Robust use of phenotypic heterogeneity at drug target genes for
mechanistic insights: application of cis-multivariable Mendelian
randomization to GLPIR gene region

SUPPLEMENTARY MATERIAL

The robust PC-GMM method

Linear model with dimension-reduced instruments

Let X = (Xi,..., Xk) denote a K-vector of risk factors, Y an outcome, and Z = (Z1,...,Zy)
an M-vector of genetic variants. Our focus is on a cis-gene analysis where genetic variants from
a single region are in highly structured correlation. Let A denote the M x L matrix where its
columns are the first L principal components (K < L < M) of a weighted sample correlation

matrix of genetic variants.! We consider the following linear IV model with homoscedastic errors

Y = w+0,X+d(NZ)+U (1)
X = v+7y(N2)+V (2)

where E[U|N'Z] = 0, E[V|N'Z] = 0, E[U?|NZ] = o}, E[VV'|NZ] = 2y, and (w,,7,60,) are
unknown parameters. We assume « is a mean-zero random effect that is uncorrelated with all
other variables. We are interested in estimation and inference on the K-vector of risk factor effects

on the outcome 6y, using only two-sample summary data that is often made publicly available.

For each variant m and risk factor k, we have access to estimates X, and standard errors o,
from univariable X, on Z,, linear regressions from an n x-sized sample, and from a non-overlapping
ny-sized sample, we observe measured associations (gym,aym) from univariable Y on Z,, linear
regressions. Both random samples are drawn from the joint distribution of (Y, X, Z). We assume
knowledge of an M x M genetic correlation (or linkage disequilibrium) matrix p, where its (my, ms)-
th element p,,,,, denotes the correlation between the m;-th and meo-th genetic variant. Finally,
we also assume knowledge of a K x K risk factor correlation matrix 7, where its (ky, k2)-th element

Tk k, denotes the correlation between Xj, and Xj,.

Substituting (2) into (1), we have Y = (w+0y¥)+(v0o+a) (N Z)+(U+60,V). Thus, Cov(N'Z,Y) =
Var(NZ)(v0y + «), which leads to a model

I' =0 + o, where a ~ N(Opx1, ILs*ny') (3)
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where I' is the L-vector of coefficients from a population multivariable regression of Y on A’Z, and
v is the L x K matrix such that its k-th column ~, is the L-vector of coefficients from a population
multivariable regression of X; on A’Z. The random effects o are mutually uncorrelated, and
assumed to be normally distributed scaled up to an unknown overdispersion variance parameter

K2,

Proposition 1 (Two-sample summary data associations). Using the two-sample univariable sum-

mary data described above, we can construct multivariable estimates (f, f]p) and (vec(7), f]v), such

that R
vy (I = ~6p) ] 2>N<[0L><1]
Vi (vee(d) — vec(y)) Orscsr |

EAJF — 3 L 0, and iv -, i 0, as (nx,ny) — 00.

Yr + I K2 OLXLK] )

Orkxr 2y

Conditional F-statistics

We require some additional notation to construct conditional F-statistics in our setting of dimension-
reduced genetic associations. Let f]%k denote the matrix iv that is rearranged such that the k-th
column is moved left to be the first column, and the k-th row is moved up to be the first row.
Let 7_j denote the L x (K — 1) matrix equal to 7 without the k-th column, let v_, denote the
L x (K — 1) matrix equal to v without the k-th column, and let h(d) = [I, — I; ® ¢'] denote
the L x LK matrix where 0 is a (K — 1)-vector of unknown parameters, and where ® denotes the

Kronecker product.

Then, for any risk factor k, we consider conditional F-statistics? given by

n . ~ ~ / S n—1/2 ~
Flk = L——;((‘I—l min{(Fx — 7-£0)'[(8) 2, 1h(8) ]~ (k — F-r0)}-

Proposition 2 (Conditional F-statistics). For any risk factor k, under the null hypothesis Hoy,
Ve — V-0 = 0 uniquely at some 6 = oo, Fy—p(L — K + 1) Y X%—K—i—l as nxy — 00.

Under the null hypothesis Hox : 7 — 7_x0 = 0 uniquely at some § = §y, Proposition 2 shows that
the statistic Fj_x(L — K + 1) should behave like a x7 _ ., random variable in large samples. This
allows us to perform a test of no phenotypic heterogeneity for any risk factor k, with a rejection

of the null hypothesis Hy, suggesting evidence for phenotypic heterogeneity.

Robust PC-GMM: 2-step estimation of 6, and x?

By Proposition 1, we have E [lq—;y\(%] = 0«1, so that there are L moment equations which describe

0y. To identify 0y, we require the usual rank condition that the column rank of ~ is at least K.



Let g(0) = r— ~6 denote an L-vector of estimating functions. Then, using Proposition 1, an
estimator of the variance of §(6p) is given by Q(f, k2) = n;l(ip + IK%) + n}lcp(éo)flygo(eo)’,
where (0) = @ @ I,. Thus, under knowledge of 2, we consider Q(6, k) = §(0)'Q(6, k2)~'G(0)
as the oracle continuously-updating GMM?>* criterion function based on the optimal weighting

matrix.

Proposition 3 (Oracle GMM estimation). Under regularity conditions, the oracle GMM estim-
ator § = arg miny @\(«9, k%) is consistent for 0y, and is asymptotically distributed \/my (0 — 0) A
N(Oxx1, ) where Xg = (7/Q7 )7L where Q = Sp + 1162 + cp(0)5,0(0) and ny'ny — ¢, as

(nx,ny) — oo.

Proposition 3 implies that the standard errors of # need to account for the extra uncertainty
due to the random direct effects, which is represented by the overdispersion variance parameter
k2. However, consistent estimation of 6 is still possible by ignoring the extra uncertainty. In
particular, 51 = argming @(9, 0) is a consistent GMM estimator of §. We can then use this

preliminary estimator 51 to pin down k2.

Noting that Q(0;, k2) 2 X2 _,, an estimator 72 of x? solves the estimating equation Q(f;,r?) —
(L — K) = 0. Then, the 2-step estimator of  is given by 0 = arg ming @(0,22). Finally, it is
straightforward to estimate the standard errors of 0 based on Proposition 3. For the k-th risk
factor, the estimated standard errors are given by the square root of the (k, k)-th element of the
matrix (YQ(8,72)~17) L.

Finally, for the unrobust version of the PC-GMM method, a test of overidentifying restrictions®
(henceforth, heterogeneity test) is a useful way to assess the coherency of evidence over all instru-
ments. Assuming that 6y is identified (so that there are at least K distinct valid instruments in the
vector A7), if one of the instruments is invalid, then g(6y) no longer has mean zero, and therefore
we would expect the GMM criterion @((90, 0) to deviate further away from 0. This is the intuition
behind the heterogeneity test.

More formally, by very similar arguments used in Proof of Proposition 2, it can be shown under
no overdispersion heterogeneity (k* = 0) that miny @(9, 0) A X7 _ - Therefore, we can compute
a heterogeneity test by comparing the statistic @((9\, 0) against a relevant critical value from the
X2_j distribution. Let ¢, denote the (1 — a)-th quantile of the x2_ distribution. If Q(8,0) > ca,

then we reject the null hypothesis of instrument coherency for an a-level test.



Further empirical results
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Supplementary Figure S1. The absolute values of the correlation matrix of 851 genetic variants in GLPIR.
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PC-GMM method | risk factor | estimate 95% CI p-value | # PCs | het. test | cond. F-stat.
BMI 0.769 0.126, 1.412 0.019 2.304
robust (99.9%) .
T2D 0.104 -0.068, 0.276 0.236 54 2.796
BMI 0.819 0.324, 1.313 0.001 -
unrobust (99.9%) <0.001
T2D 0.026 -0.102, 0.153 0.694 -
BMI 1.146 0.292, 2.000 0.009 3.516
robust (99%) -
T2D -0.012 -0.241, 0.217 0.917 o5 4.475
BMI 1.221 0.609, 1.833 | <0.001 -
unrobust (99%) <0.001
T2D -0.105 -0.260, 0.050 0.185 -
BMI 2.427 -0.053, 4.907 0.055 3.224
robust (95%) -
T2D -0.176 -0.613, 0.261 0.431 19 3.228
BMI 2.519 1.293, 3.745 | <0.001 -
unrobust (95%) 0.008
T2D -0.394 | -0.657, -0.130 | 0.003 -

Supplementary Table S1. PC-GMM results: Genetically-predicted multivariable BMI and T2D effects on CAD
risk. The percentages next to the PC-GMM method indicate the percentage of weighted genetic variation
explained in GLPIR by the number of principal components used.
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Supplementary Figure S3. Robust PCA-GMM estimates of genetically-predicted effects of BMI and T2D
liability on CAD risk when using different numbers of principal components.
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Further simulation results

Sensitivity to mis-specifying trait correlations

We consider the impact of mis-specifying the true trait correlations p in the same simulation design
discussed in the main text, with £ = 1 (phenotypic heterogeneity; all 3 risk factors have 5 distinct
causal variants) and k? = 0.5 (moderate overdispersion heterogeneity). Supplementary Figure S3
shows the impact on type I error (relating to 6, = 0) and power (relating to 6; = —1/3 and
03 =1 / 3) of specifying trait correlations p instead of p.
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Supplementary Figure S5. Type I error/power varying with mis-specification of trait correlations. The true
causal effect is (61,02,05)" = (—1/3,0,1/3)".

From Supplementary Figure S3, we find that the results were not sensitive to mis-specification
of trait correlations for large enough sample sizes. For small samples (nx = ny = 500), mis-
specification of trait correlations does appear to harm an already inflated type I error rate. In-
terestingly, the specified trait correlations also appear to impact the power properties: under-
estimating trait correlations (p < p) appeared to be less harmful in terms of power compared
with over-estimating the correlations. Although, more generally, the impact on power may depend
on several other model parameters, such as the direction of the true trait correlations p and the
direction of the causal effect 6 = (6,65, 65)".

Performance under weak instruments

To investigate the performance of the robust PC-GMM method under weak instruments, under

the same simulation design discussed in the main text, we set the sample size at n = 1000, and we



changed the causal variant effects on the risk factor:
5
X1 = Z Zn + Vi

X, = MgZZ + (1 =€) ZZ + Vs

m=11

X; = uZZm+v3,

m=11

where the errors (Vi, Vs, V3) were jointly normally distributed with mean zero such that var(Vj) =1
and cov(Vy,V)) = 0.3 for k,l # k € {1,2,3}. Here, pu represents the unconditional instrument
strength, and & represents phenotypic heterogeneity for risk factors 2 and 3. When £ = 0, the
variants effects on risk factors 2 and 3 are collinear, and when & = 1, all three risk factors have
distinct causal variants. As in the main text, we chose the number of principal components to

explain 99.9% of variation in a weighted genetic correlation matrix.

First, for the case of no overdispersion heterogeneity, we reproduce plots analogous to Figure 3 of
the main text, but now instead of varying the sample size, we vary the parameter . Supplementary

Figure 6 presents estimation and inference results for this case.

Supplementary Figure 6 highlights that the source of weak instrument bias has an important
impact on estimation and inference. Biased estimation can be expected if either u is close to 0
(unconditional instrument strength is low) or if £ is close to 0 (i.e. conditional instrument strength
is close to 0). In the case of this simulation exercise, there is a bias toward the null of no effect for
each non-zero risk factor effect (¢, and 603), and an upward bias for the null effect §5. This upward
bias for the null effect disppears when there is large enough phenotypic heteogeneity (¢ is close to

1) even for low values of unconditional instrument strength pu.



Weak instruments and phenotypic heterogeneity
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Supplementary Figure S6. Estimation bias and inference using robust PC-GMM under varying phenotypic
heterogeneity ¢, varying unconditional instrument strength p, and no overdispersion heterogeneity (k2 = 0). The

true parameter values were 6 = —1/3, 62 =0, and 63 = 1/3. The nominal size of all tests was 0.05.

For inference, a lack of conditional instrument strength appears to harm size performance more
than a lack of unconditional instrument strength. For example, for the case of = 0.2 and £ =1,
conditional F-statistics are just over 4, but the type I error rate (for risk factor 2) is exactly equal
to the nominal size 0.05. Overall, our simulation results would suggest that we could be less
concerned about the impact of weak instrument bias on inference if the conditional F-statistics are

not too low and close to unconditional F-statistics (suggesting a scenario where ¢ is close to 1).

Supplementary Figure 7 presents results for the case where £ = 1 (all risk factors have distinct
causal variants), and under overdispersion heterogeneity in genetic variant—outcome associations
(higher values of x? indicate greater overdispersion heterogeneity). The results further illustrate
that the type I error rate may be close to the nominal level if there is phenotypic heterogeneity

and as long as the unconditional instrument strength is not too low (x> 0.2).



Weak instruments and overdispersion heterogeneity
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Supplementary Figure S7. RMSE and type I error/power under phenotypic heterogeneity (¢ = 1), varying

overdispersion heterogeneity (0 < x? < 1), and varying unconditional instrument strength p. The nominal size of

all tests was 0.05. The true parameter values were 1 = —1/3, 05 = 0, §3 = 1/3. For each risk factor k, ék—robust

indicates the results using robust PC-GMM, and 6 indicates the results using unrobust PC-GMM (which

assumes x2 = 0).

Varying the number of principal components

Supplementary Figure 8 presents simulation results under the same design discussed in the main
text, and where we vary the number of principal components used to instrument the risk factors.
The sample size set at n = 1000, and the overdispersion heterogeneity parameter was set at
k? = 0.75. Here, we see that the optimal number of principal components to maximise conditional
F-statistics is not necessarily the best for inference. For example, when & = 1 the conditional
F-statistics for all risk factors are higher when using 20 principal components compared with using

30, but while the type I error rate is the same for risk factor 2 the power to detect the non-zero

effects for risk factors 2 and 3 is higher when using 30 principal components.
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Supplementary Figure S8. Estimation bias and inference using robust PC-GMM under varying phenotypic

heterogeneity £ and the number of principal components used as instruments. The overdispersion heterogeneity

parameter was set at k2 = 0.75, and the sample size was set at n = 1000. The true parameter values were
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Appendix

Proof of Proposition 1

Asymptotic distributions of [ and ~

From Equations (1)—(3), we have the reduced form outcome model Y = n + (v0y + «)'(A'Z) + ¢,

—1/3, 62 =0, and 63 = 1/3. The nominal size of all tests was 0.05.

where 1 = w + 04, and € = U 4 0}V, so that E[e|AN'Z] =0 and var(¢|N'Z) = o2.

Let T' = var(A'Z)*éov(A' Z,Y) be the estimated coefficient of a multivariable linear regression of Y
on A’Z with a constant term included. Note that E[T] = 6, vy (cov(NZ,Y) —cov(NZ,Y)) A
N(0px1,var(N 2)o +var(N Z) I s2var(A' Z)') by a central limit theorem (CLT), and var(A' Z) 5
var(N'Z) by the weak law of large numbers (WLLN).
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Hence, by Cramer’s theorem, \/W(f—’yc%) Y N(Opx1, I1x*+Yr) where X = var(A'Z) 10?2, and
o2 =var(Y) — cov(NZ,Y) var(NZ) tcov(N' Z,Y).

For each risk factor k = 1,..., K, let 3 = var(A'Z)*cov(A'Z, X},) be the estimated coefficients
of a multivariable regression of X, on A’Z with a constant term included. By similar arguments
to the above, we have \/nx (3 — vx) = var(AN'Z)~t/nxcov(N'Z, Vi) + op(1). Therefore, by a CLT
and the Cramer-Wold device, \/nx (vec(y) — vec(y)) 2 N(OLkx1,%,), where ¥, is a LK x LK

variance—covariance matrix.

Under homoscedastic errors, >, has the following block structure

Z')/,11 E’y,12 - Z'y,lK
(LxL) (LxL) (LxL)
27,21 2%22
(LxL) (LxL)
E,y = )
E'y,Kl . .o E'y,KK
| (LxL) (LxL) |

where ¥, ., = (var(A'Z) ™ (cov(Xy, Xim) — cov(N Z, Xi) var(AN' Z) "t cov(N'Z, X,,,))) for any risk

factors ki and ks.

Constructing (', Sr) and (7, iw) from two-sample summary data

We follow the strategy of Wang and Kang (2022).5 First, we need to calculate principal components
of cov(Z). For each variant m, we have (nyoy + B%m)*l = var(Y) 'var(Z,,). Let Ay be the
M x M matrix with its (m1, m2)-th element given by pym, (nyo, + B%ml )_%(nyaf/m2 - B\%mz) 2,
so that Ay = var(Y) 'war(Z). Let A be the M x L matrix with its columns given by first L

principal components of Ay.

Let by, = (nyo?. +52 ) By,, = var(Y) " éov(Zy,Y), so that by = (by,, ..., by,) = éov(Z, Y )var(Y) .
Then, Sp = (A'AyA) " [1 — (Nby) (M AyA) ™ (Mby)] 5 Sp by WLLN. Also, note that T' =
(NAyA) ™ Aby.

We can use a similar strategy for the risk factor model. For each variant m and risk factor k, note

that (nxo%,  + Bg(km)_l = var(Xy) 'war(Z,,). For each risk factor k, let Ay, be the M x M
matrix with its (m1,ms)-th element given by pu,m, (nx0%, + Bg(ml)*%(nxag%z + @(kmz)’%, S0

that Ax, = var(Xy) 'var(Z).

Let bx,, = (nxo%  + 8% ) "B, = 0ar(Xp) " @00(Zm, Xp), so that by, = (bx,,, .-, bx,) =
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cov(Z, X )var(X,,)~!. Then,

-1

St = ((My,0)F (0, 0)D) [ — (o) (A4x, A)F (A4, 0)F)  (WDx,,)]

P
— E%’ﬂkm

where the second line follows by WLLN. Finally, 5, = (AA XkA)_lA’ bx,, and ¥ = (Y1, ..., VK).

Proof of Proposition 2

We derive the asymptotic distribution of the statistic 7 = Fy-x(L — K + 1) under the null
hypothesis Hox : v — 710 = 0 for some unique § € REL. Let my(8) = J — F_19, Qk(é) =

h(0)X, xh(0), and Q) = h(dy)X, th(dp). Then, under standard GMM arguments, the estimate

§ = argmin s (8)/ Qe (8) 1y, (8) satisfies the first order expansion
\/TLX(ES\— 50) = —(M,_lele_k)_lM/_kQ;R/nxmk(éo) + OP(l),

where M_; = —v_;. Then, note that ,/nX(ﬁzk(g) — M(80)) = M_g/mix (6 — 0g) + op(1). Hence,
1 1
for R, = Iy, — 5—2]:2]\4,]C (M/_kglle,k)_lMl_ka 2,

Qf\/nxﬁlk(g\) = RkﬂlziwnX'fT\lk(éo) + Op(l).

Now, since 7' = nxﬁlk(g)’ﬁk(é)*lmk(g), and f—nxmk(g)/lelfka(g) = op(1) by Proposition 1, we
~ _1 ~

have T' = U, RyUy, +op(1) where Uy, = Q. 2 \/nxmy(dp). Thus, T' S X3 _ 41 Since Ry is idempotent

of rank L — (K — 1), and from Proposition 1, Uy, ~ N(0, 1) as nx — oc.

Proof of Proposition 3

The oracle GMM estimator which assumes knowledge of x? is given by = arg miny @(9, k%), where
Q(6, k%) = G(0)YQ(8, k2)~1§(8). Consistency of 8 for b, is given by standard GMM arguments; sce,
for example, Theorem 3.1 of Newey and McFadden (1994).” Moreover, by the first order condition,
we have V,Q (0, k2) = 0.

By the mean value theorem, there exists 6 € RX on the line segment joining 6 and 6, such
that V@@(907 k%) + Vggr@(é, k2)(0 — 0p) = Ox1. By standard GMM arguments, it can be shown
that ny VepQ(6, k2) = —(v/Q19)"! | where Q = Sp + Ip6% + cp(6)S,0(60), @(6y) = 0, @ I,
and /iy VoQ (0o, 52) = —v' Q0 \/nv§(0o) + op(1) B N(Ogx1,7Q'y). Therefore, by Cramer’s
theorem, \/ny (6 — 6,) A N(Ogx1, (YQ71y)71).
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