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Fig. S1. 
A: AARS1 cryptic exon inclusion percentage for various cell lines in which TDP-43 levels were 
reduced artificially; error bars show standard deviation. B: AARS1 cryptic exon inclusion for 
bulk RNA seq from various tissues and patients in the NYGC dataset.  
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Fig. S2. 
 
A: Schematic of the barcoded library of vectors containing different candidate CE sequences, 
each encoding the same amino acid sequence (in this case, a fragment of S. pyogenes Cas9) but 
with different codon optimization. B: Heatmap of % CE inclusion for library of Cas9-fragment-
encoding cryptic exons in SK-N-BE(2) cells with TDP-43 knockdown versus untreated cells 
(“NT” = “not treated”). Areas corresponding to “True cryptics” (i.e. those that are only expressed 
upon TDP-43 knockdown) and “High leaky expression” (i.e. those that are expressed regardless 
of TDP-43 knockdown) are highlighted. C: Heatmap of the SpliceAI combined score of the 
candidate CE acceptor and donor splice sites against the PSI of each CE in SK-N-BE(2) cells 
without TDP-43 knockdown (i.e. untreated cells); Spearman correlation shown (bottom). D: 
Heatmap of the SpliceAI combined score of the candidate CE acceptor and donor splice sites 
against the PSI of each CE in SK-N-BE(2) cells with TDP-43 knockdown; Spearman correlation 
shown. 
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Fig. S3. 
A: Diagrams of four endogenous CEs, highlighting the position of UG dinucleotides relative to 
the splice sites. B: Quantification of mScarlet fluorescence from SY-SY5Y cells transfected with 
mScarlet constructs 6-12; dots show average of each well; error bars show standard deviation 
within each well. C: A comparison of the fluorescence of the seven TDP-REGv2 mScarlet 
constructs in SY-SY5Y and SK-N-BE(2) cells, with TDP-43 knockdown; Pearson correlation is 
shown.  
 
  



 
 

16 
 

 
 

 
Fig. S4 
 
More optimized vector sequences are more likely to be spliced in the desired manner. A-B: % 
usage of the expected donor splice site for sequences with different optimization levels, as 
assessed by the SpliceNouveau algorithm, including or ignoring intron retention (IR) 
respectively. C: The fraction of productive transcripts (i.e. transcripts that are predicted to 
express mScarlet) with or without TDP-43 knockdown, separated by optimization level. D: % 
increase in productive transcripts upon TDP-43 knockdown; Spearman’s rho value, between 
optimization level and % increase, is indicated. E: Fitness scores for all fourteen vectors of each 
optimization level. 
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Fig S5: A: Comparison of the fluorescence of six TDP-REGv2 mScarlet constructs and a 
positive control transfected into SK-N-BE(2) cells with TDP-43 knockdown, when co-
transfected with a mutant TDP-43/Raver1 fusion protein (which is unable to rescue splicing) 
versus when co-transfected with a functional TDP-43/Raver1 fusion protein; error bars show 
90% confidence interval as determined by Monte-Carlo methods. B: Fluorescence microscopy of 
SK-N-BE(2) cells co-transfected with a plasmid encoding TDP-REGv2 mScarlet reporter #10 
and plasmids encoding the most potent predicted shRNAs against FUS, hnRNPA1, hnRNPC, 
hnRNPK or TDP-43, or an identical plasmid but without an shRNA sequence. C: Quantification 
of fluorescence from images in part B. 
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Fig S6: Percentage of productive transcripts, as determined by targeted Nanopore sequencing, 
from vectors encoding Cre-recombinase with 1, 2 or 3 cryptic exons without (NT) or with 
(shTDP) TDP-43 knockdown. 
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Fig. S7. 

A: Fluorescence microscopy of spinal cord sections from TDP-43 cKO or control mice (left and 
right respectively) injected with a TDP-REGv2 mScarlet AAV (construct #7). Magnifications of 
two representative motor neurons are shown below; locations are shown in the full images by 
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white boxes. Blue = DAPI, Yellow = TDP-43, White = VaChT, Red = mScarlet). B: 
Representative fluorescence microscopy image of a spinal cord section from a control mouse 
injected with a positive control mScarlet AAV (i.e. without TDP-REG); coloring is the same as 
Part A. C: Fluorescence microscopy images of green (top) and red (bottom) fluorescence in cells 
co-transfected with the vectors encoding TDP-REGv2:mScarlet #7 the proteins indicated above 
plus an mGreenLantern-encoding transfection control; 6 replicates per condition were used.  
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Fig. S8. 
A: Nanopore sequencing of seven Luciferase constructs (one positive control, one TDP-REGv1, 
and five TDP-REGv2) with or without TDP-43 knockdown; error bars show standard deviation 
across replicates. B: Quantification of RT-PCRs detecting the internal cryptic exons present in 
TDP-REGv2 TDP-43/Raver1 constructs. In contrast with the data shown in Figure 4, in this 
figure the cells were stably expressing the vectors, and the TDP-43/Raver1 fusion protein was 
functional (i.e. without the 2FL mutation); error bars show standard deviation. C: Quantification 
of remaining STMN2 levels in three polyclonal SK-N-BE(2) lines of each construct 
(Constitutive TDP-43/Raver1, TDP-REGv2:TDP-43/Raver1 #6 and #9, and mScarlet) with 
doxycycline-induced TDP-43 knockdown; each value is normalized per-lane to tubulin, then 
normalized per-line to the untreated control. 
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Fig. S9: A: Three replicates of RT-PCRs against the UNC13A CE for i3 cortical neurons, 
featuring Halo-tagged endogenous TDP-43 (thus enabling PROTAC-mediated degradation), 
with stably-integrated piggyBac vectors encoding either mScarlet or TDP-43/Raver1 (TDP-
REGv2 TDP/Raver1 vectors #6 and #9); replicates are from separate wells. B: Quantification of 
UNC13A fluorescence in synapses formed by the piggyBac lines described in Part A. UNC13A 
staining is significantly lower for mScarlet lines than TDP-43/Raver1 #6 and #9 lines in all three 
replicates. Left: raw values from individual replicates (* = padj < 0.05; Dunn’s test); Right: mean 
values from each replicate, bar graphs show mean of the three mean values (*  = padj < 0.05, 
ratio t-test with Benjamini-Hochberg correction) C: Example fluorescence microscopy images 
used for the quantification in Part B, stained with antibodies against Synapsin (purple) or 
UNC13A (green). 
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Fig. S10. 
A: A schematic showing the experimental procedure for the growth competition assay. B: 
Quantification of Nanopore reads derived from each of the four constructs used to make stable 
piggyBac lines for each doxycycline concentration and each replicate. (Note that differences in 
% at 0 ng/ml doxycycline can be explained by PCR bias during Nanopore library preparation and 
unequal initial mixtures of the different lines; comparisons are only valid between doxycycline 
concentrations within the same replicate.) C: A second visualization of the same Nanopore data, 
where values for each construct are compared with their equivalent value when no doxycycline 
was added, for clarity.  
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Table S1. 
Antibodies used in western blotting and microscopy experiments. 
 

Target Brand 
Product 
code Lot Use 

Anti-Mouse IgG1 
(HRP) Abcam  ab97240 

GR3365481-
1 Western blotting 

Anti-Rabbit IgG 
H&L (HRP) Abcam  ab6721 

GR3242092-
4 Western blotting 

FLAG Sigma F3165 035K6196 Western blotting 

α-Tubulin Sigma T5168 038M4813V Western blotting 

TDP-43 Proteintech 10782-2-AP 103682 
Western blotting; immunofluorescence of 
neuroblastoma lines 

Rabbit IgG (Alexa 
Fluor 647) Abcam ab150079 

GR3444080-
1 

Immunofluorescence of neuroblastoma 
lines 

TDP-43 Biolegend 808301 B305604 Immunostaining of tissue 

RFP Rockland 
600-401-
379 46317 Immunostaining of tissue 

VAChT 
Synaptic 
Systems 139105 4-26 Immunostaining of tissue 

Rabbit IgG  
Life Tech. 
Thermo A-21207 2563838 Immunostaining of tissue 

Rat IgG Invitrogen A21208 206333 Immunostaining of tissue 

Guinea pig IgG Invitrogen A21450 2446026 Immunostaining of tissue 
STMN2 polyclonal 
antibody Proteintech 10586-1-AP 65379 Western blotting 

Munc13-1 
Synaptic 
Systems 126-104 1-7 Staining of synapses 

Synapsin 
Synaptic 
Systems 106-011 1-51 Staining of synapses 

 

Table S2. 
Details of animal experiments 
 
 
See attached material  
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Table S3. 
Primers used for RT-PCRs 
 
 
Name Sequence Purpose 

AARS1 forward ACTTACTTTGGCGGGGATGA 
RT-PCR of endogenous cryptic 
splicing 

AARS1 reverse AGGTTCCAGATCTCCAGCAC 
RT-PCR of endogenous cryptic 
splicing 

UNC13A forward GTTCAAGAGGGAATCTGACG 
RT-PCR of endogenous cryptic 
splicing 

UNC13A reverse GGGCACATATACTTGGAGGAG 
RT-PCR of endogenous cryptic 
splicing 

STMN2 forward GCTCTCTCCGCTGCTGTAG 
RT-PCR of endogenous cryptic 
splicing 

STMN2 cryptic reverse CTGTCTCTCTCTCTCGCACA 
RT-PCR of endogenous cryptic 
splicing 

STMN2 downstream 
reverse CGAGGTTCCGGGTAAAAGCA 

RT-PCR of endogenous cryptic 
splicing 

check_tdp_splice_R_v2 ATTGCTGATGTGTACAGAGATGC 

Analysing splicing of vectors 
encoding TDP-43/Raver1 fusion 
protein RT-PCR; amplifying TDP-
43/Raver1 constructs in growth 
competition assay;  

check_tdp_splice_F GATTTGTCAGGTTCACTGAGTATGAG 

Analysing splicing of vectors 
encoding TDP-43/Raver1 fusion 
protein RT-PCR; amplifying TDP-
43/Raver1 constructs in growth 
competition assay 

nRV_growthC_BFP_F 
GGAGATCGATTCGGATG 
tcttcaagcagtccttccctg 

Amplifying BFP construct in growth 
competition assay 

nRV_growthC_BFP_R 
GCCTTCCACTAGATTCC 
ACCCACTACCattaagcttgtgc 

Amplifying BFP construct in growth 
competition assay 

Cas9_splice_F cgatctgctgaaaattatcaaggacaag 
Check splicing of PE-Max vector via 
RT-PCR 

Cas9_splice_R tccaccaccttcactgtctg 
Check splicing of PE-Max vector via 
RT-PCR 

 
 
Table S4 
 
See attached material 
 


