNV blacklist. A locked, disease-specific MRD-EDGESNV model is applied to post-filter 521 

SNV fragments which are classified as ctDNA (positive classification) or cfDNA artifact (negative 522 

classification). Detection rate is measured as the number of SNV fragments classified as ctDNA 523 

divided by the total number of fragments (SNV and non-SNV) found at all tumor SNV loci. At the 524 

sample level, the patient-specific SNV profile is applied to matched and unmatched plasma 525 

samples, as the latter form a detection rate noise distribution. Output is an MRD-EDGESNV Z score 526 

indicative of underlying ctDNA content. 527 

  528 
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 530 

Flowchart Fig. 4: Flowchart illustration of read depth CNV classifier  531 

A patient-specific CNV profile labels genomic windows as amplifications, deletions, and neutral 532 
regions in tumor tissue and is subsequently applied to a plasma sample to evaluate aneuploidy-533 
associated read depth skews in cfDNA. Plasma read depths are median normalized and GC-534 
corrected at each 10-kb window of the genome. Values are passed to dryclean, a machine-535 
learning guided CNV denoising platform designed to detect read depth biases from a panel of 536 



non-cancer plasma samples (panel of normal or PON). Foreground signal in excess of 537 
background PON signal is calculated for amplifications and deletions and aggregated at the 538 
sample level (Methods). Cumulative signal is compared to a noise distribution of foreground signal 539 
from unmatched (control) plasma samples, and the final sample-specific ctDNA tumor burden 540 
estimate is recorded as a Z score.  541 
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 543 

Flowchart Fig. 5: Flowchart illustration of B-allele frequency LOH classifier  544 

A set of patient-specific single nucleotide polymorphisms (SNPs) and corresponding major alleles 545 
are sourced from loss of heterozygosity (LOH) regions in tumor tissue. Candidate plasma SNPs 546 
are subjected to quality filters and mappability correction (Methods). A least squares regression, 547 
based on the expected contribution of alleles per major allele, major and minor copy number state, 548 
and underlying plasma coverage, calculates estimated sample level ctDNA burden. The same 549 
approach is applied to unmatched (non-cancer) controls (Methods) to form a noise distribution, 550 
and the final result is a sample level BAF Z score indicative of plasma tumor burden.  551 

  552 
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 554 

Flowchart Fig. 6: Flowchart illustration of fragment length entropy CNV classifier  555 

A patient-specific CNV profile labels genomic windows as amplifications, deletions, and neutral 556 

regions in tumor tissue. In plasma, fragment length entropy is calculated for 100-kb non-557 

overlapping genomic windows across the genome. These windows are normalized to entropy 558 

values in neutral regions using robust Z scores. Scores are aggregated across the genome 559 

according to segment direction, as windows in amplifications are expected to skew positive (more 560 

fragment length entropy than neutral regions due to greater ctDNA content in the cfDNA pool) 561 

while deletions are expected to skew negative (less fragment length entropy compared to neutral 562 



regions due lesser ctDNA contribution to the plasma cfDNA pool). The aggregated entropy scores 563 

of amplifications and deletions form a sample level entropy score that is compared to a noise 564 

distribution of the same CNV regions applied to control samples. Output is a fragment length 565 

entropy Z score indicative of underlying ctDNA content.  566 
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 568 

Flowchart Figure 7: Flowchart for integrating information from 3 CNV classifiers to 569 
produce sample-level MRD-EDGECNV Z score 570 

Individual read depth, BAF, and fragment length entropy Z scores are summed via Stouffer’s 571 

method to form Z scores for cancer plasma samples (signal) and control plasma samples (noise 572 

distribution).  573 
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 575 

Flowchart Figure 8: Flowchart for integrating information from MRD-EDGESNV and MRD-576 
EDGECNV Z scores to produce sample-level MRD-EDGE Z score 577 

MRD-EDGESNV and MRD-EDGECNV Z scores are summed via Stouffer’s method to form Z scores 578 

for cancer plasma samples (signal) and control plasma samples (noise distribution). 579 

  580 
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 582 

Flowchart Fig. 9: Flowchart for MRD-EDGEdnSNV evaluation of plasma cfDNA 583 



All cfDNA fragments with SNVs are passed through quality filters and recurrent artifact blacklists. 584 
A trained, disease-specific MRD-EDGEdnSNV deep learning classifier evaluates post-filter 585 
fragments and classifies fragments as ctDNA or noise. Detection rate is measured as the number 586 
of SNV fragments classified as ctDNA divided by the number of SNV fragments evaluated and 587 
can be used to track changes in plasma TF over time and in response to therapy. 588 
  589 



References 590 

85. Lundberg, S. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 591 

[cs.AI] (2017). 592 

86. Guraya, S. Y. Pattern, Stage, and Time of Recurrent Colorectal Cancer After Curative 593 

Surgery. Clin. Colorectal Cancer 18, e223–e228 (2019). 594 

87.   Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A 595 

Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 15, 1929–1958 596 

(2014). 597 




