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S5 Other 33

S1 Clinical data set

Here we present the clinical data set used to inform our mathematical model. An overview of
the available data for each patient is shown in table S1 and additional images and information
are displayed below.
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Patient ID 1 2 3 4

Number of
histopathology images

2 2 2 2

DCE-MRI week 0 3 3 3 3

DW-MRI week 1 3 - 3 3

week12 - 3 3 3

PAM50 subtype Luminal B Basal HER2 Basal
Proliferation score 0.5055 2.3730 2.1349 2.2035
VEGF expression 0.1834 0.6449 2.32 1.38
TP53 expression 0.1475 0.8504 -0.78 -0.02
TP53 Status wild-type wild-type wild-type mutated
HIF-α pathway score week 0 0.7620846 0.8311913 1 0.8913964

week 12 0.6298112 - 0.8981043 0.1990078

Table S1: Clinical data overview.

S1.1 Inclusion criteria

Patients with HER2-negative mammary carcinomas with size ≥ 2.5 cm previously untreated
for breast cancer were eligible. Other key inclusion criteria were WHO performance sta-
tus ≤ 2, adequate hematologic and biochemical parameters, no sign of metastatic disease and
normal organ function in general. Before surgery, the patients were treated with chemother-
apy before surgery (FEC100, 4 courses during 12 weeks, thereafter taxane treatment - doc-
etaxel or paclitaxel -, and randomized 1:1 to receive bevacizumab, 15 mg/kg every third week
given concurrently with chemotherapy, or 10 mg/kg every other week with weekly paclitaxel
administration.
Patients were recruited at two sites in Norway (Oslo University Hospital, Oslo and St. Olav’s
Hospital, Trondheim), between 2008 and 2012. Written informed consent was obtained from
all patients prior to inclusion. The study was approved by the Institutional Protocol Review
Board, the regional ethics committee, the Norwegian Medicines Agency, and carried out in
accordance with the Declaration of Helsinki, International Conference on Harmony/Good
Clinical practice. The study is registered in the http://www.ClinicalTrials.gov/ database
with the identifier NCT00773695.

S1.2 Histopathology

The histopathological analysis was performed on needle biopsies taken from the breast tumors
at week 0. The tissue was fixed in formalin, embedded in paraffin and hematoxylin-eosin-
stained (H&E) sections were prepared. For each patient, two images of the histopathological
slides, biopsy A and B, at 20x magnification were used, see figs. S1 and S4. The physical
size of a pixel in the digital images (0.148 µm) was calculated using nano-beads with 4 µm
diameters at the same resolution as the histological images.
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Figure S1: Biopsy A and B of patient 1
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Figure S2: Biopsy images A and B of patient 2
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Figure S3: Biopsy images A and B of patient 3
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Figure S4: Biopsy images A and B of patient 4

S1.3 Magnetic Resonance Imaging

In addition to morphological MR images (sagittal T1-weighted, axial T2-weighted), the imag-
ing protocol included a radial 3D T1-weighted spoiled gradient dynamic contrast-enhanced
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(DCE-MRI) with k-space weighted image contrast [27] and diffusion weighted (DW-MRI)
using five different b-values (0, 50, 100, 250 and 800 s/mm2) [26]. For DCE-MRI, Gadovist
(Bayer, Pharma, Germany, 0.08 mmol/kg body weight) was administered intravenously with
a power injector followed by a 20 mL saline flush. Forty consecutive image series includ-
ing eight precontrast series, were acquired with a time resolution of 13 seconds [27]. Image
analysis was performed using nICE (Nordic NeuroLab, Bergen, Norway). For DCE-MRI
analysis, an extended Tofts model was used, which included the determination of the contrast-
enhancement curve of the contrast agent in each individual voxel (volume 1 mm × 1 mm ×
1.5 mm). For this purpose pre-contrast relaxation times T10 of blood from reference [9] and
breast tissues from reference [38] were used. As shown in [27], for a time resolution of 13
seconds, the relative error of parameter ktrans is within 10 % of normal values. However, for
parameter vp a resolution of 8 seconds is required and the obtained values could be over-
estimated [8]. DWI data were analyzed using a simplified IVIM model-based analysis as
described in [3]. Below we show MRI data for each patient in a section of the breast where
the tumor is visible. In fig. S9we also show the apparent diffusion coefficient (ADC) within
segmented tumor region estimated from DW-MR data.

pre-contrast ktrans vp

bmax ADC ffast

Figure S5: MR images of patient 1 at week 0
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pre-contrast ktrans vp

bmax ADC ffast

Figure S6: MR images of patient 2 at week 0

pre-contrast ktrans vp

bmax ADC ffast

Figure S7: MR images of patient 3 at week 0
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pre-contrast ktrans vp

bmax ADC ffast

Figure S8: MR images of patient 3 at week 0
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(d) Patient 4

Figure S9: Apparent Diffusion Coefficient (ADC) of all four patients at different time points.

S1.4 Molecular data

Here we show molecular data of the four patients. The density of all 143 patients at screening
in the NeoAva cohort is also shown for comparison. In fig. S10d, four patients were compared
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against 50 tumor-free control.
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Figure S10: Molecular data used from the study

S2 Multi-scale mathematical model

This section describes in full detail the multi-scale pharmacokinetic and pharmacodynamic
model used in this study. We model the response of a cross section of tumor tissue to a com-
bination of chemotherapeutic and anti-angiogenic agents using a hybrid cellular automaton
[1, 32]. Thus, a tumor section is represented by a finite regular square lattice L, consisting of a
set of nodes labeled by their positions x ∈ L,x = (i∆x, j∆x), i = 0, .., n− 1, j = 0, ...,m− 1,
being ∆x the distance between nearest nodes. Biological cells and cross-sectional cuts of
functional tumor vessels are modeled as individual agents occupying a single lattice node.
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Microenvironmental factors in the tissue section, such as oxygen are modeled as continuous
variables over domain D = [0, (n− 1)∆x]× [0, (m− 1)∆x] ⊂ R2. Intracellular and intravas-
cular processes are modeled as continuous variables associated to each cell and blood vessel,
respectively. To account for cell and blood vessel dynamics and the molecular factors that
control them we build five interlinked model modules: cellular, subcellular, extracellular,
vascular and intravascular modules. Figure S11 shows a diagram with the main components
of each module and the interactions between them. A detailed description of each module is
provided below.

Blood vesselsVascular
module

VEGF
inhibitor

Chemotherapy
Intravascular
module

VEGFOxygen
VEGF

inhibitor
Chemotherapy

Extracellular
module

Stroma cell Cancer cell
Cellular
module

TP53 VEGF
Cell

Cycle
TP53 VEGFSubcellular

module

Figure S11: Modular structure of the hybrid cellular automaton model for vascular tumor
growth and combination therapy. The main components of each module are displayed. Di-
rection of arrows indicate influence between different components.

S2.1 Cellular module

The presence of cancer and stroma cells on the lattice sites at time t, is given by a function
L that takes three possible values: L(x, t) = 0 (if the site x is empty), L(x, t) = 1, (if x is
occupied by a cancer cell) or L(x, t) = 2 (if x is occupied by a stroma cell). To account for
physical space restrictions in the tissue, at most one cell can occupy one site of the grid. We
assume that cancer cells can divide or die, while stroma cells cannot do either. This is based
on cancer cells proliferate much more than normal cells and that the employed anthracycline
drugs can only kill proliferating cells [39]. We could introduce a birth and death dynamics
also for stroma cells, however, in the current version of the model, this is simplified to a static
situation as several parameters related to this process need to be specified. Cell migration
and cell movements due to mechanical deformations are also neglected.
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S2.1.1 Cancer cells

Cancer cell division is controlled by an internal cell cycle clock described in the subcellular
module below. When a cell has passed the checkpoint G1/S and it is committed to divide,
it can be killed by the FEC chemotherapeutic agents [39]. We model the probability for a
cell to be killed by FEC at a certain dose with a beta distribution Beta(α, β). For α = 1,
this distribution approximates FEC dose-response data obtained from in vitro cultures of
breast cancer cells derived from 140 chemotherapy-näıve patients at the time of primary
surgery [15]. That means the concentration of each FEC agent, expressed as percentage of
peak plasma concentration (% PPC), at the cell location, and parameter β determine the
probability of cell killing given by value of the Beta(1, β) distribution function at a given
%PPC. If the cell dies, it is removed from the computational grid. If chemotherapy does not
kill the proliferating cell, a daughter cell is placed at an empty neighbor location with the
highest oxygen concentration. If, however, no free space is available in the neighborhood, the
cell cycle of the parent cell is reset to zero and no daughter cell is produced. In this way we
represent physical space constraints.

S2.1.2 Stroma cells

As stroma cells in our cellular automaton do not proliferate or die, their role in the model is
restricted to space and oxygen competition with cancer cells and production of VEGF under
hypoxia. We also neglect other roles that stroma cells have in influencing treatment outcome,
such as possible hindrance or cooperation with tumor cells.

S2.2 Vascular module

We assume that blood vessels are perpendicular to the tumor section and for simplicity we
consider they all have the same size. The presence of cross-sectional cuts of functional tumor
vessels in the lattice at time t is given by function G, with G(x, t) = 1 representing the
presence of a functional vessel, and G(x, t) = 0 otherwise. Vessel dynamics is modeled by a
birth-death process, with the probability of creating and removing vessels depending on the
spatial distribution of extracellular VEGF. Specifically, we assume that a functional vessel can
be created with certain probability if the amount of VEGF is within a specified range. If the
amount of VEGF is too high, endothelial cells can be highly proliferative and migratory [36]
thus making the vessel non-functional, i.e, rendering them incapable of transferring oxygen
and other nutrients [29]. If VEGF is too low, vessels can disappear as a result of pruning [10].
Thus, in every time interval [t, t+ ∆v], we define the probability of creating and removing a
vessel at x ∈ G as:

P (G(x, t+ ∆v) = 1 | G(x, t) = 0) = pbirth if LowV < V (x, t) < HighV

P (G(x, t+ ∆v) = 0 | G(x, t) = 1) = pdeath if V (x, t) < LowV or V (x, t) > HighV
(S1)

where LowV and HighV are the lower and upper thresholds of the VEGF range where vessels
are viable, and V (x, t) denotes the extracellular concentration of VEGF at location x at
time t. The dynamic of V (x, t) is described in section S2.4.2 below. If a vessel at location x
and time t is functional, it will continue to be so whenever LowV < V (x, t) < HighV . Note
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that the probabilities pbirth and pdeath model the influence of vessel creation and removal
depending on the VEGF concentration. For instance, if pdeath is low, vessels could remain
even if VEGF is outside the viable range.

S2.3 Subcellular module

In this module we consider two subcellular processes that are the target of chemotherapeutic
and anti-angiogenic drugs and are therefore key to describe their action on the tumor section,
namely the cell cycle and TP53-VEGF signaling. Following [1, 28], we model them using a
system of three ordinary differential equations associated to each living cell.

S2.3.1 Cell-cycle

To consider the cell-cycle in each cancer cell, we use a simple phase model proposed in [28].
It describes the speed of the progress through the cell cycle as a function of the oxygen
concentration at the cell location using the ordinary differential equation:

dφx
dt

=
K(x, t)

Tmin(Kφ +K(x, t))
. (S2)

where φx(t) ∈ R+ represents an internal state of the cell in location x ∈ L at time t. We
assume that the cell cycle starts at φ = 0 and when φ ≥ 1, the cell has passed the check
point G1/S and it is committed to divide. If the cell is not killed by the chemotherapy and
succeeds to divide, the state is reset to zero. K(x, t) is the oxygen concentration at time t
in the position x ∈ L where the cell is located. Parameter Tmin is the minimum period of
the cell cycle (in oxygen rich conditions) and Kφ is the oxygen concentration at which the
speed is half-maximal. To account for stochastic variability in cell cycle length, at each cell
division the Tmin of the daughter cell is drawn from a normal distribution N (Tmin, 1).

S2.3.2 TP53-VEGF signaling

Following references [1, 28], we assume that hypoxia upregulates the intracellular levels
of TP53 and VEGF. More precisely, we assume that the background production rates of
TP53 and VEGF are constant and that their decay rates are modulated by the local level
of extracellular oxygen following Michaelis-Mente kinetics. Moreover, while in wild-type
TP53 cells, TP53 inhibits VEGF production, in cancer cells with mutated TP53, TP53 in-
creases VEGF production [33]. The dynamics of TP53 and VEGF, denoted by [TP53]x =
[TP53]x(t) and [sVEGF]x = [sVEGF]x(t),x ∈ L respectively, are then coupled to one-
another, and to the extracellular oxygen concentration, as described by the following system
of differential equations:

d[TP53]x
dt

= k7 − k
′
7

K(x, t)

KTP53 +K(x, t)
[TP53]x, (S3)

d[sVEGF]x
dt

= k8 − k
′
8

K(x, t)

KVEGF +K(x, t)
[sVEGF]x + k

′′
8

[TP53]x[sVEGF]x
J5 + [sVEGF]x

, (S4)
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where k7 is the basal rate of TP53 synthesis, k
′
7 is the maximal degradation rate of TP53 by

oxygen and KTP53 is the oxygen concentration at which the rate is half-maximal. Parameter
k8 is a basal rate of VEGF production and k

′
8 is the maximal rate of VEGF inhibitory pro-

duction by oxygen, accounting for stimulation of VEGF expression by hypoxia. Parameter
KVEGF is the oxygen concentration at which the rate is half-maximal. Parameter k

′′
8 repre-

sents the maximal rate effect in VEGF production by TP53, which is assumed to be negative
in wild-type TP53 cells, and positive for mutated TP53. Parameter J5 is the intracellular
VEGF concentration when intracellular VEGF production is half maximal.

S2.4 Extracellular module

The extracellular module accounts for the dynamics of diffusible molecules of interest, namely
oxygen, VEGF and the drugs used in the clinical study. We model their spatio-temporal
concentrations using reaction-diffusion equations and solve them over the whole domain D
by imposing no-flux boundary conditions along the edges of the domain.

S2.4.1 Oxygen concentration

We model oxygen diffusion in the tumor tissue, oxygen supply by blood vessels and oxygen
consumption by cells as follows. Find oxygen concentration K = K(x, t) satisfying:

sK
∂K

dt
−Dk∇2K = rk(K0 −K)G(x, t)− φkK

K1 +K
δ(x, t), (S5)

where SK ∈ {0, 1}, and

δ(x, t) =

{
0 if L(x, t) = 0 (no cell)
1 if L(x, t) = 1, 2 (cell present),

Dk is the diffusion coefficient of oxygen in the tumor tissue, rk is the supply rate of oxygen by
blood vessels, also called surface-permeability product. We call K0 the oxygen concentration
inside the tumor vasculature assumed to be constant. Oxygen consumption is modeled in
eq. (S5) by a Michaelis-Mente term that accounts for an almost constant consumption rate
for high oxygen concentration, followed by a rapid decrease as the oxygen concentration
decreases [5]. Parameter φk is the maximal consumption rate in oxygen rich conditions, and
K1 is the oxygen concentration for which oxygen consumption is half maximal.

S2.4.2 VEGF concentration

We model VEGF diffusion in the tumor tissue, production by cells, binding and unbinding to
the VEGF-inhibitor and decay as follows. Find VEGF concentration V = V (x, t) satisfying:

sV ·
∂V

dt
−Dv∇2V = rv([sVEGF]x)δ(x, t) + kdC − kaAeV − ψvV, (S6)

where Dv is the diffusion coefficient, the function rv represents VEGF secretion rate by
cells which we assume to be a linear function of the VEGF expression in each cell, i.e.,
rv([sVEGF]x) = a[sVEGF]x + b. Parameters kd and ka are the dissociation and association
rates to the VEGF-inhibitor and ψv is the decay rate.
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S2.4.3 VEGF-inhibitor concentration

The VEGF-inhibitor bevacizumab reversibly binds VEGF and prevents the interaction of
VEGF to its receptors (Flt-1 and KDR) on the surface of endothelial cells. We model dif-
fusion, supply by blood vessels, binding and unbinding to VEGF, as follows. Find VEGF-
inhibitor concentration A = A(x, t) satisfying:

sA ·
∂A

dt
−DA∇2A = rA(A1(t)−A)G(x, t) + kdC − kaAV, (S7)

where DA is the diffusion coefficient, rA is the supply rate by blood vessels (or permeability
surface product) and ψA is the decay rate in the tumor tissue. The time evolution of the
VEGF-inhibitor concentration in plasma, A1, is described in the intravascular module below.
Parameters kd and ka were introduced above.

S2.4.4 VEGF/VEGF-inhibitor complex concentration

We model diffusion in the tumor tissue, binding, unbinding and decay as follows. Find
VEGF/VEGF inhibitor complex C = C(x, t) satisfying:

sC ·
∂C

dt
−DC∇2C = kaAV − kdC − ψCC, (S8)

where DC is the diffusion coefficient and ψC is the decay rate in the tumor tissue. Parameters
kd and ka were introduced above.

S2.4.5 Chemotherapy concentrations

For each chemotherapeutic drug j = 1, 2, 3, we model diffusion in the tumor tissue, supply and
clearance by blood and vessels as follows. Find chemotherapy concentration Gj = Gj(x, t)
satisfying:

∂Gj

dt
−DGj∇2Gj = rGj (G

j
1(t)−G

j)G(x, t)− ψGjGj (S9)

where DGj is the diffusion coefficient, rGj is the supply rate by vessels (or permeability surface
product) and ψGj represents a removal rate that accounts for drug uptake and decay.

S2.5 Intravascular module

The time evolution of the VEGF-inhibitor concentration in plasma, A1, is described by the
following two-compartment pharmacokinetic model [21]:

dA1(t)

dt
= − q

v1
A1(t)−

cl

v1
A1(t) +

q

v2
A2(t)

dA2(t)

dt
= − q

v2
A2(t) +

q

v1
A1(t), (S10)

where A1 and A2 are the concentrations of the VEGF-inhibitor in plasma and peripheral
compartments, whose volumes are v1 and v2, respectively. Parameters q and cl are the
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inter-compartmental and plasma elimination clearance, respectively. We model each VEGF-
inhibitor administration of dose Di at time ti, i = 1, ...,# doses, by adding an instantaneous
bolus of Di

v1
to the plasma concentration at the corresponding time point.

Following reference [34], we model the plasma concentration of each drug j = 1, 2, 3, Gj1, by
a specific pharmacokinetic model for that drug. We use a mono-compartmental model with
non-linear elimination for drug j=1 (Fluororacil):

dG1
1(t)

dt
=

−vmax
Km +G1

1(t)
G1

1(t), (S11)

where vmax and Km are the maximal degradation rate and the concentration at which degra-
dation is half maximal. We use a three compartment model for drug j=2 (Epirubicin):

dG2
1(t)

dt
= − q2

w1
G2

2(t)−
q3
w1
G2

3(t)−
cl2
w1
G2

1(t) +
q3
w3
G2

3(t) +
q2
w2
G2

2(t)

dG2
2(t)

dt
= − q2

w2
G2

2(t) +
q2
w1
G2

1(t)

dG2
3(t)

dt
= − q3

w3
G2

3(t) +
q3
w1
G2

1(t) (S12)

(S13)

where G2
1, G

2
2 and G2

3 are the drug concentrations in plasma and the two other compart-
ments with corresponding volumes, v1, v2 and v3. Parameters q2, q3 and cl2 are the inter-
compartmental and elimination clearances, respectively. We use a mono-compartmental
model with linear elimination for 4-hydroxycyclophosphamide, the major active microsomal
metabolite of drug j=3 (Cyclophosphamide):

dG3(t)

dt
= −cl3

u
G3(t), (S14)

where cl3 and u are elimination clearance and compartment volume, respectively.

S3 Model initialization and parameterization

S3.1 A quantitative portrait of the individual tumor

Here we explain which data are used and how, to describe relevant quantitative aspects of
the individual tumor. Available clinical data at week 0 included histopathological slides
and molecular data from core-needle biopsies, as well as MRI of the whole breast. We
used these data to initialize and parameterize the mathematical model for each patient.
Specifically, cancer and stroma cells were identified and located in representative portions of
the histopathological slides and used to determine the initial position of cells and their initial
number, see section S3.2 and fig. S12 below. As functional blood vessels were not identifiable
in the histopathological slides, we initialized them using DCE-MRI data as explained in
section S3.3 below. In this way we were able to mimic observed molecular transport and
perfusion in the tumor tissue without having precise initial location of vessels in the simulated
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portion of tissue. DCE-MRI and molecular data at week 0 were also used to estimate model
parameters specific to the patient tumor. In particular, vessel permeability was estimated
in each tumor voxel as explained in section S3.5.1 below. Typical permeability values over
all voxels of each individual patient were then used in the simulations. The VEGF-TP53
signaling model was calibrated to agree with the observed gene expression data and TP53
mutation status, see section S3.5.1 below for details. As explained in the same section, we
also estimated an average proliferative capacity of tumor cells in each tumor using the PAM50
classification [31, 35], together with measured volumes of xenografts of the same type. PDS of
HIF1A pathway was used to validate qualitatively the simulated hypoxic status of each patient
at week 0. Each individual tumor was portrayed as described above and listed in table S1 and
table S2 below. However, several other parameters, needed to quantify the model dynamics
were not directly estimable from the current data at week zero. Therefore, we obtained
them from publicly available data whenever possible. Those parameters include biophysical
parameters (for example diffusion coefficients and reaction rates), data obtained from other
breast cancer patients different than those of the NeoAva study (i.e., drug pharmacokinetics)
and volume growth of breast cancer xenografts in mice. For a complete explanation of model
parameterization using patients and public data, see section S3.5 below. Finally there were
some parameters which were difficult to estimate, because clinical data related to them were
not available, nor did we find relevant quantities in the literature. One example of such
parameter is the chemosensitivity level. Those response rates, however, were measured in
cell cultures after six days [15], and could not be directly applied to our model where the
probability of cell killing affects only cells that have passed the G1/S checkpoint at 30 minutes
intervals.

To circumvent this problem, we modeled the dose response curve by a cumulative beta
distribution Beta(α, β) (with α fixed to be 1) that resembles the curve obtained experimen-
tally in reference [15]. We then assumed that 30 minute response rates for each patient can
be achieved for a certain unknown value of the parameter β. In addition to β, three other
parameters, namely pdeath, pbirth and HighV related to vessel creation and deletion, were also
calibrated. See section S3.5.3 for detailed description.

S3.2 Cell initialization

To initialize the number and positions of cells, we map cancer and stroma cells identified in
the histopathological sections to a 2D computational lattice, where the model is simulated.
Given the physical size of a pixel in the histological images (0.148 µm), we calculate the
physical size of a captured imaged to be approximately 230 µm × 310 µm. The number of
grid points in each direction of the computational grid is determined by dividing the length
of each side by typical size of a cancer cell. Cancer cells vary in sizes, ranging from 10 µm
to 20 µm in diameter. We chose 10 µm to ensure similar cell density between captured and
projected image. Having determined the size of the grid, the coordinate of each cell identified
by pathologists is then divided by the pixel size and rounded to its nearest integer. After
rounding, should multiple cells occupy the same coordinates in the simulation grid, they are
put in the nearest neighborhood to the grid point so that the cell number matches with the
one found in the biopsy slide. Figure S12 shows how the obtained cell positions resemble cell
configurations in a histopathological section. This procedure was done for each patient in
two different biopsy images that we call Biopsy A and Biopsy B. The results are also shown
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in fig. S12 together with vessel initialization that is explained below.

S3.3 Vessel initialization

The exact position and permeability of each functional blood vessel in the tumor tissue is
unknown. However, as DCE-MRI data describe the perfusion of a contrast agent (CA) in
each tumor voxel, they can be used to find vessel configurations and permeabilities that
reproduce the observed tumor perfusion. For that, we use a reaction-diffusion equation to
model the spatio-temporal distribution of CA, Ce(x, t), in the extracellular space:

dCe(x, t)

dt
= Dc∇2Ce(x, t) + PS(Cp(t)−Ce(x, t)) · G(x, t) (S15)

where Dc is the diffusion coefficient of the CA, PS is the permeability surface product of the
CA in the vessels and the function Cp(t) describes the time evolution of the CA concentration
inside the vessels. While parameter Dc is known and the function Cp(t) (also called arterial
input function) can be measured in each patient, PS and the vessels location at the start
of the therapy, G(x, 0), are unknown. Thus, our goal is to find vessel configurations and
permeabilities that reproduce the observed perfusion in the tumor area. To do that, we
make a number of assumptions. Firstly, we use ktrans, which we estimated in each tumor
voxel using an extended Tofts model (see Materials and Methods), as an approximation of
PS [19]. Secondly, we assume all capillaries to be 10 µm in diameter and perpendicular to
the simulated cross-section, as in our multi-scale model of therapy response (section S2).
An estimate of the number of vessels can thus be computed as nv = vp/v0, the ratio of
volume occupied by plasma vp (also measured in each tumor voxel), and that occupied by
one vessel v1. Finally we characterize the spatial distribution of vessels by the minimum
distance between any neighboring vessels, dsep. The procedure for vessel initialization in each
personalized therapy simulation is then as follows. First, from the histograms of all ktrans and
vp related to each voxel, we choose one value. We compute the number of vessels as explained
above and assume all have the same permeability PS. We use ktrans as an approximation
to PS, scaled by 20π µm, to account for capillary surface which is a discrete point in our
computational grid. Then we test different distributions of nv vessels in the computational
grid using different values of dsep. Numerical simulations of eq. (S15) using those different
vessel distributions, produce different CA spatio-temporal distribution, Ce(x, t). Taking the
average in space for each time point we obtain Ce(t). The total tissue concentration is
estimated as:

C(t) = Ce(t) + vpCp (S16)

We select the vessel distribution such that the average of all experimental concentration
curves C(t) in all the voxels with the same value for vp and ktrans is most similar to the
patient data. See vessel initialization for the four patients in fig. S12.

S3.4 Initialization of continuous variables

Given initial distribution of cells and vessels as explained above, the oxygen eq. (S5) was ran
until steady state give initial concentration of 0 mmHg. The steady state solution of oxygen
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Figure S12: Cell and vessel initialization. The top panel shows an example of cell and vessel
initialization from a histopathological slide and histograms of ktrans and vp values obtained
from the MR images of the corresponding tumor. Black and blue dots represent cancer and
stroma cells, respectively. Those were mapped as described in the text. Red dots represent
a selected vessel configuration that mimics the observed perfusion data in that tumor for
the choice of ktrans and vp indicated in red in the nearby histograms. The top right image
shows the average of all CA concentration curves observed in all tumor voxels with the
corresponding value of ktrans and vp. The shaded region indicates 95% intervals of those
curves and the red dotted line is the simulated CA concentration for the selected vessel
configuration (as described in section S3.3) using the same values of ktrans and vp. The rest
of the figure shows 4 panels, each showing cell and vessel initializations for the 4 different
patients considered in this study.
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is then used as the initial state in the therapy simulation. The rest of spatial continuous
variables (VEGF, all drugs and the VEGF-VEGF inhibitor complex) are initialized with zero
concentration over the whole domain D. Given the initial oxygen concentration, intracellular
levels of VEGF and TP53 of a cell at position x (if any), were initialized by running solvers
of (eqs. (S3) and (S4)) until steady state and use those values to initialize [sVEGF]x and
[TP53]x in each cell. Initial cell cycles are set to be uniformly distributed between 0 and 1.
Plasma concentration of each drug is initialized as d/V where d is the adjusted dose assuming
height of 160cm and weight of 58.1kg, and V is the estimated plasma compartment volume.
(See table S2)

S3.5 Model parameterization and calibration

In this section we discuss the set of parameter values used in the simulations. Several param-
eters were directly obtained from personal patient’s data (see table S2 and section S3.5.1).
Other model parameters were taken from published data wherever possible or estimated to
approximate physiologic conditions based on appropriate physical arguments (see table S3
and section S3.5.2). Finally, there were a few parameters which were difficult to estimate,
either because they are model-specific and clinical data related to them were not available,
or because we did not find relevant quantities in the literature. For those parameters, a wide
range of values was considered to explore their effects on the resulting treatment outcome
and find values that are compatible with the observed treatment outcome of each patient
(see table S4 and section S3.5.3).

S3.5.1 Parameters estimated from patient’s data

Model simulations were personalized by estimating a number model parameters from the
clinical data of each patient. The estimated values for each patient are shown in Table 1.
Below, we discuss how those values were derived:

Table S2: Parameter values estimated from patient’s data

Parameter Description (units) Patient 1 Patient 2 Patient 3 Patient 4

Bio A Bio B Bio A Bio B Bio A Bio B Bio A Bio B

nc Initial cancer cells (number) 146 218 386 516 315 333 188 273
ns Initial stroma cells (number) 45 72 140 53 149 101 339 148

Tmin Minimum cell cycle duration (days) 14.69 3.74 3.74 3.74
k7 Basal p53 synthesis rate (min−1) 0.002 0.012 0.0004 0.002
k′′8 Maximal p53 effect in VEGF production (min−1) -0.002 -0.0037 -0.0002 0.002

Cond A Cond B Cond A Cond B Cond A Cond B Cond A Cond B

nv Initial blood vessels (number) 27 45 27 45 4 35 14 9
rGi Chemotherapies permeability (min−1) 8.17 8.17 8.80 8.80 0.42 13.5 0.42 6.96
rA Avastin permeability (min−1) 0.08 0.08 0.08 0.08 0.0042 0.135 0.0042 0.07

dG1 Fluorouracil dose (mg m−2 ) 600 600 600 600
dG1 Epirubicin dose (mg m−2) 100 100 100 100
dG3 Cyclophosphamide dose (mg m−2) 600 600 600 600
dA Bevacizumab dose (mg kg−1) 15 15 0 0

• nc and ns: Cancer and stroma cells were manually identified by an experienced pathol-
ogist in the available histological sections at week 0, as described in the Histopathology
section of Materials and Methods. To capture some of the heterogeneity observed in the

21



histological slides, the pathologist identified cells in two different biopsy areas (Bio A
and Bio B) with different cell densities and distributions. Table S2 displays the total
number of cancer and stroma cells counted in each area.

• Tmin: The minimum cell cycle duration of cancer cells was roughly approximated as
the doubling time of cancer cells, estimated in each patient from gene expression data
of his tumor (PAM50 classification and proliferation score) and volume growth data
from untreated mice xenografts. Specifically, for tumors with Luminal or Basal PAM50
classification, we used average volume data from 11 Luminal- and 5 Basal-like mice
xenografts, respectively. Given the average volumes s0 and s1 in two time points
t0 and t1, respectively, we use the following formula to compute cell doubling times
Tmin = ((t1− t0) ∗ log(2))/(log(s1/sc)− log(s0/sc)), where sc is the volume of a cancer
cell. We used sc = 4.189 × 10−6mm3 assuming spherical cells or radius 10 microns.
From reference [18], we estimated s0 = 128.6364 at t = 0 days and s1 = 187.6364 at
t1 = 8 days for Luminal xenografts and s0 = 65.2000 at t = 0 days and s1 = 198.2000 at
t1 = 6 days for Basal xenografts. As patient 3 was classified as HER2 and no HER2-like
xenograft was available, we looked at the proliferation score of that patient (patient 3
score was 2.134). We found that it was very similar to the proliferation scores of basal
patients (patient 2 score was 2.3730 and patient 4 score was 2.035). Thus, we decided
to use the same value of Tmin for those Basal and HER2 tumors.

• k7 and k′′8 : We used VEGF and TP53 expression data to calibrate our VEGF-TP53
signaling model. As shown in section S1, the four patients analyzed have very different
levels of VEGF and TP53 expression. For instance, patient 1 has approximately average
expression of VEGF and TP53 while patient 3 has very high expression of VEGF and
very low of TP53. We found that the expression patterns of all four patients can be
mimicked by modulating only k7 and k′′8 out of the 8 parameters in the VEGF-TP53
signaling model (eqs. (S3) and (S4)). The other 6 parameters were taken from the
literature as explained in next section.

• nv: The initial number of vessels was estimated as nv = vp/v0 where vp represents
is the tissue percentage occupied by blood. These was obtained from DCE-MRI in
each tumor voxel. We call v0 the volume occupied by one vessel, that we assume is 10
microns in diameter and perpendicular to the simulated cross-section. Simulations in
fig. 2 use the mode of vp observed by MRI in each patient. However, there are tumor
portions where these values can be considerably different. To address the heterogeneity
in perfusion, we explored other plausible combinations, keeping ktrans at a typical value
and varying vp values (high vp = 20.12, typical vp = 10.4, low vp = 6.3). Different vp
give rise to different number of vessels, so that more drug and oxygen can be distributed
very differently in the tissue and thus potentially impact the outcome. Low vp values
indicate limited delivery of oxygen and thus reduced tumor growth. Varying the vp
values did not change the outcome across different configurations. (fig. S17)

• rGi : Chemotherapies permeabilities. As the molecular weight of the three different
chemotherapies is comparable with that of CA Gandolinium, we use ktrans as an ap-
proximation of PS. Liu et al. [19] observed that the mean ktrans value was 18% lower
than the PS value, with a maximum underestimation of 25% when ktrans is greater
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than 0.05 min−1. We have therefore investigated the impact of underestimation of
permeability in fig. S18.

• rA: Avastin permeability. As the molecular weight of avastin is two orders of mag-
nitude higher than Gadolinium [11, 12]. Permeability of Avastin is scaled by 0.01 to
accommodate its larger molecular weight.

• dG1 , dG2 , dG3 and dA: The adjusted drug dosages for each chemotherapeutic drug is
calculated by the product of unit dose and patient’s body surface area (BSA). BSA is
calculated using Du Bois formula BSA = 0.007184 ×W 0.425 × H0.725, where W and
H are 58.1 kg and 160 cm respectively. Adjusted dosage for avastin is calculated by
multiplying unit dose by patient’s weight, W , where W = 58.1 kg. Same weight and
height are used for calculation of adjusted dose of all patients as individual data were
not accessible at the time of our study.

S3.5.2 Model parameters obtained from public data

Parameters derived from the literature are shown in table S3. When needed, additional
explanations are provided below.
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Table S3: Parameter values obtained from public data

Parameter Description Value Units Source

kφ Oxygen concentration at half-maximal cycle speed 1.4 mmHg [28]

k
′
7 Degration rate of p53 by oxygen 0.01 min−1 [28]

KTP53 Oxygen concentration for half-maximal TP53 degredation 0.01 mmHg [28]
k8 Synthesis rate of VEGF 0.002 min−1 [28]

k
′
8 Reaction rate of p53 with VEGF 0.01 min−1 [28]
J5 sVEGF concentration for half-maximal sVEGF production 0.04 µg mL−1 [28]

KVEGF Oxygen concentration for half-maximal VEGF degredation 0.01 mmHg [28]
Dk Oxygen diffusion coefficient 1.05 x 105 µm2 min−1 [7]
rk Oxygen supply rate 1.88 x 104 min−1 [28]
K0 Oxygen concentration in the blood 20 mmHg [28]
φk Oxygen consumption rate 900 min−1 [13, 37]
K1 Oxygen concentration for half-maximal consumption 2.5 mmHg [13]
Dv VEGF diffusion coefficient 3.52 x 103 µm2 min−1 [14]
a VEGF secretion slope 6.66× 10−6 min−1 [4, 28]
b VEGF secretion intercept −1.10× 10−6 µg mL−1min−1 [4, 28]
ka VEGF association rate to Avastin 7.4× 10−1 µg−1 mL min−1 [30]
kd VEGF dissotiation rate from Avastin 1.76× 10−3 min−1 [30]
ψv VEGF decay rate 1.0 x 10−2 min−1 [28]
DA Avastin diffusion coefficient 2.4× 103 µm2 min−1 [16]
ψC Complex decay rate 1.0 x 10−2 min−1 [28]
DGi Chemotherapies diffusion coefficient 9.6 x 103 µm2 min−1 [6]
ψGj Chemotherapies decay rate 1.0 x 10−2 min−1 [24]
v1 Avastin plasma compartment volume 2.66× 103 mL [21]
v2 Avastin peripheral compartment volume 2.76× 103 mL [21]
q Avastin intercompartmental clearance 0.412 mL min−1 [21]
cl Avastin elimination clearance 0.144 mL min−1 [21]

vmax Fluororacil maximal degradation rate 1.75 µg mL−1 min−1 [34]
km Fluororacil half-maximal concentration 27 µg mL−1 [34]
w1 Epirubicin plasma compartment volume 18× 103 mL [34]
w2 Epirubicin peripheral compartment volume 957× 103 mL [34]
w3 Epirubicin peripheral compartment volume 25× 103 mL [34]
q2 Epirubicin intercompartmental clearance 0.918× 103 mL min−1 [34]
q3 Epirubicin intercompartmental clearance 0.25× 103 mL min−1 [34]
cl2 Epirubicin elimination clearance 0.983× 103 mL min−1 [34]
u Cyclophosphamide plasma compartment volume 2430× 103 mL [34]
cl3 Cyclophosphamide elimination clearance 3.93× 103 mL min−1 [34]
∆x Space interval 10 µm [17, 20]
∆t Time interval of cell cycle update 30 min [28]
∆v Vessel update interval 720 min [23]

LowV Lower VEGF angiogenic threshold 10−6 µg mL−1 [25]
α FEC dose-response shape 1 dimensionless [15]

• rk: Oxygen supply rate is calculated as the product of vessel permeability to Oxygen and
vessel surface-to-volume ratio. Vessel permeability to Oxygen is 6 cm/min, calculated
by [28]. In our case, the surface-to-volume ratio is 2πRL/∆x3, where R and L are the
vessel radius and length, ∆x/2 and ∆x respectively.

• a and b: In each cell, we model the production rate of extracellular VEGF as a function
of the VEGF expression. We found from reference [22] that, in breast tumor tissue,
VEGF concentration ranges from approximately 20 to 70 pg mL−1. We choose a linear
function such that: when oxygen is at 20 mmHg, average extracellular VEGF concen-
tration is at 20 pg mL−1 while when oxygen is at 3.8 mmHg, VEGF concentration is at
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70 pg mL−1. By solving the equation at equilibrium, i.e. the derivative at 0, and substi-
tuting the decay rate as 0.01 /min [28], we can calculate the corresponding production
rate, and hence define the linear relationship between production rate and VEGF ex-
pression. At steady state, the corresponding VEGF expression levels are 0.19487 and
0.26993 respectively. Therefore the linear relationship between V EGFs and rv is defined
as: rv = a ∗ [V EGFs] + b, where a = 6.661338× 10−6, b = −1.098095× 10−6.

• ∆x: The value was chosen allowing modeling mean size of tumor capillaries (10 microns
in diameter [17]) and cells (10− 20 microns in diameter [20]) using the same computa-
tional grid. The resulting physical size of the simulation grid is also coherent with the
size of captured digital image.

• ∆v: Time of vessel update. As the formation and retraction of vessels happens in the
order or hours to days [23], we set this parameter to be 12 hours. Given this value we
then scale the probabilities of birth pbirth and death pdeath.

• α: Shape of dose-response curve. For α = 1, the shape of the beta distribution
Beta(α, β) approximates FEC dose-response data obtained in in vitro cultures of breast
cancer cells derived from 140 chemotherapy-näıve patients at the time of primary
surgery [15].

S3.5.3 Calibrated parameters

Four model parameters were calibrated as it was not possible to estimate them directly from
clinical data nor we did find relevant quantities in the literature. Moreover, in the present
study we were not able to estimate them using longitudinal MRI data. A major difficulty
for that was that reliable tumor volume comparison between time points relies on accurate
co-registration of the scanning. Since breast are compressible and the size is dependent on the
time point during menstruation, it is currently very hard for our experts in medical physics
to align the breast and calculate the change in volume. This is in principle not impossible,
by means of accurate statistical modeling that compensates for modifying factors. But cur-
rently this is beyond the scope of this paper. In the present paper, we run simulations using
a wide range of values of those four parameters and their effects on the resulting treatment
outcome was observed. We then select values that are compatible with the observed treat-
ment outcome of each patient. This was possible because we have selected patients with
either a complete or no response by MRI at 12 weeks of treatment, as explained in section
Patients and treatment of the manuscript. Table S4 indicates the selected values used in the
simulations of each patient and the figures showing the sweeps of that parameter exploring
the effects on treatment outcomes. More details about each of the four parameters are given
below.

A parameter we found having a large impact on the treatment outcome is the chemosen-
sitivity level, β of each individual patients. As the chemosensitivity level become higher,
cancer cells are more susceptible to chemotherapeutic drugs after each injection. In fig. S13,
we demonstrate the impact of 7 different levels, low β = 2000, 4000, medium β = 6000, 8000,
and high β = 10000, 12000. As a result, reduction of number of cancer cells increases in
all patients as β increases, indicated by boxplots in fig. S13, with the exception of cases of
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Figure S13: Comparison of simulated cancer cell densities for different chemosensitivity level
β. Each of the box plots represents difference in cancer cell densities comparing week 12 to
the beginning of treatment in 10 simulations. Used chemosensitivity levels were β, low β =
100, 2000, 4000, medium β = 6000, 8000, and high β = 10000, 12000

patient 3 and 4 in which perfusion was poor. Out of all six levels, we are able to reproduce
the treatment outcome for all patients when β = 6000. This demonstrates the importance of
highly accurate estimates of this parameter.

Functional blood vessels can be created when the extracellular VEGF level is within
an appropriate interval, with upper level denoted by HighV . We therefore tested its ef-
fect on treatment outcome. Figure S14 shows studies of five biologically feasible values of
VEGFhigh = 1× 10−5 mg mL−1, 5× 10−5 mg mL−1, 1× 10−4 mg mL−1, 5× 10−4 mg mL−1

and 1× 10−3 mg mL−1, while keeping other parameters fixed. Higher thresholds allow more
and more vessels being created during the course of the treatment. For patient 1 and 2, since
Bevacizumab was administered during the course of treatment, extracellular VEGF concen-
tration was always kept below the lower threshold. We observed no difference in treatment
outcome at all VEGF thresholds. For patient 3 and 4, even though VEGF was not inhibited
by Bevacizumab, newly-created vessels in poorly-perfused tissues were not able to efficiently
deliver drugs to the tissue. Thus no significant differences were observed in simulations under
different threshold levels. In well-perfused cases, we were able to reproduce outcomes for pa-
tient 4 when VEGF threshold was set to be higher than 1× 10−3 µg/mL. At 1× 10−4 µg/mL,
we were able to reproduce patient 1, 2 and 3. These values are well above reported physio-
logical VEGF concentrations in the order of pg mL−1. We also compare values obtained by
calibration with reported VEGF thresholds between normal and aberrant angiogeneis in [29].
For that we transform the experimentally obtained rate units to our concentrations using the
data reported in that paper of 4 hours experiments and 5x104 cells. Namely, dividing by 6
hours and scaling the number of cells we obtain a VEGF threshold between 4× 10−4 µg/mL
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Figure S14: Comparison of simulated cancer cell densities for different VEGF thresholds.
Each of the box plots represents difference in cancer cell densities comparing week 12 to the
beginning of treatment in 10 simulations. Used upper VEGF threshold for angiogenesis were
HighV = 1× 10−5 mg mL−1, 5× 10−5 mg mL−1, 1× 10−4 mg mL−1, 5× 10−4 mg mL−1 and
1× 10−3 mg mL−1

and 8× 10−4 µg/mL, which nicely approximate the values we obtained by calibration.

We then investigated how the number of newly-created vessel affect the treatment outcome
given the upper level VEGF threshold is high enough to allow vessel creation. Figure S15
shows studies of six different values of pbirth = 0.0005, 0.002, 0.01, 0.05, 0.1, and 0.5. Higher
probabilities allow more vessels being created during the course of the treatment. For patient
1 and 2, since Bevacizumab was administered during the course of treatment, extracellular
VEGF concentration was always kept below the lower threshold. Regardless of the probabil-
ity of vessel birth, no vessel would be created as a result. Thus we observed no difference in
treatment outcome at all values. For patient 3 and 4, even though VEGF was not inhibited
by Bevacizumab, newly-created vessels in poorly-perfused tissues were not able to efficiently
deliver drugs to the tissue.(See fig. S15b) Thus no significant differences were observed in
simulations under different threshold levels. In well-perfused cases, we were able to repro-
duce outcomes for patient 4 when probability is set higher than 0.01. At pbirth = 0.0002, we
were able to reproduce patient 1, 2 and 3.

Finally we also looked at how the number of vessel being deleted affect the treatment out-
come. Figure S16 shows studies of five different values of pdeath = 0.0001, 0.001, 0.01, and 0.5.
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Higher pdeath allows more vessels to be deleted. For patient 1 and 2, VEGF concentra-
tion was kept below the lower threshold as a result of Bevacizumab. For pdeath < 0.1, we
observed no significant difference in treatment outcome, while with pdeath ≥ 0.1, no vessels
were left before the end of treatment. Neither oxygen nor drugs could be delivered to the
tissue, no cells could proliferate or killed. For patient 3 and 4, the deletion of poorly-perfused
vessels did not affect the outcome of treatment; While in well-perfused tissues, without the
inhibition of bevacizumab, the birth and the death of vessels counteracted with each other,
resulting in no difference in cancer cell density at the end of week 12 across different pdeath.

Table S4: Calibrated parameter values

Parameter Description (Units) Value Parameter sweeps

β FEC dose-response sensitivity (non dimensional) 6000 - 10000 (6000) fig. S13
pdeath vessel death probability 0.0001 - 0.01 (0.0001) fig. S16

Patient 1 Patient 2 Patient 3 Patient 4

HighV upper VEGF angiogenic threshold (µg mL−1) 10−4 10−4 10−4 2× 10−3 fig. S14
pbirth vessel birth probability 0.002 0.002 0.002 0.01 fig. S15

S4 Computational details

The code to simulate the mathematical model is written in Python 3.6.2 and available at
bitbucket.org/xlai/codeavastin-py.git. It is structured in a modular way for easy de-
bugging and reusability and all files are properly documented. All differential equations were
solved with finite element software FEniCS [2]. Simulations were run on the Abel Cluster,
owned by the University of Oslo and Uninett/Sigma2, and operated by the Department for
Research Computing at USIT,the University of Oslo IT-department. http://www.hpc.uio.no/
Below we briefly summarize the main algorithm in algorithm 1 and describe in detail numer-
ical methods used to solve the different differential equations that integrates all the modules
of the mathematical model.

S4.1 Numerical solution of ODEs and PDEs

S4.1.1 Solving the oxygen concentration equation

We consider the steady state version of eq. (S5) (sK = 0). The resulting nonlinear partial
differential equation was solved numerically using a finite element approximation. The un-
known K was approximated using continuous piecewise linear defined relative to a uniform
triangulation T of the lattice L. The resulting nonlinear algebraic equation was solved using
Newton’s method with tolerance ε = 10−6. The equation was then solved using a direct (and
thus exact) solver.

S4.1.2 Solving the coupled system of equations of VEGF/VEGF-inhibitor com-
plex

We consider the steady state version of eq. (S6)–eq. (S8) (sV , sA, sC = 0). The resulting sys-
tem of nonlinear, partial differential equations were solved numerically using a finite element
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(a) Comparison of simulated cancer cell densities between different probability of vessel birth, pbirth.
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(b) Comparison of vessel changes between different probability of vessel birth, pbirth.

Figure S15: Each of the box plots represents difference in cancer cell densities comparing
week 12 to the beginning of treatment in 10 simulations. Used vessel birth probabilities were
pbirth = 0.0005, 0.002, 0.01, 0.05, 0.1, and 0.5
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Figure S16: Comparison of simulated cancer cell densities between different probability of
vessel death, pdeath. The x-axis indicates the probability of death of a vessel if VEGF is
within the range, * Simulations terminated when no vessels were left. Results shown were
the difference between termination and the beginning of each simulation.
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Figure S17: Effect of perfusion heterogeneity on treatment outcomes. For patient 1, cell at
the end of the treatment period are shown for two observed initial cell configurations (biopsy
1 in red and biopsy 2 in blue). Boxes represent cell densities after 12 weeks in 10 simulations
using ktrans = 0.13 and one value of vp = 6.3, 10.4, 20.12 for each patient.
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Procedure 1 Main algorithm

1: Initialize computational mesh T corresponding to the regular square lattice L (cf. sec-
tion S2).

2: Initialize vascular lattice representation G(·, 0) and cellular lattice representation L(·, 0)
based on histopathological data described in section S1.2.

3: Compute the initial oxygen concentration K(·, 0) by solving eq. (S5) with sK = 0 (cf. sec-
tion S2.4.1).

4: Define the initial condition for the cell cycle φ based on a uniform random distribution:

φx(0) ∈ U(0, 1) ∀x ∈ L,

and compute the intracellular levels of [TP53] and [sVEGF] at initial time (t = 0) by
solving eq. (S3) and eq. (S4), respectively, using the initial oxygen concentration K(·, 0).

5: Define initial chemotherapy concentrations by letting Gj(·, 0) = 0 for j = 1, 2, 3. Define
initial conditions for V , A and C by letting V (·, 0) = 0, A(·, 0) = 0 and C(·, 0) = 0.

6: Define initial intravascular chemotherapy concentrations and initial intravascular VEGF-
inhibitor concentrations by letting Gj(0) = 0 for j = 1, 2, 3 and A1(0) = 0.
Solve eq. (S10)-eq. (S12) given dose di for Gj , j = 1, 2, 3 and A1 at time ti, i = 1, . . . , N
to get Gj(ti) for j = 1, 2, 3 and A1(ti)

7: Set t1 = ∆t = 30 min, n = 1
8:

9: while tn ≤ T do
10: Compute K(·, tn) by solving eq. (S5) with sK = 0 (cf. section S2.4.1).
11: Compute V (·, tn), A(·, tn), C(·, tn) by solving eq. (S6)– eq. (S8) (cf. section S4.1.2).
12: Compute Gj for j = 1, 2, 3 by solving eq. (S9) (cf. section S2.4.5).
13: Compute [TP53](·, tn) and [sVEGF](·, tn) by solving eq. (S3) and eq. (S4) and compute

φ(·, tn) by solving eq. (S2) using K(·, tn).
14: Compute L(·, tn) based on cellular automaton rules described.
15: Set tn = tn−1 + ∆t, n = n+ 1.
16: end while
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Figure S18: Comparison of simulated cancer cell densities between estimated ktrans values
obtained from MRI data and their corresponding values that are 25% higher for all patients.

approximation. The unknowns V , A and C were approximated using continuous piecewise
linears defined relative to a uniform triangulation T of the lattice L. The resulting nonlinear
system of algebraic equations were solved using Newton’s method with tolerance ε = 10−6.
The linear systems of equations were solved using a direct (and thus exact) solver.

We also compared these solutions V , A and C, computed using the steady state version
of eq. (S6)–eq. (S8) with solutions computed using a forward Euler discretization of the
corresponding parabolic equations (sV , sA, sC = 1) over the time interval ∆t = 30min. The
two sets of solutions agreed well, thus indicating that solving the steady state equations was
sufficient.

S4.1.3 Solving the chemotherapy concentration equations

For each j = 1, 2, 3, we solved eq. (S9) using a Crank-Nicolson scheme in time and a finite
element method in space. Again, we approximated Gj(·, tn) for each n using continuous
piecewise linears defined relative to the same uniform triangulation T of the lattice L, and
solved the resulting linear systems of equations using a direct solver.

S4.1.4 Solving ODE systems of intracellular TP53 and VEGF signaling

We chose 4th-order Runge-Kutta scheme implemented in FEniCS with fixed timestep to
solve eq. (S3)-eq. (S4) in section S2.3.2 for each cell for its ease of implementation over the
function space.

S4.2 Cellular automaton updates

For each cell at x = (xi, xj) ∈ L with cell cycle φx ≥ 1, the cell is killed with probability
drawn from a random Beta distribution Beta(1, β), β > 0. If the cell is not killed, a new
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cell is placed at x′ ∈ (xi±1, xj±1) with the highest K. No cell is placed if no free spaces is
available in the neighborhood. φx and φx′ are set to 0. [TP53] and [VEGFs] are set to zero
at both φx and φx′ . The sequence of updates for proliferation-ready cells is asynchronous
such that the new state of a cell affects the calculation of states in neighboring cells.

S5 Other

This section contains other images to supplement the main text of the paper.
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(a) Simulations of alternative therapy of patient 1, in which only Epirubicin and
Cyclophosphamide were administered at full dose every 3 weeks.
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(b) Simulations of alternative therapy of patient 1, in which only Epirubicin and
Cyclophosphamide were administered at full dose every 1 week.

Figure S19: Time evolution of cancer cell density under two different drug schedules with
epirubicin and cyclophosphamide for patient 1. Each line represents the average cancer cell
density of 10 independent stochastic simulations. The corresponding color band indicates the
95% bootstrap confidence interval. Lower panel of each figure shows the spatial distribution
of cancer and stroma cells for a representative simulation of the biopsy portion A for the
patient. Background color represents oxygen pressure in mmHg.
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[5] Daşu A, Toma-Daşu I, Karlsson M. Theoretical simulation of tumour oxygenation and
results from acute and chronic hypoxia. Phys Med Biol 2003;48(17):2829.

[6] El-Kareh AW, Secomb TW. A mathematical model for comparison of bolus injection,
continuous infusion, and liposomal delivery of doxorubicin to tumor cells. Neoplasia
2000;2(4):325–338.

[7] Grote J, Süsskind R, Vaupel P. Oxygen diffusivity in tumor tissue (DS-Carcinosarcoma)
under temperature conditions within the range of 20–40 ◦C. Pflügers Archiv
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