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Table S1: mathematical symbols used in this study.

Symbol Physical meaning Unit (dimension

-less if no unit

indicated)

B Volumetric breathing rate of a susceptible person m3 h-1

B0 Volumetric breathing rate of a resting susceptible person m3 h-1

c Virus concentration quanta m-3

cavg Average virus concentration in the air over the duration of the

event

quanta m-3

D Duration of the event h

Ep SARS-CoV-2 exhalation rate by an infector quanta h-1

Ep0 SARS-CoV-2 exhalation rate by an infector resting and only

orally breathing

quanta h-1

fe Exhalation penetration efficiency for face covering

fi Inhalation penetration efficiency for face covering

H Infection risk parameter, as defined in equation (11) persons h2 m-3

H’ Infection risk parameter without activity taken into account, as

defined in equation (14)

persons h2 m-3

Hr Relative infection risk parameter, as defined in equation (15) h2 m-3
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ηI Probability of an occupant being an infector

λ First-order overall rate constant of the virus infectivity loss h-1

λ0 Ventilation rate h-1

λcle Virus removal rate by cleaning devices h-1

λdec Virus infectivity decay rate h-1

λdep Deposition rate of airborne virus-containing particles onto

surfaces

h-1

L Ventilation rate per susceptible person liter s-1 person-1

N Number of occupants

Ni Number of infectors

Nsus Number of susceptible persons

Nsi Number of secondary infections

n Amount of the virus infectious doses inhaled by a susceptible

person in a given indoor environment

quanta

P Probability of infection of a susceptible person conditional on

the presence of an infector

Pa Absolute probability of infection of a susceptible person

rss Ratio of the average virus concentration to that at steady state
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rB Relative breathing rate enhancement factor (vs. B0) for an

activity

rE Relative virus exhalation rate enhancement factor (vs. Ep0) for

an activity

V Indoor environment volume m3
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Table S2: relative factors of (a) quanta emission and (b) volumetric breathing rates for different

activities according to refs 1,2 and ref 3, respectively. The values of relative quanta emission rate

factor for moderate exercise in (a) are interpolated as in ref 4.

(a)

Activity

Relative quanta emission rate factor

Physical intensity Vocalization

Resting

Oral breathing 1

Speaking 4.7

Loudly speaking 30.3

Standing

Oral breathing 1.2

Speaking 5.7

Loudly speaking 32.6

Light exercise

Oral breathing 2.8

Speaking 13.2

Loudly speaking 85

Moderate exercise

Oral breathing 4.3

Speaking 20.4

Loudly speaking 132
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Heavy exercise

Oral breathing 6.8

Speaking 31.6

Loudly speaking 204

(b)

Age group

(year)

Activity level

Sleep or nap
Sedentary

/passive
Light intensity

Moderate

intensity
High intensity

<1 0.63 0.64 1.6 2.9 5.4

1 - <2 0.94 1.0 2.5 4.4 7.9

2 - <3 0.96 1.0 2.5 4.4 8.1

3 - <6 0.90 0.94 2.3 4.4 7.7

6 - <11 0.94 1.0 2.3 4.6 8.7

11 - <16 1.0 1.1 2.7 5.2 10

16 - <21 1.0 1.1 2.5 5.4 10

21 - <31 0.90 0.88 2.5 5.4 10

31 - <41 1.0 0.89 2.5 5.6 10

41 - <51 1.0 1.0 2.7 5.8 11
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51 - <61 1.1 1.0 2.7 6.0 11

61 - <71 1.1 1.0 2.5 5.4 9.8

71 - <81 1.1 1.0 2.5 5.2 9.8

≥81 1.1 1.0 2.5 5.2 10

Average 1.0 1.0 2.4 5.0 9
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Table S3: values of the parameters used for computation of Table 2 in the main paper.

Footnote: A rough estimate can be obtained as follows. To be comparable with the indoor volume, the outdoor

volume is assumed to be the same as the indoor one (10 m x 10 m x 3 m box). The outdoor ventilation rate
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corresponds to the ventilation by wind passing through a horizontal dimension of the outdoor box (10 m) at 5 km h-1

(~1.4 m s-1, toward the low end of the monthly mean wind speed in US cities).5 The outdoor box dimensions and wind

speed are input parameters for the table in the same format in the COVID-19 Aerosol Transmission Estimator (Figure

S2) for its users to more easily estimate equivalent outdoor ventilation.
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Table S4: parameters for pre-pandemic use of various indoor spaces, and for possible lower-risk

scenarios while COVID-19 is active (rows in gray). The predicted number of secondary cases is

estimated based on the fitted trend in Figure 1b. The ventilation rates (λ0) of the ASHRAE

standard cases correspond to the minimum requirement recommended in ref 6. The other cases

are based on real-world indoor spaces or reasonable estimation. rE and rB are estimated mostly

based on the typical values for all-age-group averages in Table S2. No additional virus-removal

devices or no face covering are used in the pre-pandemic cases. Common measures for the

lower-risk scenarios in this table are half occupancy, half duration, surgical mask wearing (fe x fi

= 0.35),4,7 and use of additional virus-removing devices (e.g. HEPA filter) with λcle = 3 h-1. Two

literature outbreaks in Table 1, i.e. the Guangzhou restaurant8 and Skagit Choir9 cases, are also

shown for comparison. See footnotes for the exceptions to these descriptions.

Indoor

environment type

rE rB fexfi D (h) Nsus V (m3) λ0+ λcle

(h-1)

rss H

(persons

h2 m-3)

Hr

(h2 m-3)

Predicted

number of

secondary cases

ASHRAE standard cases

Prison dayroom 2.8 2.4 1 8 300 5.0E+03 0.76 0.84 3.6E+00 1.2E-02 1.8E+01

2.8 2.4 0.35 4 150 5.0E+03 3.8 0.93 7.0E-02 4.7E-04 3.8E-01

Middle school

classroom

1 1.1a 1 5 20 1.7E+02 2.8 0.93 2.1E-01 1.1E-02 1.1E+00

1 1.1a 0.35 2.5 10 1.7E+02 5.8 0.93 9.0E-03 9.0E-04 4.8E-02

Concert

hall/theater

85 2.4 1 2 300 1.3E+04 0.49 0.36 7.0E+00 2.3E-02 3.5E+01

85 2.4 0.35 1 150 1.3E+04 3.5 0.72 1.7E-01 1.1E-03 9.2E-01
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Restaurant 4.7 1 1 1 50 2.1E+02 4.3 0.77 2.0E-01 3.9E-03 1.0E+00

2.9b 1 1c 1d 25 2.1E+02 7.3 0.86 4.0E-02 1.6E-03 2.1E-01

Hotel

lobbies/prefunction

2.8 2.4 1 8 50 1.0E+03 0.86 0.86 2.7E+00 5.3E-02 1.2E+01

2.8 2.4 0.35 4 25 1.0E+03 3.9 0.94 5.7E-02 2.3E-03 3.0E-01

Airport terminal

/railway station

2.8 2.4 1 1 1000 1.0E+04 1.5 0.48 2.2E-01 2.2E-04 1.2E+00

2.8 2.4 0.35 1d 500 1.0E+04 4.5 0.78 2.0E-02 4.1E-05 1.1E-01

Hospital general

examination room

50e 1 0.35f 8 20 3.0E+02 1.6 0.92 5.3E+00 2.6E-01 1.5E+01

50e 1 0.01g 4 10 3.0E+02 9.0h 0.97 7.2E-03 7.2E-04 3.9E-02

Library 1 1 1 2 100 3.0E+03 1.0 0.57 3.7E-02 3.7E-04 2.0E-01

1 1 0.35 2d 50 3.0E+03 4.0 0.88 2.5E-03 5.1E-05 1.4E-02

Museum/gallery 1.2 1.5 1 2 200 5.0E+03 0.66 0.44 9.7E-02 4.9E-04 5.2E-01

1.2 1.5 0.35 2d 100 5.0E+03 3.7 0.86 6.0E-03 6.0E-05 3.2E-02

Place of religious

worship

30 1 1 2 100 8.3E+02 1.2 0.62 3.8E+00 3.8E-02 1.8E+01

4.7i 1 0.35 1 50 8.3E+02 4.2 0.76 1.8E-02 3.6E-04 9.6E-02

Mall common area 2.8 2.4 1 2 500 7.5E+03 1.1 0.59 4.9E-01 9.7E-04 2.6E+00

2.8 2.4 0.35 1 250 7.5E+03 4.1 0.76 1.5E-02 5.8E-05 7.8E-02
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Supermarket 2.8 2.4 1 8 100 7.5E+03 0.36 0.67 1.3E+00 1.3E-02 6.9E+00

2.8 2.4 0.35 4 50 7.5E+03 3.4 0.93 1.7E-02 3.5E-04 9.2E-02

Gym, sports arena

(play area)

6.8 9 1 1 100 1.4E+04 0.58 0.24 1.8E-01 1.8E-03 9.5E-01

6.8 9 0.35 0.5 50 1.4E+04 3.6 0.53 5.6E-03 1.1E-04 3.0E-02

Other cases

Physical education

class

6.8 9 1 1 30 1.3E+03 1.9 0.56 4.1E-01 1.4E-02 2.1E+00

6.8 9 0.35 0.5 15 1.4E+04j 4.9 0.63 1.4E-03 9.6E-05 7.7E-03

Subway cark 1 1 1 0.33 30 1.5E+02 5.7 0.55 6.5E-03 2.2E-04 3.5E-02

1 1 0.35 0.33d 30l 1.5E+02 9.3m 0.69 1.7E-03 5.8E-05 9.3E-03

Large family dinner 4.7 1 1 2 12 3.0E+02 0.5 0.37 2.8E-01 2.3E-02 1.4E+00

2.9b 1 0.35 2d 6 3.0E+02 3.5 0.86 9.9E-03 1.7E-03 5.3E-02

Shared office 4.7 1 1 8 2 3.4E+01 2 0.94 1.0E+00 5.2E-01 1.9E+00

1.7n 1 0.35 4 1 3.4E+01 5 0.95 1.3E-02 1.3E-02 6.9E-02

Large university

classroomo

30 1 1 1 150 7.0E+02 2 0.57 1.8E+00 1.2E-02 9.5E+00

4.7i 1 0.35 1c 60p 7.0E+02 11q 0.91 1.2E-02 1.9E-04 6.2E-02

University

laboratory

2.8 2.4 1 8 10 2.3E+02 6 0.98 3.9E-01 3.9E-02 1.9E+00

2.8 2.4 0.35 4 3o 2.3E+02 9 0.97 1.3E-02 4.5E-03 7.1E-02
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Outbreaks

Guangzhou

restaurant

9.3r 1 1 1.2 20 9.7E+01 0.67 0.31 1.1E+00 5.4E-02 5.0E+00

4.7s 1 1c 0.6 10 9.7E+01 3.67 0.60 4.7E-02 4.7E-03 2.5E-01

Skagit Choir 85 2.5t 1 2.5 60 8.1E+02 0.7 0.53 3.0E+01 5.0E-01 5.6E+01

85 2.5t 0.35 1.3 30 8.1E+02 3.7 0.79 7.3E-01 2.4E-02 3.7E+00

Footnotes: a for sedentary teenagers; b half resting - oral breathing + half resting - speaking; c no face covering; d no

duration reduction; e for a coughing infector (see Footnote e of Table 1 for detail of the estimation); f use of surgical

masks for the pre-pandemic setting; g N95 respirators and fit tests required (resulting in fe and fi of 0.1) before allowed

indoors; h ventilation rate increased to 6 h-1; i reduction of vocalization level from loudly speaking to speaking (with the

aid of, for example, microphone); j use of a much larger room if the event has to be indoors; k real-world case;4 l no

occupancy reduction; m λcle = 3.6 h-1; n 4/5 resting - oral breathing + 1/5 resting - speaking; o real-world case;10 p

occupancy reduction larger than 50%; q ventilation rate increased to the maximum and no additional virus removal

applied; r talking during half of the time and half normal / half loud talking assumed; s resting - speaking; t light

intensity for 61-<71 years.
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Figure S1: Attack rates of the COVID-19 outbreaks shown in Table 1 predicted according to the

fitted trend line in Figure 1b vs. actual attack rates of those outbreaks. The correlation

coefficient between the two types of attack rates and the 1:1 line are also shown.
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Figure S2: screenshot of the COVID-19 Aerosol Transmission Estimator.11 The top of the sheet

simulating the Skagit Valley choir outbreak is shown.

S17

https://paperpile.com/c/wiBxV7/iEx0N


S1. Deviation of quanta concentration from steady state due to finite event duration

In case of short events where quanta concentration does not reach steady state, a correction

factor, rss, can be introduced to account for the deviation of average quanta concentration (cavg)

from that at steady state (c):

rss = cavg / c (S1)

Under the assumption of no infectious quanta in the air at the beginning of the event, cavg can be

easily obtained from the integration of equation (1). Details of the derivation can be found

elsewhere.4,9 For a period [0, D],

cavg = Ep fe / (V λ) x (1 - (1 - e-λD) / (λ D)) (S2)

Inserting equations (2) and (S2) into equations (S1) yields:

rss = 1 - (1 - e-λD) / (λ D) (S3)

The value of rss as a function of λD is shown in Figure S3. rss approaches to λD/2 when λD is

very small and to 1 when λD is very large, and reaches 0.6 at λD ~ 2.

Figure S3: Ratio of the quanta concentration averaged over a period [0, D] to that at steady

state (rss) as a function of the product of total first-order quanta loss rate constant (λ) and the

event duration (D).
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When D is very small (e.g., a few minutes or shorter), it may be too short for the air in the space

of interest to become well mixed. In this case, the box modeling approach is no longer suitable.

Nevertheless, whether D is too short also depends on the internal mixing rate of the air in the

space of interest. When the latter is enhanced (e.g., by fans), the well-mixing assumption can

still hold even with a small D.

S2. Monte Carlo uncertainty propagation for the fitting of attack rates vs. Hr

We follow the standard procedure of Monte Carlo uncertainty propagation12 for the fitting of

attack rates vs. Hr. We assume log-normal distributions for the variables constraining Hr (rE, rB,

D, V, and λ; fe and fi are excluded as little to no mask wearing was reported for the COVID-19

outbreaks analyzed in this study) to ensure positive values of their samples. rE, rB, D, V, and λ

are assigned uncertainty factors of 2.5, 1.3, 1.1, 1.3, and 1.9 respectively (approximately

corresponding to relative uncertainties of 150%, 30%, 10%, 30%, and 90%). The last three

uncertainties are typical values for outbreak case studies. The uncertainty factor of 1.3 for rB

mainly reflects the possible error arising from the discretization of physical intensity levels in the

3 dataset. We assume an uncertainty factor of 2.5 for rE because Buonanno et al.1 estimated the

uncertainty of Ep0xrE for COVID-19 to be an order of magnitude and we think that rE, a relative

factor that depends largely on type of activity but not on that of disease, contributes only a

minority of this uncertainty. Since attack rate (AR) is bounded between 0 and 100%, it does not

follow a log-normal distribution. We use a similar transformation as in Gans et al.13, i.e., AR / (1 -

AR), to expand the domain of the samples from [0, 1] to [0, +∞). The intermediate samples then

can be depicted with a log-normal distribution. We assign an uncertainty factor of 1.1 to the

intermediate samples. The generated samples are then reversely transformed into the AR

samples. When AR is small, the assigned uncertainty factor of 1.1 approximately corresponds to
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a relative uncertainty of 10% for AR; while when AR is close to 1, this uncertainty factor reflects

an approximate relative uncertainty of 10% for non-attack rate, i.e., (1 - AR). 10000 random

samples of rE, rB, D, V, λ, and AR are generated for each of the COVID-19 case studies in Table

1. A fitting can be done for one sample of rE, rB, D, V, λ, and AR of all those case studies,

yielding a sample of the fitted parameter, Ep0. This fitting is repeated for all 10000 samples of the

input parameters, giving 10000 samples of Ep0, apparently log-normally distributed, with 5th and

95th percentiles being 8.4 and 48.1 quanta h-1, respectively.
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