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The robust PC-GMM method

Linear model with dimension-reduced instruments

Let X = (X1, . . . , XK)′ denote a K-vector of risk factors, Y an outcome, and Z = (Z1, . . . , ZM)′

an M -vector of genetic variants. Our focus is on a cis-gene analysis where genetic variants from
a single region are in highly structured correlation. Let Λ denote the M × L matrix where its
columns are the first L principal components (K ≤ L < M) of a weighted sample correlation
matrix of genetic variants.1 We consider the following linear IV model with homoscedastic errors

Y = ω + θ′0X + α′(Λ′Z) + U (1)

X = ψ + γ′(Λ′Z) + V (2)

where E[U |Λ′Z] = 0, E[V |Λ′Z] = 0, E[U2|Λ′Z] = σ2
U , E[V V ′|Λ′Z] = ΣV , and (ω, ψ, γ, θ0) are

unknown parameters. We assume α is a mean-zero random effect that is uncorrelated with all
other variables. We are interested in estimation and inference on the K-vector of risk factor effects
on the outcome θ0, using only two-sample summary data that is often made publicly available.

For each variant m and risk factor k, we have access to estimates β̂Xkm
and standard errors σXkm

from univariable Xk on Zm linear regressions from an nX-sized sample, and from a non-overlapping
nY -sized sample, we observe measured associations (β̂Ym , σYm) from univariable Y on Zm linear
regressions. Both random samples are drawn from the joint distribution of (Y,X,Z). We assume
knowledge of anM×M genetic correlation (or linkage disequilibrium) matrix ρ, where its (m1,m2)-
th element ρm1m2 denotes the correlation between the m1-th and m2-th genetic variant. Finally,
we also assume knowledge of a K×K risk factor correlation matrix τ , where its (k1, k2)-th element
τk1k2 denotes the correlation between Xk1 and Xk2 .

Substituting (2) into (1), we have Y = (ω+θ′0ψ)+(γθ0+α)′(Λ′Z)+(U+θ′0V ). Thus, Cov(Λ′Z, Y ) =

V ar(Λ′Z)(γθ0 + α), which leads to a model

Γ = γθ0 + α, where α ∼ N(0L×1, ILκ
2n−1

Y ) (3)
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where Γ is the L-vector of coefficients from a population multivariable regression of Y on Λ′Z, and
γ is the L×K matrix such that its k-th column γk is the L-vector of coefficients from a population
multivariable regression of Xk on Λ′Z. The random effects α are mutually uncorrelated, and
assumed to be normally distributed scaled up to an unknown overdispersion variance parameter
κ2.

Proposition 1 (Two-sample summary data associations). Using the two-sample univariable sum-
mary data described above, we can construct multivariable estimates (Γ̂, Σ̂Γ) and (vec(γ̂), Σ̂γ), such
that [ √

nY (Γ̂− γθ0)
√
nX(vec(γ̂)− vec(γ))

]
D→ N

([
0L×1

0LK×1

]
,

[
ΣΓ + ILκ

2 0L×LK

0LK×L Σγ

])
,

Σ̂Γ − ΣΓ
P→ 0, and Σ̂γ − Σγ

P→ 0, as (nX , nY )→∞.

Conditional F-statistics

We require some additional notation to construct conditional F-statistics in our setting of dimension-
reduced genetic associations. Let Σ̂γ,k denote the matrix Σ̂γ that is rearranged such that the k-th
column is moved left to be the first column, and the k-th row is moved up to be the first row.
Let γ̂−k denote the L × (K − 1) matrix equal to γ̂ without the k-th column, let γ−k denote the
L × (K − 1) matrix equal to γ without the k-th column, and let h(δ) = [IL − IL ⊗ δ′] denote
the L×LK matrix where δ is a (K − 1)-vector of unknown parameters, and where ⊗ denotes the
Kronecker product.

Then, for any risk factor k, we consider conditional F-statistics2 given by

Fk|−k =
nX

L−K + 1
min
δ
{(γ̂k − γ̂−kδ)′[h(δ)Σ̂γ,kh(δ)′]−1(γ̂k − γ̂−kδ)}.

Proposition 2 (Conditional F-statistics). For any risk factor k, under the null hypothesis H0k :

γk − γ−kδ = 0 uniquely at some δ = δ0, Fk|−k(L−K + 1)
D→ χ2

L−K+1 as nX →∞.

Under the null hypothesis H0k : γk − γ−kδ = 0 uniquely at some δ = δ0, Proposition 2 shows that
the statistic Fk|−k(L−K+ 1) should behave like a χ2

L−K+1 random variable in large samples. This
allows us to perform a test of no phenotypic heterogeneity for any risk factor k, with a rejection
of the null hypothesis H0k suggesting evidence for phenotypic heterogeneity.

Robust PC-GMM: 2-step estimation of θ0 and κ2

By Proposition 1, we have E[Γ̂− γ̂θ0] = 0L×1, so that there are L moment equations which describe
θ0. To identify θ0, we require the usual rank condition that the column rank of γ is at least K.
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Let ĝ(θ) = Γ̂ − γ̂θ denote an L-vector of estimating functions. Then, using Proposition 1, an
estimator of the variance of ĝ(θ0) is given by Ω̂(θ0, κ

2) = n−1
Y (Σ̂Γ + ILκ

2) + n−1
X ϕ(θ0)Σ̂γϕ(θ0)′,

where ϕ(θ) = θ′ ⊗ IL. Thus, under knowledge of κ2, we consider Q̂(θ, κ) = ĝ(θ)′Ω̂(θ, κ2)−1ĝ(θ)

as the oracle continuously-updating GMM3,4 criterion function based on the optimal weighting
matrix.

Proposition 3 (Oracle GMM estimation). Under regularity conditions, the oracle GMM estim-
ator θ̄ = arg minθ Q̂(θ, κ2) is consistent for θ0, and is asymptotically distributed

√
nY (θ̄ − θ0)

D→
N(0K×1,Σθ) where Σθ = (γ′Ω−1γ)−1 where Ω = ΣΓ + ILκ

2 + cϕ(θ0)Σγϕ(θ0)′ and n−1
X nY → c, as

(nX , nY )→∞.

Proposition 3 implies that the standard errors of θ̄ need to account for the extra uncertainty
due to the random direct effects, which is represented by the overdispersion variance parameter
κ2. However, consistent estimation of θ0 is still possible by ignoring the extra uncertainty. In
particular, θ̂1 = arg minθ Q̂(θ, 0) is a consistent GMM estimator of θ. We can then use this
preliminary estimator θ̂1 to pin down κ2.

Noting that Q̂(θ̂1, κ
2)

D→ χ2
L−K , an estimator κ̂2 of κ2 solves the estimating equation Q̂(θ̂1, κ̂

2) −
(L − K) = 0. Then, the 2-step estimator of θ0 is given by θ̂ = arg minθ Q̂(θ, κ̂2). Finally, it is
straightforward to estimate the standard errors of θ̂ based on Proposition 3. For the k-th risk
factor, the estimated standard errors are given by the square root of the (k, k)-th element of the
matrix (γ̂′Ω̂(θ̂, κ̂2)−1γ̂)−1.

Finally, for the unrobust version of the PC-GMM method, a test of overidentifying restrictions5

(henceforth, heterogeneity test) is a useful way to assess the coherency of evidence over all instru-
ments. Assuming that θ0 is identified (so that there are at least K distinct valid instruments in the
vector Λ′Z), if one of the instruments is invalid, then ĝ(θ0) no longer has mean zero, and therefore
we would expect the GMM criterion Q̂(θ0, 0) to deviate further away from 0. This is the intuition
behind the heterogeneity test.

More formally, by very similar arguments used in Proof of Proposition 2, it can be shown under
no overdispersion heterogeneity (κ2 = 0) that minθ Q̂(θ, 0)

D→ χ2
L−K . Therefore, we can compute

a heterogeneity test by comparing the statistic Q̂(θ̂, 0) against a relevant critical value from the
χ2
L−K distribution. Let cα denote the (1−α)-th quantile of the χ2

L−K distribution. If Q̂(θ̂, 0) > cα,
then we reject the null hypothesis of instrument coherency for an α-level test.
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Further empirical results

Supplementary Figure S1. The absolute values of the correlation matrix of 851 genetic variants in GLP1R.

Supplementary Figure S2. Sensitivity of coloc results to the choice of prior p12 on the shared causal variant
hypothesis.
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PC-GMM method risk factor estimate 95% CI p-value # PCs het. test cond. F-stat.

robust (99.9%)
BMI 0.769 0.126, 1.412 0.019

54

-
2.304

T2D 0.104 -0.068, 0.276 0.236 2.796

unrobust (99.9%)
BMI 0.819 0.324, 1.313 0.001

<0.001
-

T2D 0.026 -0.102, 0.153 0.694 -

robust (99%)
BMI 1.146 0.292, 2.000 0.009

25

-
3.516

T2D -0.012 -0.241, 0.217 0.917 4.475

unrobust (99%)
BMI 1.221 0.609, 1.833 <0.001

<0.001
-

T2D -0.105 -0.260, 0.050 0.185 -

robust (95%)
BMI 2.427 -0.053, 4.907 0.055

12

-
3.224

T2D -0.176 -0.613, 0.261 0.431 3.228

unrobust (95%)
BMI 2.519 1.293, 3.745 <0.001

0.008
-

T2D -0.394 -0.657, -0.130 0.003 -

Supplementary Table S1. PC-GMM results: Genetically-predicted multivariable BMI and T2D effects on CAD
risk. The percentages next to the PC-GMM method indicate the percentage of weighted genetic variation

explained in GLP1R by the number of principal components used.

Supplementary Figure S3. Robust PCA-GMM estimates of genetically-predicted effects of BMI and T2D
liability on CAD risk when using different numbers of principal components.

Supplementary Figure S4. Robust PCA-GMM estimates of genetically-predicted effects of GLP1R expression in
different tissues on CAD risk when using different numbers of principal components.
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Further simulation results

Sensitivity to mis-specifying trait correlations

We consider the impact of mis-specifying the true trait correlations ρ in the same simulation design
discussed in the main text, with ξ = 1 (phenotypic heterogeneity; all 3 risk factors have 5 distinct
causal variants) and κ2 = 0.5 (moderate overdispersion heterogeneity). Supplementary Figure S3
shows the impact on type I error (relating to θ2 = 0) and power (relating to θ1 = −1

/
3 and

θ3 = 1
/

3) of specifying trait correlations ρ̂ instead of ρ.

Supplementary Figure S5. Type I error/power varying with mis-specification of trait correlations. The true
causal effect is (θ1, θ2, θ3)′ = (−1

/
3, 0, 1

/
3)′.

From Supplementary Figure S3, we find that the results were not sensitive to mis-specification
of trait correlations for large enough sample sizes. For small samples (nX = nY = 500), mis-
specification of trait correlations does appear to harm an already inflated type I error rate. In-
terestingly, the specified trait correlations also appear to impact the power properties: under-
estimating trait correlations (ρ̂ < ρ) appeared to be less harmful in terms of power compared
with over-estimating the correlations. Although, more generally, the impact on power may depend
on several other model parameters, such as the direction of the true trait correlations ρ and the
direction of the causal effect θ = (θ1, θ2, θ3)′.

Performance under weak instruments

To investigate the performance of the robust PC-GMM method under weak instruments, under
the same simulation design discussed in the main text, we set the sample size at n = 1000, and we
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changed the causal variant effects on the risk factor:

X1 = µ

5∑
m=1

Zm + V1

X2 = µξ
10∑
m=6

Zm + µ(1− ξ)
15∑

m=11

Zm + V2

X3 = µ
15∑

m=11

Zm + V3,

where the errors (V1, V2, V3) were jointly normally distributed with mean zero such that var(Vk) = 1

and cov(Vk, Vl) = 0.3 for k, l 6= k ∈ {1, 2, 3}. Here, µ represents the unconditional instrument
strength, and ξ represents phenotypic heterogeneity for risk factors 2 and 3. When ξ = 0, the
variants effects on risk factors 2 and 3 are collinear, and when ξ = 1, all three risk factors have
distinct causal variants. As in the main text, we chose the number of principal components to
explain 99.9% of variation in a weighted genetic correlation matrix.

First, for the case of no overdispersion heterogeneity, we reproduce plots analogous to Figure 3 of
the main text, but now instead of varying the sample size, we vary the parameter µ. Supplementary
Figure 6 presents estimation and inference results for this case.

Supplementary Figure 6 highlights that the source of weak instrument bias has an important
impact on estimation and inference. Biased estimation can be expected if either µ is close to 0
(unconditional instrument strength is low) or if ξ is close to 0 (i.e. conditional instrument strength
is close to 0). In the case of this simulation exercise, there is a bias toward the null of no effect for
each non-zero risk factor effect (θ1 and θ3), and an upward bias for the null effect θ2. This upward
bias for the null effect disppears when there is large enough phenotypic heteogeneity (ξ is close to
1) even for low values of unconditional instrument strength µ.
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Supplementary Figure S6. Estimation bias and inference using robust PC-GMM under varying phenotypic
heterogeneity ξ, varying unconditional instrument strength µ, and no overdispersion heterogeneity (κ2 = 0). The

true parameter values were θ1 = −1/3, θ2 = 0, and θ3 = 1/3. The nominal size of all tests was 0.05.

For inference, a lack of conditional instrument strength appears to harm size performance more
than a lack of unconditional instrument strength. For example, for the case of µ = 0.2 and ξ = 1,
conditional F-statistics are just over 4, but the type I error rate (for risk factor 2) is exactly equal
to the nominal size 0.05. Overall, our simulation results would suggest that we could be less
concerned about the impact of weak instrument bias on inference if the conditional F-statistics are
not too low and close to unconditional F-statistics (suggesting a scenario where ξ is close to 1).

Supplementary Figure 7 presents results for the case where ξ = 1 (all risk factors have distinct
causal variants), and under overdispersion heterogeneity in genetic variant–outcome associations
(higher values of κ2 indicate greater overdispersion heterogeneity). The results further illustrate
that the type I error rate may be close to the nominal level if there is phenotypic heterogeneity
and as long as the unconditional instrument strength is not too low (µ ≥ 0.2).
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Supplementary Figure S7. RMSE and type I error/power under phenotypic heterogeneity (ξ = 1), varying
overdispersion heterogeneity (0 ≤ κ2 ≤ 1), and varying unconditional instrument strength µ. The nominal size of
all tests was 0.05. The true parameter values were θ1 = −1/3, θ2 = 0, θ3 = 1/3. For each risk factor k, θ̂k-robust

indicates the results using robust PC-GMM, and θ̂k indicates the results using unrobust PC-GMM (which
assumes κ2 = 0).

Varying the number of principal components

Supplementary Figure 8 presents simulation results under the same design discussed in the main
text, and where we vary the number of principal components used to instrument the risk factors.
The sample size set at n = 1000, and the overdispersion heterogeneity parameter was set at
κ2 = 0.75. Here, we see that the optimal number of principal components to maximise conditional
F-statistics is not necessarily the best for inference. For example, when ξ = 1 the conditional
F-statistics for all risk factors are higher when using 20 principal components compared with using
30, but while the type I error rate is the same for risk factor 2 the power to detect the non-zero
effects for risk factors 2 and 3 is higher when using 30 principal components.
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Supplementary Figure S8. Estimation bias and inference using robust PC-GMM under varying phenotypic
heterogeneity ξ and the number of principal components used as instruments. The overdispersion heterogeneity

parameter was set at κ2 = 0.75, and the sample size was set at n = 1000. The true parameter values were
θ1 = −1/3, θ2 = 0, and θ3 = 1/3. The nominal size of all tests was 0.05.

Appendix

Proof of Proposition 1

Asymptotic distributions of Γ̂ and γ̂

From Equations (1)–(3), we have the reduced form outcome model Y = η + (γθ0 + α)′(Λ′Z) + ε,
where η = ω + θ′0ψ, and ε = U + θ′0V , so that E[ε|Λ′Z] = 0 and var(ε|Λ′Z) = σ2

ε .

Let Γ̂ = v̂ar(Λ′Z)−1ĉov(Λ′Z, Y ) be the estimated coefficient of a multivariable linear regression of Y
on Λ′Z with a constant term included. Note that E[Γ̂] = γθ0,

√
nY
(
ĉov(Λ′Z, Y )− cov(Λ′Z, Y )

) D→
N(0L×1, var(Λ

′Z)σ2
ε +var(Λ′Z)ILκ

2var(Λ′Z)′) by a central limit theorem (CLT), and v̂ar(Λ′Z)
P→

var(Λ′Z) by the weak law of large numbers (WLLN).
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Hence, by Cramer’s theorem,
√
nY (Γ̂−γθ0)

D→ N(0L×1, ILκ
2 +ΣΓ) where ΣΓ = var(Λ′Z)−1σ2

ε , and
σ2
ε = var(Y )− cov(Λ′Z, Y )′var(Λ′Z)−1cov(Λ′Z, Y ).

For each risk factor k = 1, . . . , K, let γ̂k = v̂ar(Λ′Z)−1ĉov(Λ′Z,Xk) be the estimated coefficients
of a multivariable regression of Xk on Λ′Z with a constant term included. By similar arguments
to the above, we have

√
nX(γ̂k − γk) = var(Λ′Z)−1√nX ĉov(Λ′Z, Vk) + oP (1). Therefore, by a CLT

and the Cramer-Wold device,
√
nX(vec(γ̂) − vec(γ))

D→ N
(
0LK×1,Σγ

)
, where Σγ is a LK × LK

variance–covariance matrix.

Under homoscedastic errors, Σγ has the following block structure

Σγ =



Σγ,11
(L×L)

Σγ,12
(L×L)

. . Σγ,1K
(L×L)

Σγ,21
(L×L)

Σγ,22
(L×L)

.

. . .

. . .

Σγ,K1
(L×L)

. . . Σγ,KK
(L×L)


,

where Σγ,k1k2 =
(
var(Λ′Z)−1

(
cov(Xk, Xm)− cov(Λ′Z,Xk)

′var(Λ′Z)−1cov(Λ′Z,Xm)
))

for any risk
factors k1 and k2.

Constructing (Γ̂, Σ̂Γ) and (γ̂, Σ̂γ) from two-sample summary data

We follow the strategy of Wang and Kang (2022).6 First, we need to calculate principal components
of ĉov(Z). For each variant m, we have (nY σ

2
Ym

+ β̂2
Ym

)−1 = v̂ar(Y )−1v̂ar(Zm). Let AY be the
M ×M matrix with its (m1,m2)-th element given by ρm1m2(nY σ

2
Ym1

+ β̂2
Ym1

)−
1
2 (nY σ

2
Ym2

+ β̂2
Ym2

)−
1
2 ,

so that AY = v̂ar(Y )−1v̂ar(Z). Let Λ be the M × L matrix with its columns given by first L
principal components of AY .

Let bYm = (nY σ
2
Ym

+β̂2
Ym

)−1β̂Ym = v̂ar(Y )−1ĉov(Zm, Y ), so that bY = (bY1 , . . . , bYp)′ = ĉov(Z, Y )v̂ar(Y )−1.
Then, Σ̂Γ =

(
Λ′AY Λ

)−1[
1 −

(
Λ′bY

)′(
Λ′AY Λ

)−1(
Λ′bY

)] P→ ΣΓ by WLLN. Also, note that Γ̂ =(
Λ′AY Λ

)−1
Λ′bY .

We can use a similar strategy for the risk factor model. For each variant m and risk factor k, note
that (nXσ

2
Xkm

+ β̂2
Xkm

)−1 = v̂ar(Xk)
−1v̂ar(Zm). For each risk factor k, let AXk

be the M ×M

matrix with its (m1,m2)-th element given by ρm1m2(nXσ
2
Xkm1

+ β̂2
Xkm1

)−
1
2 (nXσ

2
Xkm2

+ β̂2
Xkm2

)−
1
2 , so

that AXk
= v̂ar(Xk)

−1v̂ar(Z).

Let bXkm
= (nXσ

2
Xkm

+ β̂2
Xkm

)−1β̂Xkm
= v̂ar(Xk)

−1ĉov(Zm, Xk), so that bXk
= (bXk1

, . . . , bXkM
)′ =
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ĉov(Z,Xm)v̂ar(Xm)−1. Then,

Σ̂γ,k1k2 =
((

ΛAXk1
Λ
) 1

2
(
ΛAXk2

Λ
) 1

2

)−1[
τk1k2 −

(
Λ′bXk1

)((
ΛAXk1

Λ
) 1

2
(
ΛAXk2

Λ
) 1

2

)−1(
Λ′bXk2

)]
P→ Σγ,k1k2 ,

where the second line follows by WLLN. Finally, γ̂k =
(
ΛAXk

Λ
)−1

Λ′bXk
, and γ̂ = (γ̂1, . . . , γ̂K).

Proof of Proposition 2

We derive the asymptotic distribution of the statistic T̂ = Fk|−k(L − K + 1) under the null
hypothesis H0k : γk − γ−kδ0 = 0 for some unique δ0 ∈ RK−1. Let m̂k(δ) = γ̂k − γ̂−kδ, Ω̂k(δ) =

h(δ)Σ̂γ,kh(δ)′, and Ωk = h(δ0)Σγ,kh(δ0)′. Then, under standard GMM arguments, the estimate
δ̂ = arg min m̂k(δ)

′Ω̂k(δ)
−1m̂k(δ) satisfies the first order expansion

√
nX(δ̂ − δ0) = −(M ′

−kΩ
−1
k M−k)

−1M ′
−kΩ

−1
k

√
nXm̂k(δ0) + oP (1),

where M−k = −γ−k. Then, note that
√
nX(m̂k(δ̂) − m̂k(δ0)) = M−k

√
nX(δ̂ − δ0) + oP (1). Hence,

for Rk = IL − Ω
− 1

2
k M−k

(
M ′
−kΩ

−1
k M−k)

−1M ′
−kΩ

− 1
2

k ,

Ω
− 1

2
k

√
nXm̂k(δ̂) = RkΩ

− 1
2

k

√
nXm̂k(δ0) + oP (1).

Now, since T̂ = nXm̂k(δ̂)
′Ω̂k(δ)

−1m̂k(δ̂), and T̂ −nXm̂k(δ̂)
′Ω−1

k m̂k(δ̂) = oP (1) by Proposition 1, we
have T̂ = U ′kRkUk+oP (1) where Uk = Ω

− 1
2

k

√
nXm̂k(δ0). Thus, T̂ D→ χ2

L−K+1 since Rk is idempotent
of rank L− (K − 1), and from Proposition 1, Uk ∼ N(0, IL) as nX →∞.

Proof of Proposition 3

The oracle GMM estimator which assumes knowledge of κ2 is given by θ̄ = arg minθ Q̂(θ, κ2), where
Q̂(θ, κ2) = ĝ(θ)′Ω̂(θ, κ2)−1ĝ(θ). Consistency of θ̄ for θ0 is given by standard GMM arguments; see,
for example, Theorem 3.1 of Newey and McFadden (1994).7 Moreover, by the first order condition,
we have ∇θQ̂(θ̄, κ2) = 0.

By the mean value theorem, there exists θ̇ ∈ RK on the line segment joining θ̄ and θ0 such
that ∇θQ̂(θ0, κ

2) +∇θθ′Q̂(θ̇, κ2)(θ̄ − θ0) = 0K×1. By standard GMM arguments, it can be shown
that nY∇θθ′Q̂(θ̇, κ2)

P→ −(γ′Ω−1γ)−1 , where Ω = ΣΓ + ILκ
2 + cϕ(θ0)Σγϕ(θ0)′, ϕ(θ0) = θ′0 ⊗ IL,

and
√
nY∇θQ̂(θ0, κ

2) = −γ′Ω−1√nY ĝ(θ0) + oP (1)
D→ N(0K×1, γ

′Ω−1γ). Therefore, by Cramer’s
theorem,

√
nY (θ̄ − θ0)

D→ N(0K×1, (γ
′Ω−1γ)−1).
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