Cancer cells impair monocyte-mediated T cell stimulation to evade immunity

Anais Elewaut^{1,2#}, Guillem Estivill^{1,2#}, Felix Bayerl³, Leticia Castillon⁴, Maria Novatchkova¹, Elisabeth Pottendorfer^{1,2}, Lisa Hoffmann-Haas¹, Martin Schönlein¹, Trung Viet Nguyen¹, Martin Lauss⁵, Francesco Andreatta¹, Milica Vulin¹, Izabela Krecioch¹, Jonas Bayerl^{1,2}, Anna-Marie Pedde³, Naomi Fabre¹, Felix Holstein^{1,2}, Shona M. Cronin^{1,2}, Sarah Rieser¹, Denarda Dangaj Laniti^{6,7,8}, David Barras^{6,7,8}, George Coukos^{6,7,8}, Camelia Quek^{9,10,11}, Xinyu Bai^{9,10,11}, Miquel Muñoz i Ordoño¹, Thomas Wiesner¹², Johannes Zuber¹, Göran Jönsson⁵, Jan P. Böttcher³, Sakari Vanharanta^{4,13}, Anna C. Obenauf^{1*}

authors contributed equally

Lead Contact:

Anna C. Obenauf
Research Institute of Molecular Pathology (IMP)
Campus-Vienna-Biocenter 1
1030 Vienna, Austria

Tel.: +43 1 79730-3060

Email: anna.obenauf@imp.ac.at

¹ Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria

² Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria

³Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany

⁴Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland

⁵Lund University Cancer Center, Division of Oncology, Lund University, Lund, Sweden

⁶Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland

⁷Department of Oncology, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland

⁸Agora Research Center, Lausanne, Switzerland

⁹Melanoma Institute Australia, The University of Sydney, Sydney, Australia

¹⁰Charles Perkins Centre, The University of Sydney, Sydney, Australia

¹¹Faculty of Medicine and Health, The University of Sydney, Sydney, Australia

¹²Department of Dermatology, Medical University of Vienna, Vienna, Austria

¹³Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Finland

^{*} Correspondence: anna.obenauf@imp.ac.at

Legends for Supplementary Tables 1 to 8	1
Supplementary Figure 1: Uncropped Western Blot Gel Images	2

Supplementary Table Legends:

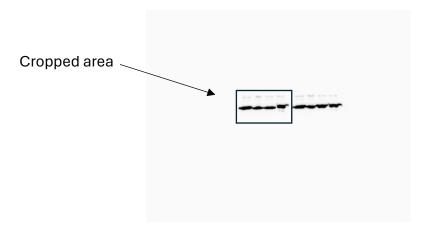
Supplementary Table 1: Top 20 markers from scRNA-seq populations. Gene lists depicting the top differentially expressed genes of each identified population in the scRNA-seq from the immune TME of YUMM1.7^{OVA} tumors.

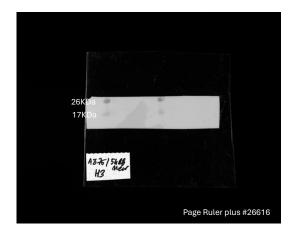
Supplementary Table 2: **scRNA-seq gene signatures**. Publicly available T cell signatures used to probe the scRNA-seq data of OT-1 T cells isolated from YUMM1.7^{OVA} tumors, publicly available inflammatory gene signatures and the Monocyte 1 and Inflammatory Monocyte gene signatures generated with the scRNA-seq dataset from our study.

Supplementary Table 3: Differentially expressed genes in N^{TT} and R^{TT} cancer cells. Differentially expressed genes (log2FC > 2, p-value < 0.05) from YUMM1.7^{OVA} N^{TT} and R^{TT} cancer cells sorted from tumors and analyzed by RNA-sequencing.

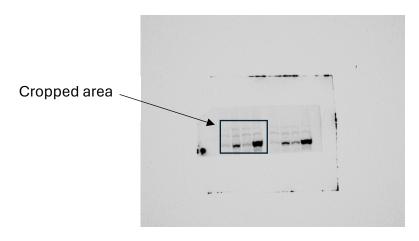
Supplementary Table 4: Differentially expressed genes in the TME and TME signatures. Gene lists depicting the differentially expressed genes in the immune TME of Ptgs1/2 KO and IRF3/7 R^{TT} compared to CTRL R^{TT} YUMM1.7^{OVA} tumors (log2FC > 1, p-value < 0.05) analyzed by scRNA-seq. Gene signatures derived (TME-COX and TME-IRF3/7) and their human orthologs are included.

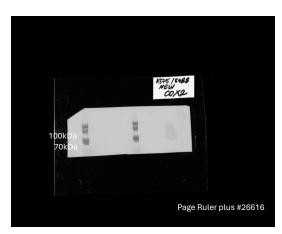
Supplementary Table 5: Meta-analysis studies. Main characteristics of studies included in the meta-analysis, including cancer type, numbers of patients, COX inhibitors used and immunotherapy specification.


Supplementary Table 6: Search query for meta-analysis. Contains the exact search query that was used for the meta-analysis in this study.

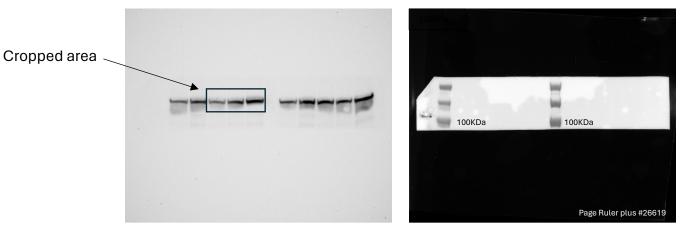

Supplementary Table 7: RT-qCPR primer and sgRNA list. Contains a list with all primer pairs used for RT-qPCR experiments and sgRNAs used for CRISPR/Cas9 knockouts.

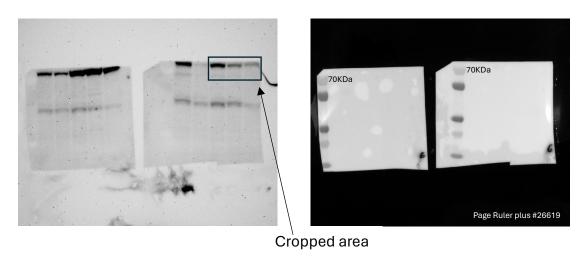
Supplementary Table 8: Antibody list. Contains a list with all antibodies used in this study for flow cytometry, immunofluorescence, western-blotting and *in vivo* and *in vitro* depletion experiments.


UNCROPPED WESTERN BLOT IMAGES


- 1. A375 Melanoma BLOT: Extended Data Fig. 5s
 - o HISTONE3 (18kDa)

o COX2 (74 kDa)




Histone control run on the same gel. Gel was cut for antibody incubation and development.

2. YUMM1.7 Melanoma BLOT: Extended Data Fig. 5m

Vinculin (~116kDa)
 *on left side for COX2 samples on right side for COX1 samples

o COX 1 (left) COX2 (right) ~74KDa

Vinculin control run on the same gel. Gel was cut for antibody incubation and development.