Supporting Information

Metal-Ion Modulated Structural Transformation of Amyloid-Like Dipeptide Supramolecular Self-Assembly

Wei Ji, ^{†,‡} Chengqian Yuan, ^{§,‡} Shai Zilberzwige-Tal, [†] Ruirui Xing, [§] Priyadarshi Chakraborty, [†] Kai Tao, [†] Sharon Gilead, [†] Xuehai Yan, ^{§,*} and Ehud Gazit ^{†,#,*}

[†]Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life

Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.

E-mail: ehudg@post.tau.ac.il

[§]State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese

Academy of Sciences, 100190, Beijing, China.

E-mail: yanxh@ipe.ac.cn

[#]Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of

Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.

[‡]These authors contributed equally to this work

*These authors are corresponding author

Table of Contents

Figure	S1	S3
Figure	S2-S3	S4
Figure	S4-S5	S5
Figure	S6	S6
Figure	S7	S7
Figure	S8	S8
Figure	S9	S9
Figure	S10	S10
Figure	S11	S11
Figure	S12	S12
Figure	S13	S13

Materials: All the solvents and chemicals are commercially available. Chemicals were used without further purification. Water was processed using a Millipore purification system (Darmstadt, Germany) with a minimum resistivity of 18.2 M Ω cm. Sodium chloride, potassium chloride, zinc chloride, copper (II) chloride, iron (III) chloride, and aluminum chloride were purchased from Sigma, and ultrapure water was obtained from Biological Industries. Fmoc-modified diphenylalanine (FmocFF) was purchased from Bachem at a purity level of >98%.

NMR: ¹H and ¹³C NMR spectra were recorded in deuterated solvent on a Bruker Advance 400 MHz spectrometer. The ¹H NMR chemical shifts (δ) are given in ppm, referring to internal standard tetramethylsilane (TMS). All coupling constants (*J*) are given in Hz. FmocFF: ¹H NMR (400 MHz, DMSO-d₆) δ: 12.67 (s, 1H), 8.20 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 4.0 Hz, 2H), 7.48-7.57 (m, 3H), 7.31-7.34 (m, 2H), 7.08-7.21 (m, 12H), 4.38-4.43 (m, 1H), 4.17-4.23 (m, 1H), 4.01-4.08 (m, 3H), 2.99-3.03 (dd, J_I = 4.0 Hz, J_I = 12.0 Hz, 1H), 2.85-2.92 (m, 1H), 2.60-2.69 (m, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ: 173.0, 171.9, 156.0, 144.1, 144.0, 140.9, 138.4, 137.6, 129.5, 129.4, 128.5, 128.3, 127.9, 127.3, 126.7, 126.5, 125.7, 125.6, 120.4, 66.7, 65.9, 56.28, 53.79, 46.88, 37.3, 37.0, 23.1. MS (ESI) calcd for C₃₃H₃₀N₂O₅ [M+H]⁺, 535.2; found, 535.6.

Figure S1. Time lapse images of FmocFF/Na⁺ and FmocFF/K⁺ at various molar ratios (2:1, 1:1, 1:2) in 2% DMSO in H₂O (v/v).

Figure S2. Time lapse images of FmocFF/Zn²⁺ and FmocFF/Cu²⁺ at various molar ratios (2:1, 1:1, 1:2) in 2% DMSO in H₂O (v/v). The FmocFF/Zn²⁺ (1:2) can form gel but not for FmocFF/Cu²⁺ (1:2), which may be ascribed to the good binding ability of Zn²⁺ with water molecules.¹ In addition, the size of FmocFF/Zn²⁺ compact fibrils are smaller that benefit the hydrogelation.

Figure S3. Time lapse images of FmocFF/Fe³⁺ and FmocFF/Al³⁺ at various molar ratios (3:1, 1:1, 1:3) in 2% DMSO in H₂O (v/v).

Figure S4. Turbidity measured at 405 nm over time for FmocFF and FmocFF/metal ions solutions in 2% DMSO in $H_2O(v/v)$.

Figure S5. (a) Rheological measurements of strain sweep of the FmocFF hydrogel at a constant frequency of 1 Hz. (b) Rheological measurements of dynamic frequency sweep of the FmocFF hydrogel at a strain of 0.1% over a range of $0.1-100 \text{ rads}^{-1}$.

Figure S6. Rheological strain sweep measurements of different metallohydrogels at a constant frequency of 1 Hz.

Figure S7. Rheological dynamic frequency sweep measurements of different metallohydrogels at a strain of 0.1% over a range of $0.1-100 \text{ rads}^{-1}$.

Figure S8. (a-c, g-i) TEM images and (d-f, j-l) average size distribution histogram of (a, d) FmocFF/Na⁺ (2:1), (b, e) FmocFF/Na⁺ (1:1), (c, f) FmocFF/Na⁺ (1:2), (g, j) FmocFF/K⁺ (2:1), (h, k) FmocFF/K⁺ (1:1), and (i, l) FmocFF/K⁺ (1:2) in 2% DMSO in H₂O (v/v) at a concentration of 2 mg/mL. Scale bar is 100 nm.

Figure S9. (a-c, g-i) TEM images and (d-f, j-l) average size distribution histogram of (a, d) FmocFF/Zn^{2+} (2:1), (b, e) FmocFF/Zn^{2+} (1:1), (c, f) FmocFF/Zn^{2+} (1:2), (g, j) FmocFF/Cu^{2+} (2:1), (h, k) FmocFF/Cu^{2+} (1:1), and (i, l) FmocFF/Cu^{2+} (1:2) in 2% DMSO in H₂O (v/v) at a concentration of 2 mg/mL. Scale bar is 100 nm.

Figure S10. (a-c, g-i) TEM images and (d-f, j-l) average size distribution histogram of (a, d) FmocFF/Fe^{3+} (3:1), (b, e) FmocFF/Fe^{3+} (1:1), (c, f) FmocFF/Fe^{3+} (1:3), (g, j) FmocFF/Al^{3+} (3:1), (h, k) FmocFF/Al^{3+} (1:1), and (i, l) FmocFF/Al^{3+} (1:3) in 2% DMSO H₂O (v/v) at a concentration of 2 mg/mL. Scale bar is 200 nm.

Figure S11. AFM images (top) and height distribution (bottom) of (a) FmocFF/Na⁺ (2:1), (b) FmocFF/Na⁺ (1:2), (c) FmocFF/K⁺ (2:1), (d) FmocFF/K⁺ (1:1), (e) FmocFF/K⁺ (1:2), (f) FmocFF/Zn²⁺ (2:1), (g) FmocFF/Zn²⁺ (1:2), (h) FmocFF/Cu²⁺ (2:1), (i) FmocFF/Cu²⁺ (1:1), (j) FmocFF/Cu²⁺ (1:2), (k) FmocFF/Fe³⁺ (3:1), (l) FmocFF/Fe³⁺ (1:3), (m) FmocFF/Al³⁺ (3:1), (n) FmocFF/Al³⁺ (1:1), and (0) FmocFF/Al³⁺ (1:3) in 2% DMSO in H₂O (v/v) at a concentration of 2 mg/mL. Scale bar is 500 nm.

Figure S12. (a-d, i-l, q-s) CD spectra and e-h, m-p, t-v) high-resolution TEM images of FmocFF with different metal ions in 2% DMSO in H₂O (v/v) at a concentration of 2 mg/mL. (a, e) FmocFF/Na⁺ (1:1), (b, f) FmocFF/Na⁺ (1:2), (c, g) FmocFF/K⁺ (1:1), (d, h) FmocFF/K⁺ (1:2), (i, m) FmocFF/Cu²⁺ (2:1), (j, n) FmocFF/Cu²⁺ (1:1), (k, o) FmocFF/Cu²⁺ (1:2), (l, p) FmocFF/Fe³⁺ (1:1), (q, t) FmocFF/Fe³⁺ (1:3), (r, u) FmocFF/Al³⁺ (1:1), and (s, v) FmocFF/Al³⁺ (1:3). Scale bar is 50 nm.

Figure S13 The electrostatic interactions between positively charged metallogel fibrils and negatively charged plasmid DNA.

Figure S14 (a) TEM image of plasmid DNA. (b-c) TEM images of DNA binding to the (b) FmocFF and (c) FmocFF/Zn^{2+} 1:1 hydrogels after addition of DNA for 0.5 hour. Scale bar is 200 nm.

Reference

1. Hartmann, M.; Clark, Timothy.; Eldik, R. Hydration and Water Exchange of Zinc(II) Ions. Application of Density Functional Theory. J. Am. Chem. Soc. **1997**, 119, 7843-7850.