
Supplemental Experiments

1.1 Hypertrophic cardiomyopathy experiments

A dataset including some HCM cases was compiled. The motivation was that
since the pattern of scar will be different between ischaemic scar and patchy
scar, which is common with HCM cases, it may present differently in CTA.
This presented a difficulty as many of the cases we were able to obtain were
HCM cases since their chronic condition made them likely to receive multiple
scans. They also almost always had some positive scarring on the LGE scan
meaning removing them worsened the class imbalance.

With the HCM cases included the image processing pipeline produced 3467
valid slices from 90 cases, 42 with scar. There were 326 septal scar slices and
555 lateral scar slices.

The presence on HCM cases clearly impacted the results negatively and was
over-represented in incorrectly predicted slices when included. Table S1 shows
the results of the three networks when HCM cases were included. Figure S1
shows ROC curves for both septal and lateral scar classification tasks.

HCM cases were poorly predicted by the networks on cross-validation. The
presentation of scar in HCM is likely to be different than other patient popula-
tions due to the origin of scarring. It is a clear limitation of this approach and
likely due to the relatively small number of cases. Obtaining a large number
of HCM cases may make it possible to generalise to cases with this condition;
however, the common limitation between the two approaches presented here
indicates conditions such as HCM which present with abnormal anatomical
structures may benefit from a specific network for HCM cases. A similar ap-
proach has been used for quantifying LGE in HCM [1], where a HCM specific
dataset was acquired to perform contrasted region segmentation. Limiting their
approach to one source of scar presentation does limit the use cases for their
approach, but it also sets clear expectations for future performance.
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Figure S1: ROC curves for networks using full dataset (inclusive of HCM cases)
for lateral (top) and septal (bottom) scar classification
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1.2 Additional CT Dataset Synthesis Experiments

The main challenge in automated CTA scar detection is compiling a large la-
belled dataset. This is due to the need to obtain paired data in an modality
where the ground truth scar is more easily established. This is much less of an
issue in modalities such as MRI since late gadolinium enhancement is a com-
monly performed imaging method in the clinic, allowing delineation of scar by
a trained reader. In recent years there have been improvements in the use of
style-transfer techniques to improve the performance of a number of image anal-
ysis tasks [2]. Using techniques such as generative adversarial networks it may
be possible to generate synthetic CTA scans from MRI LGE images where no
CTA has been performed. These could be used to supplement training datasets
and possibly improve performance.

50 MRI cases from Guy’s and St Thomas’ NHS Foundation Trust (GSTT)
were collected for this experiment. These cases were separate to the main CTA
datasets from the main paper. Short axis (SA), 4 chamber cine and matching
LGE images were used. Semi-automatic segmentation was carried out on the
cine MRI to produce a left ventricle (LV) mesh, which was then registered to
the LGE images to perform the scar segmentation. This was done using the
same segmentation tool described in the main paper. The anatomical and scar
segmentations were used to derive labels for each short axis segmentation slice.
As in the main experiments, a threshold of 10% of the myocardium volume was
used to label septal and lateral regions containing as scar or non-scar. Cropping
was performed in the same manner as the main CTA datasets.

Ge et al. [3] previously published a method using a Cycle-GAN variant of
network architecture to perform MRI to CT synthesis. An unpaired method The
published network was used to convert the MRI slices to CT. Figure S2 shows
the pipeline for producing the synthetic CT slices for inclusion in the training
set. Manual quality control was required for all slices as converted slices could
be of poor visual quality, or in some cases the GAN failed to create an image
recognisable as a short axis slice. This method yielded an additional 495 short
axis slices for inclusion in training. 84 of these were classified as containing
septal scar and 88 with lateral wall scar.

Both the U-Scar and U-Scar-Lat networks from the main paper were re-
trained with the augmented dataset with performance compared against the
holdout test set. A hyperparameter optimisation was performed using the same
ranges as the main paper, rerunning all variations attempted for these network
topologies.

In all cases the networks failed to converge, resulting in chance levels of per-
formance for both lateral and septal scar classes. Examination of the synthetic
datasets found in many cases the structure of the myocardium, blood pool and
surrounding regions could be translated between modalities; however, the my-
ocardium tissue itself was not well translated between MRI and CT. The way
this tissue is visualised in both modalities differs greatly and style transfer does
not reproduce the expected appearance in CT. In contrast enhanced MRI the
myocardium presents with very low intensity values except in scar locations.
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Figure S2: Augmented dataset generation method. Short axis slices from MRI
were segmented using the Siemens Healthineers segmentation tool to generate
anatomical segmentation and scar quantification values. The Cycle-GAN from
Ge et al. was used to synthesise CT from the MRI input slice. These are then
mixed into the training set to create an augmented dataset.

In CT there can be higher intensity contrast visible in scar regions after late
enhancement [4] but in the case of clinically standard CT, the target modality
here, the indication of scar is from shape and texture of the myocardium. The
shape could be reproduced, but without the myocardium texture the models
failed to train with this additional augmented data.

Training a Cycle-GAN method from scratch may produce more realistic
results for cardiac anatomy but would require a large dataset of paired CT-MRI
cases and significant engineering to properly match slices. We would recommend
that this as a possible future method of augmenting datasets but our results
suggest this is not feasible using existing tools.
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