Supplementary Information: Bacterial microcompartment utilisation in the human commensal *Escherichia coli* Nissle 1917

Chania Clare¹, Jack W. Rutter¹, Alex J.H. Fedorec¹, Stefanie Frank², and Chris P. Barnes^{1,3}

¹Department of Cell and Developmental Biology, University College London, London, UK ²Department of Biochemical Engineering, University College London, London, UK ³Department of Genetics, Evolution and Environment, University College London, London, UK

E-mail: christopher.barnes@ucl.ac.uk

1 Extended materials and methods

Tables S1-S3 contain statistical analysis, Table S4 contains *eut* operon protein sequence homology between EcN and EcBW. Tables S5-S7 contain summaries of models used in Flux Balance Analysis.

Species	Condition	Estimated Carry Capacity	P-value	
	No addition	0.119 ± 0.00100	0.54	
FoDW	\mathbf{EA}	0.123 ± 0.00184	0.66	
ECDW	B_{12}	0.130 ± 0.00128	0.08	
	$EA + B_{12}$	0.121 ± 0.00356		
	No addition	0.140 ± 0.000980	0.0000055	
$\mathbf{F}_{\mathbf{c}}\mathbf{N}$	\mathbf{EA}	0.126 ± 0.00199	0.0000053	
LCIN	B_{12}	0.120 ± 0.00118	0.0000033	
	$EA + B_{12}$	0.262 ± 0.00367		
	No addition	0.0793 ± 0.000516	0.00000029	
Sont	\mathbf{EA}	0.0811 ± 0.000413	0.00000029	
Sent	B_{12}	0.0795 ± 0.000526	0.0000029	
	$\mathrm{EA} + \mathrm{B}_{12}$	0.341 ± 0.00384		

Table S 1: Test statistics corresponding to values from Fig 2F, where the carry capacity
is estimated with the Gompertz function \pm standard error, where each condition for
each species if compared to $EA + B_{12}$

Species	Gene	Mean Fold Change	p-value
	EutS	30.051 ± 0.877	0.0000085
EcN	EutB	25.748 ± 0.890	0.000011
	EutR	12.740 ± 0.879	0.000000073
	EutS	219.176 ± 0.803	0.00000011
EcBW	EutB	1.245 ± 0.812	0.75
	EutR	170.989 ± 0.822	0.0000015

Table S 2: Test statistics corresponding to values from Fig 3B-C, where the mean fold change of cultures supplemented with $EA + B_{12}$ are compared to those supplemented with glucose instead, \pm SEM.

Table S 3: Test statistics corresponding to values from Fig 4E, where the mean NH_4^+ concentration \pm SEM is compared within each species when grown in media supplemented with either EA + B₁₂ or glucose as a carbon source.

Species	Condition	Mean $[NH_4^+]$	p-value
EcN	$\begin{array}{c} \mathrm{EA} + \mathrm{B}_{12} \\ \mathrm{Glucose} \end{array}$	$\begin{array}{c} 0.0360 \pm 0.000649 \\ 0.0228 \pm 0.000505 \end{array}$	0.000088
Sent	$\begin{array}{c} \mathrm{EA} + \mathrm{B}_{12} \\ \mathrm{Glucose} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.5353

Protein	No. amino acids	% identity between EcN and BW25113
eutS	111	100.00
eutP	159	97.48
$\mathrm{eut}\mathrm{Q}$	233	97.00
eutT	267	100.00
eutD	338	99.70
$\mathrm{eut}\mathrm{M}$	97	100.00
eutN	95	100.00
eutE	467	98.93
$\mathrm{eut}\mathrm{J}$	278	98.56
eutG	395	98.73
${ m eutH}$	408	99.02
eutA	467	98.07
eutB	453	99.78
eutC	295	99.66
eutL	219	97.26
${ m eutK}$	166	98.80
eutR	350	98.86

Table S 4: Protein sequence homology of proteins comprising eut operon between EcN and BW25113

Table S 5: Summary of each model used in this study

	iJO1366 BW25113 2011	iHM1533 EcN 2022	STM_v1.0 Sent 2011
Chromosome size of strain (Mb)	4.63	5.44	4.86
Number of reactions	2583	3143	2546
Number of metabolites	1805	2261	1802
Number of genes	1367	1533	1271
Compartments	cytosol; extracellular space; periplasm	cytosol; extracellular space; periplasm	cytosol; extracellular space; periplasm

Table S 6: Inclusion of metabolites of the eut BMC metabolic pathway within eachmodel. Metabolite ID and names are given as standard GEM notation, and each model name isgiven alongside its species and year the model was created.

Metabolite Name	Metabolite ID	iJO1366 EcBW 2011	iJO1366_CC EcBW 2024	iHM1533 EcN 2022	iHM1533_CO EcN 2024	C STM v1.0 Sent 2011
Acetaldehyde	acald_e	×	×	×	×	×
Acetaldehyde	acald_c	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Acetyl	$actp_c$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
phosphate						
Acetyl-CoA	accoa_c	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ammonium	nh4_e	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ammonium	nh4_p	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ammonium	nh4_c	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Coenzyme A	coa_c	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ethanol	$etoh_{-}e$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ethanol	$etoh_p$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ethanol	$etoh_c$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ethanolamine	$etha_e$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ethanolamine	$etha_p$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ethanolamine	etha_c	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
H+	$h_{-}e$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
H+	$h_{-}p$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
H+	h_c	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
NAD	nad_c	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
NADH	nadh_c	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Phosphate	pi_e	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Phosphate	pi_p	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Phosphate	pi_c	\checkmark	\checkmark	✓	✓	\checkmark

Reaction ID	Reaction	iJO1366 EcBW 2011	iJO1366_CC EcBW 2024	iHM1533 EcN 2022	iHM1533_CC EcN 2024	C STM v1.0 Sent 2011
Ex_acald_e	$acald_e \ll >$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ALCD2x	$\begin{array}{l} {\rm etoh_c+nad_c} \\ {\rm <=>acald_c+h_c+} \end{array}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	$nadh_c$					
EX_nh4_e	$nh4_e \ll >$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\rm NH4tpp$	$nh4_p <=>nh4_c$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
NH4tex	$nh4_e \ll nh4_p$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$Ex_{etoh_{e}}$	$etoh_{-}e <=>$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ETOHtrpp	$etoh_p <=> etoh_c$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ETOHtex	$etoh_e <=> etoh_p$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ETHAAL	$etha_c -> acald_c +$ nh4 c	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
EX_etha_e	etha_e ->	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ETHAt2pp	$etha_p + h_p$ ->etha_c + h_c	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ETHAtex	$etha_e <=> etha_p$	\checkmark	×	×	\checkmark	\checkmark
Ex_h_e	$h_e \ll >$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ex_pi_e	$pi_e \ll >$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PItex	pi_e <=>pi_p	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PTAr	$accoa_c + pi_c$ $<=>actp_c + coa_c$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Htex	$\mathrm{h_e} <=>\mathrm{h_p}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

 Table S 7: Inclusion of reactions of the eut BMC metabolic pathway within each model.

 Reaction ID and names are given as standard GEM notation, and each model name is given alongside its species and year the model was created.

2 Extended results

Figure S 1: **EA-dependent growth in** *E. coli* **Nissle 1917.** Growth curves of EcBW (A), EcN (B), and *S. enterica* (C) when grown in M9 supplemented with either glucose alone, or EA, vitamin B_{12} and glucose, in triplicate. The mean and standard error are shown with a solid line and a pale ribbon, respectively, and the data was fitted with the Gompertz function shown by the respective dashed lines.

Figure S 2: Metabolite flux prediction in *E. coli* Nissle 1917. (A & B) Predicted flux from the FBA when the model is supplied with either EA or glucose as the sole carbon source, respectively.