Supplementary Information

DEAD-box ATPases are global regulators of phase-separated organelles

Authors:

Maria Hondele¹, Ruchika Sachdev¹, Stephanie Heinrich¹, Juan Wang², Pascal Vallotton¹, Beatriz M.A. Fontoura², Karsten Weis¹

Affilitations:

¹ Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland.

² Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
75390, USA.

Correspondence:

karsten.weis@bc.biol.ethz.ch

Supplementary Table 1: Yeast strains used in this study

KWY 1973	MAT a ade2-1 can1-100 GAL phi+ his3-11,15 ura3-1 leu2-3, 112 trp1-1 dhh1::DHH1-HisMX6 GFP dcp2::DCP2-mCherry-NatMX6
KWY7681	MAT a ade2-1 can1-100 GAL phi+ his3-11,15 ura3-1 leu2-3, 112 trp1-1 dhh1::DHH1 Δ NΔ C HisMX6 yEGFP dcp2::DCP2-mCherry-NatMX6
KWY7906	Nup60-3xmKate2::CaURA3 HIS::pGPD1-LexA-B112(pNH604) Chromosome2(CHS3-SCO2 intergenic region)::p(LexA(4)-pCYC1min)_3xGST- V5_24xPP7sl_Tcyc1_NatNT2 LEU2::pMET25-PP7CP-yEGFP Sub2-V5- IAA7::KAN
KWY7910	Nup60-3xmKate2::CaURA3 HIS::pGPD1-LexA-B112(pNH604) Chromosome2(CHS3-SCO2 intergenic region)::p(LexA(4)-pCYC1min)_3xGST- V5_24xPP7sI_Tcyc1_NatNT2 LEU2::pMET25-PP7CP-yEGFP Sub2-V5- IAA7::KAN
KWY7913	Nup60-3xmKate2::CaURA3 HIS::pGPD1-LexA-B112(pNH604) Chromosome2(CHS3-SCO2 intergenic region)::p(LexA(4)-pCYC1min)_3xGST- V5_24xPP7sl_Tcyc1_NatNT2 LEU2::pMET25-PP7CP-yEGFP Sub2-V5- IAA7::KAN TRP1::pGPD-osTIR-hphNT1
KWY7914	Nup60-3xmKate2::CaURA3 HIS::pGPD1-LexA-B112(pNH604) Chromosome2(CHS3-SCO2 intergenic region)::p(LexA(4)-pCYC1min)_3xGST- V5_24xPP7sl_Tcyc1_NatNT2 LEU2::pMET25-PP7CP-yEGFP Sub2-V5- IAA7::KAN TRP1::pGPD-osTIR-hphNT1
KWY8254	his3_1 leu2_0 met15_0 ura3_0 FBA1::24 X PP7 loops DED1-yEGFP-Y66L- IAA7-KAN TRP1::YIPlac-Gal4BD-ER_BD-VP16-hphNT1 Chrll- HR1_pGal1_Ded1-mCherry_cyc1T_NATNT2_ChrlI-HR2
KWY8255	his3_1 leu2_0 met15_0 ura3_0 FBA1::24 X PP7 loops DED1-yEGFP-Y66L- IAA7-KAN pNH603-pGPD1-osTIR::HIS TRP1::YIPlac-Gal4BD-ER_BD-VP16- hphNT1 Chrll-HR1 pGal1 Ded1-mCherry cyc1T NATNT2 Chrll-HR2
KWY8256	his3_1 leu2_0 met15_0 ura3_0 FBA1::24 X PP7 loops DED1-yEGFP-Y66L- IAA7-KAN TRP1::YIPlac-Gal4BD-ER_BD-VP16-hphNT1 Chrll- HR1_pGal1_Ded1-DQAD-mCherry_cyc1T_NATNT2_Chrll-HR2
KWY8257	his3_1 leu2_0 met15_0 ura3_0 FBA1::24 X PP7 loops DED1-yEGFP-Y66L- IAA7-KAN pNH603-pGPD1-osTIR::HIS TRP1::YIPlac-Gal4BD-ER_BD-VP16- hphNT1 ChrlI-HR1_pGal1_Ded1-DQAD-mCherry_cyc1T_NATNT2_ChrlI-HR2
KWY8275	MAT a ade2-1 can1-100 GAL phi+ his3-11,15 ura3-1 leu2-3, 112 trp1-1 ded1::DED1-yEGFP-HisMX6
KWY8278	MAT a ade2-1 can1-100 GAL phi+ his3-11,15 ura3-1 leu2-3, 112 trp1-1 dhh1:: dqad ded1::DED1-yEGFP-HisMX6
KWY8281	MAT a ade2-1 can1-100 GAL phi+ his3-11,15 ura3-1 leu2-3, 112 trp1-1 dhh1∆::KanMX6 ded1::DED1-yEGFP-HisMX6
KWY8283	MAT a ade2-1 can1-100 GAL phi+ his3-11,15 ura3-1 leu2-3, 112 trp1-1 pab1::PAB1-yEGFP-HisMX6
KWY8286	MAT a ade2-1 can1-100 GAL phi+ his3-11,15 ura3-1 leu2-3, 112 trp1-1 dhh1:: dqad pab1::PAB1-yEGFP-HisMX6
KWy8289	MAT a ade2-1 can1-100 GAL phi+ his3-11,15 ura3-1 leu2-3, 112 trp1-1 dhh1∆::KanMX6 pab1::PAB1-yEGFP-HisMX6

Supplementary Table 2: Plasmids used in this study

pKW891	in vitro transcription, CY5-labeled 1329nt RNA	pAS575
pKW967	bacterial expression, GFP	pET-GFP
pKW2613	bacterial expression, eIF4G	pSV272-eIF4G(572-952)
pKW2922	bacterial expression, GFP	pET_2xGFP-6xHis
pKW3469	bacterial expression, Not1-MIF4G	pETMCN_His-TEV_V5-Not1-MIF4G (754–1000)
pkw3570	plasmid for endogenous tagging	pFA6a-yEGFP-HIS3MX
pKW3631	bacterial expression, Dhh1 FL	pETMCN_His-TEV_V5-Dhh1-mCherry
pKW3640	bacterial expression, Dhh1-GFP	pETMCN_His-TEV_V5-Dhh1-GFP(A206K)
pKW3714	bacterial expression, Dbp5-mCherry	pETMCN_His-TEV_V5-Dbp5-mCherry
pKW4063	bacterial expression, Dhh1 core	pETMCN_His-TEV_V5-Dhh1[48-425]-mCh
pKW4080	bacterial expression, Sub2-mCherry	pETMCN_His-TEV_V5-Sub2-mCherry
pKW4084	bacterial expression, Ded1-mCherry	pETMCN_His-TEV_V5-Ded1-mCherry
pKW4085	bacterial expression, eIF4A-mCherry	pETMCN_His-TEV_V5-eIF4A-mCherry
pKW4289	bacterial expression, Dbp1-mCherry	pETMCN_His-TEV_V5-Dbp1-mCherry
pKW4293	bacterial expression, Dbp2-mCherry	pETMCN_His-TEV_V5-Dbp2-mCherry
pKW4360	bacterial expression, DbpA_mCherry	pETMCN_His-TEV_V5-DbpA_mCherry
pKW4361	bacterial expression, RhlB-mCherry	pETMCN_His-TEV_V5-RhlB-mCherry
pKW4379	bacterial expression, DeaD-mCherry	pETMCN_His-TEV_V5-DeaD-mCherry
pKW4380	bacterial expression, SrmB-mCherry	pETMCN_His-TEV_V5-SrmB-mCherry
pKW4382	bacterial expression, RhlE-mCherry	pETMCN_His-TEV_V5-RhlE-mCherry
pKW4383	bacterial expression, Ded1DQAD-mCherry	pETMCN_His-TEV_V5-Ded1 ^{DQAD} -mCh
pKW4406	bacterial expression, Ded1-GFP	pETMCN_His-TEV_V5-Ded1- yEGFP(A206K)
pkw4519	bacterial expression, DDX6-mCherry	pETMCN_HisMBP_V5-DDX6-mCherry
pKW4557	bacterial expression, DDX3X-mCherry	pETMCN_His-TEV_V5-DDX3X-mCherry

Supplementary Table 3: Oligonucleotides used in this study

CH3566	Fw, Ded1 GFP tagging	AGCGATTCCAAGTCTTCTGGCTGGGGGTAACAGCGGT GGTTCAAACAACTCTTCTTGGTGG CGGATCCCCGGGTTAATTAA
CH3567	Rev, Ded1 GFP tagging	AGAAAATATAAGACATGCTAGAGCAGAAAACGAAGA ATCCTCACCCTAGTTTGTCTGAAA GAATTCGAGCTCGTTTAAAC
CH3568	Fw, Pab1 GFP tagging	GAAGCTTCTGCTGCCTATGAGTCTTTCAAAAAGGAGC AAGAACAACAAACTGAGCAAGCT CGGATCCCCGGGTTAATTAA
Ch3569	Rev, Pab1 GFP tagging	AAGGGAGAAAAAAAAAGATGATAAGTTTGTTGAGTAG GGAAGTAGGTGATTACATAGAGCA GAATTCGAGCTCGTTTAAAC

Supplementary Table 4: setup conditions for *in vitro* droplet assays

	storage buffer	droplet setup conditions	final concentration
Dhh1 FL pKW3631	MH200G	5.25 μl 50 μM Dhh1-mCherry 15.75 μl LSB-150 1 μl CKM 1 μl 10 mg/ml BSA 1 μl Hepes pH 6.4 0.25 μl 10 mg/ml polyU	10.5 μΜ
Dhh1 core pKW4063	MH200G	5.25 μl 50 μM Dhh1-core-mCherry 15.75 μl LSB-150 1 μl CKM 1 μl 10 mg/ml BSA 1 μl Hepes pH 6.4 0.25 μl 10 mg/ml polyU	10.5 μΜ
Ded1-mCherry pKW4084	MH20G	2.5ul 50uM Ded1-mCherry in MH200G 13ul LSB-50 1ul CK mix 2ul Hepes pH 6.8 1ul 10mg/ml BSA 1.5ul polyU 1mg/ml	6.25 μM
Dbp1-mCherry pKW4289	MH200G	3 μl 50uM Dbp1-mCherry in MH200G 14 μl LSB-50 1 μl CKM 2 μl Hepes pH 6.4 1 μl 10mg/ml BSA 1 μl 1mg/ml polyU	7.5 μM
Dbp2-mCherry pKW4293	MH300G	 2.5 μl 50 μM mCherry-Dbp2 in MH200G 11.5 μl MH200G 1 μl 1M phosphate pH 6.0 1 μl CKM 2 μl Hepes pH 6.0 1 μl 10mg/ml BSA 1 μl 1mg/ml polyU 	6.25 μM
eIF4A-mCherry pKW4085	MH200G	2 μl eIF4A-mCherry at 500 μM 9 μl LSB-150 2 μl CKM 1 μl BSA 10mg/ml 1 μl Hepes pH 6.6 3 μl 1x ATPase buffer 2 μl 1 mg/ml polyU	50 μΜ
Sub2-mCherry pKW4080	MH200G	2 μl Sub2-mCherry at 500 μM 9 μl LSB-150 2 μl CKM 1 μl BSA 10mg/ml 1 μl Hepes pH 6.6 3 μl 1x ATPase buffer 2 μl 1mg/ml polyU	50 μM
Dbp5-mCherry pKW3714	MH200G	2 μl Dbp5-mCherry at 500 μM 9 μl LSB-150 2 μl CKM 1 μl BSA 10mg/ml 1 μl Hepes pH 6.6 3 μl 1x ATPase buffer 2 μl 1mg/ml polyU	50 μΜ
DDX6-mCherry pKW4519	MH200G	2.5 μl DDX6-mCherry at 50 μM 14.5 μl LSB-50 2 μl CKM 1 μl BSA 10mg/ml 1 μl Hepes pH 6.4 3 μl 2 mg/ml polyU	6.4 μM

	storage buffer	droplet setup conditions	final concentration
DDX3X-mCherry pKW4557	MH300G	3 μl DDX3X-mCherry at 50 μM 14 μl LSB-50 2 μl CKM 1 μl BSA 10mg/ml 1 μl Hepes pH 6.8 2 μl 2 mg/ml polyU	7.5 μΜ
DbpA-mCherry pKW4360	MH200G	3 μl DbpA-mCherry at 50 μM 16 μl LSB-100 2 μl CKM 1 μl BSA 10 mg/ml 1 μl 1M Hepes pH 6.4 2 μl 2 mg/ml polyU	6 μΜ
RhlB-mCherry pKW4361	MH200G	3 μl RhlB-mCherry at 50 μM 16 μl LSB-100 2 μl CKM 1 μl BSA 10 mg/ml 1 μl 1M Hepes pH 6.4 2 μl 2 mg/ml polyU	6 μΜ
DeaD-mCherry pKW4379	MH200G	3 μl DeaD-mCherry at 50 μM 17.5 μl LSB-100 1 μl CKM 1 μl BSA 10mg/ml 1 μl Hepes pH 6.4 1.5 μl 2 mg/ml polyU	6 μΜ
SrmB-mCherry pKW4380	MH200G	3 μl SrmB-mCherry at 50 μM 18.5 μl LSB-50 1 μl CKM 1 μl BSA 10mg/ml 1.5 μl 2 mg/ml polyU	6 μΜ
RhlE-mCherry pKW4382	MH200G	2 μl RhlE-mCherry at 50 μM 18.5 μl LSB-100 1 μl CKM 1 μl BSA 10mg/ml 1 μl Hepes 1M pH 6.8 1.5 μl 2 mg/ml polyU	4 μΜ

Supplementary Table 5: setup conditions for *in vitro* Dhh1 phase diagram reactions

	droplet setup conditions
pH titration	 13.4 μl LSB-100 2.1 μl 0.5M KCl (final KCl concentration 100mM) 1 μl CKM mix 1.25 μl 100mM ATP/MgCl2 (final concentration 5mM) 1 μl 10 mg/ml BSA, 2 μl 1M Hepes of the respective pH 1.25 μl 1mg/ml polyU (final concentration 0.05 mg/ml) 3 μl mix of MH200G and Dhh1 stock to the final concentration as indicated
ATP titration	 13.4 μl LSB-100 2.1 μl 0.5M KCl (final KCl concentration 100mM) 1 μl CKM mix 1.5 μl mix of ATP/MgCl2 (250mM stock) and H2O to the final concentration as indicated 1 μl 10 mg/ml BSA 2 μl 1M Hepes of the respective pH 1.25 μl 1mg/ml polyU (final concentration 0.05 mg/ml) 3 μl mix of MH200G and Dhh1 stock to the final concentration as indicated
salt titration	 12.5 μl LSB-100 3 μl mix of 0.5M KCl / water to the final KCl concentration as indicated 1 μl CKM mix 1.25 μl 100mM ATP/MgCl2 (final concentration 5 mM) 1 μl 10 mg/ml BSA, 2 μl 1M Hepes of the respective pH 1.25 μl 1mg/ml polyU (final concentration 0.05 mg/ml) 3 μl mix of MH200G and Dhh1 stock to the final concentration as indicated
pU titration	 13.4 μl LSB-100 2.1 μl 0.5M KCl (final KCl concentration 100 mM) 1 μl CKM mix 1.25 μl 100mM ATP/MgCl2 (final concentration 5 mM) 1 μl 10 mg/ml BSA, 2 μl 1M Hepes of the respective pH 1.25 μl mix of water / 10mg/ml polyU to the final concentration as indicated 3 μl mix of MH200G and Dhh1 stock to the final concentration as indicated

Supplementary Figure 1

