

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Modelling geographical accessibility to support disaster response and rehabilitation of a health care system: An impact analysis of Cyclones Idai and Kenneth in Mozambique

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039138
Article Type:	Original research
Date Submitted by the Author:	05-Apr-2020
Complete List of Authors:	Hierink, Fleur; University of Geneva, Institute of Global Health; University of Geneva, Institute for Environmental Sciences Rodrigues, Nelson; UNICEF Mozambique Muñiz, Maria; United Nations Childrens Fund, Eastern and Southern Africa Regional Office Panciera, Rocco; United Nations Childrens Fund, Health Section Ray, Nicolas; University of Geneva, Institute of Global Health; University of Geneva, Institute for Environmental Sciences
Keywords:	International health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Organisation of health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Geographical mapping < TROPICAL MEDICINE, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Modelling geographical accessibility to support disaster response and rehabilitation of a health care system:

An impact analysis of Cyclones Idai and Kenneth in Mozambique

Fleur Hierink^{1,2}, Nelson Rodrigues³, Maria Muñiz⁴, Rocco Panciera⁵, Nicolas Ray^{1,2}

1. Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland

2. Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland

3. The United Nations Children's Fund Mozambique, Maputo, Mozambique

4. The United Nations Children's Fund, Eastern and Southern Africa Regional Office, Nairobi Kenya

5. Health section, The United Nations Children's Fund, New York, United States of America

CORRESPONDENCE:

Fleur Hierink

fleur.hierink@unige.ch

GeoHealth group

Institute for Environmental Sciences

Office B401, UNI CARLVOGT

66 Bd Carl Vogt, 1205 Geneva

Switzerland

KEYWORDS:

en's Fι International health services, organisation of health services, geographical mapping, risk management

2 3	1	ABSTRACT
4 5	2	Objectives
6 7	3	Modelling and assessing the loss of geographical accessibility is key to support disaster
8 9	4	response and rehabilitation of the health care system. The aim of this study was therefore
10 11	5	to assess post-disaster travel times to functional health facilities and analyze population
12 13	6	coverage losses after Cyclones Idai and Kenneth that affected Mozambique in 2019.
14 17	7	
15 16 17 18 19 20 21 22 23 24 25 26	8	Setting
	9	We modeled travel time of the population to the nearest functional health facility in two
	10	cyclone-affected regions in Mozambique. Modelling was done using AccessMod 5, where
	11	roads, rivers, lakes, flood extent, topography, and landcover datasets were overlaid with
	12	health facility coordinates and high resolution population data to obtain population
	13	coverage statistics under different travel scenarios.
27 28	14	
29 30 31 32 33 34 35 36 37 38 39 40	15	Outcome measures
	16	Travel time to functional health facilities and population coverage statistics were used to
	17	identify spatial differences between pre-disaster and post-disaster geographical
	18	accessibility.
	19	
	20	Results
40 41	21	We found that population coverage significantly decreased in the flood affected districts, as
42	22	a result of reduced travel speeds, road constraints and non-functional health facilities
43 44	23	(p<0.05). In Idai affected districts, population coverage decreased from 78.8% to 52.5%,
45 46	24	implying that 136,941 children under 5, were no longer able to reach the nearest facility
47 48	25	within 2 hours travel time. In Kenneth affected districts, population coverage decreased
49 50	26	from 82.2% to 71.5%, corresponding to 14,330 children under 5 having to travel more than
51 52	27	2 hours to reach the nearest facility. Damage to transport networks and reduced travel
53 54	28	speeds resulted in the most substantial population coverage losses in both Idai and Kenneth
55	29	affected districts.
50 57	30	
58 59 60	31	

1 2		
3	32	Conclusion
5	33	Post-disaster accessibility modelling can increase understanding of spatial differences in
6 7	34	geographic access to care in the direct aftermath of a disaster and can inform targeting and
8 9	35	prioritization of limited resources. Our results reflect opportunities for integrating
10 11	36	accessibility modelling in early disaster response, and to inform discussions on health
12 13	37	system recovery, mitigation and preparedness.
14 15	38	
16 17 18	39 40	STRENGTHS AND LIMITATIONS OF THIS STUDY
19 20	41	This is the first study presenting the applicability of post-disaster geographical
21	42	accessibility modelling.
22	43	The approach enables quantification of disaster impacts on geographical health care
24 25	44	accessibility to prioritize post-disaster interventions and to build resilience for future
26 27	45	disasters.
28 29	46	• To account for uncertainty of the assumed travel speeds, we considered multiple
30 31	47	possible scenarios.
32 33	48	Data from various sources were combined to represent the post-cyclone situation as
34 35	49	realistically as possible, but since data gathering was ongoing, it was expected that
36 27	50	some data were incomplete or not fully processed at the time of usage.
38	51	Our accessibility modelling assumes that patients always travel to the nearest health
39 40	52	facility. However, literature has shown that patients sometimes bypass health
41 42	53	facilities in search of higher quality care in Mozambique
43 44	54	
45 46		
47 48		
49		
51		
52 53		
54 55		
56 57		
58 59		
60		

2	
3 1	55
4 5	56
6 7	57
8 9	58
9 10	50
11 12	59
13 14	60
14	61
16 17	62
18 10	63
20	64
21 22	65
23 24	66
25	67
26 27	68
28 29	69
30 31	70
32	71
33 34	71
35 36	72
37	/3
38 39	74
40 41	75
42	76
43 44	77
45 46	78
47	79
40 49	80
50 51	81
52	82
55 54	02 02
55 56	00
57 58	84
59	85
60	06

55 1. INTRODUCTION

6 Geographical proximity to health facilities is a crucial aspect of accessibility, utilization and 7 the provision of health services to populations in need ¹. Road networks and natural barriers 8 (such as rivers, water bodies, and flooded areas) are important factors that determine the 9 geographical (i.e. physical) accessibility of a population to the network of functional health 50 facilities. During natural disasters, roads and health facilities are often damaged, yet health 51 care demand rises substantially at the same time due to injuries and increased 52 communicable disease risks ^{2,3}. The interplay between the disruption of health 3 infrastructure, transport network, and the rise in health care demand, is expected to disable 4 a large portion of the population's access to care they need in the aftermath of a disaster 3,4 . 5 This is especially the case in already medically underserved regions, where the event can 6 lead to new health disparities or exacerbate existing ones ².

8 In March and April 2019, two cyclones made landfall in Mozambique. This was the first time 9 in history that two strong cyclones hit Mozambique consecutively in the same season ⁵. On 0 14 March 2019 Tropical Cyclone Idai made landfall in Beira, followed by a week of heavy '1 rains and winds, the storm ended on 21 March 2019⁶. In the middle of the humanitarian 2 emergency response for Cyclone Idai, a second cyclone hit Northern Mozambique. Cyclone 3 Kenneth, a category 4 cyclone and the strongest recorded cyclone on the African continent, 4 made landfall in Pemba, Cabo Delgado on 25 April 2019^{7,8}. The two cyclones combined had 5 a death toll of 648 (603 fatalities due to Idai and 45 deaths caused by Kenneth) and left over 6 2.2 million people in need of humanitarian assistance ⁵. The cyclone's destruction left entire 7 communities isolated for weeks due to flood waters, destroyed telecommunication networks, and extensive road damage ^{9,10}. In addition, stagnant waters, inaccessibility to 8 9 safe water and sanitation, and overcrowding in temporary accommodation led to a cholera outbreak and a significant increase in malaria cases ^{5,8,11,12}. Major damage to 113 health 80 31 facilities were reported after both cyclones, causing severe disruption in health service 32 provision and restricting the population's to access the adequate health care ^{13,14}. 3

84 Cyclones impact entire populations, however the burden disproportionately affects children
85 and women ¹⁵. It is estimated that for cyclones Idai and Kenneth more than 50% of the
86 affected population were children, and with flood waters rising above 6 meters, their

movements to safety and health care were particularly limited ⁵. Geographic inaccessibility to health facilities can interrupt childhood immunization, or prevent receipt of treatment for injuries ^{16,17}.

Although many humanitarian actors have estimated substantial losses in health care accessibility and availability ^{5,9,10,13,18}, the quantitative impact of Cyclone Idai and Kenneth on geographical accessibility to health care for children under the age of 5 across the most affected districts in Mozambique remains unknown. Modelling physical accessibility and population coverage by means of travel time to health facilities, can give important insights for targeting humanitarian action and preparing for future disasters in a coordinated manner¹⁹. International efforts to support humanitarian responses on the ground have accelerated data gathering in the country, enabling post-disaster accessibility modelling by means of health facility damages, loss of road access, and barriers to movement such as flood waters ²⁰.

Currently, quantitative post-disaster accessibility assessments are not a part of standardized response guidelines, preventing coordinated and centralized decision making on temporary facility location to serve beneficiaries in the most optimal way ¹⁹. Since humanitarian actors often have to deal with limited resources, informed decision making on temporary facility locations and prioritization of health facility rehabilitation can prevent duplicated action and therefore enhances both financial and operational efficiency ^{21,22}.

This study presents a data processing and spatial accessibility modelling method to assess post-disaster accessibility to health facilities and analyze population coverage losses as a result of the disaster. The approach enables quantification of disaster impacts on geographical health care accessibility to prioritize post-disaster interventions and to build resilience for future disasters. This is the first study presenting the applicability of post-disaster geographical accessibility modelling.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	117	2. METHODS					
5	118	2.1 Overall meth	odology				
7	119	In this study, acc	essibility is measured	d as the travel	time to health	facilities an	nd coverage is
8 9	120	defined as the nu	umber or percentage	of people cov	ered or located	d within a ti	ravel time
10 11	121	catchment area ²	²³ . To model accessib	ility to health	facilities, we co	onsider top	ography, road
12 13	122	networks, constr	aints to movement (e.g. rivers, lake	es and flood ex	tent), targe	t population
14	123	distribution, and	the locations of func	tional health f	acilities. We ad	ccessed and	l prepared
16	124	multiple data lay	ers (Table 1) assemb	led in the afte	rmath of Cyclo	ne Idai and	Kenneth,
17 18	125	between April 20)19 and September 2	019. A total of	three scenario	os were pre	pared,
19 20	126	representing 1) p	ore-Idai and pre-Kenr	neth, 2) post-lo	lai, and 3) post	-Kenneth si	ituations. We
21 22	127	modeled populat	tion travel time to the	e nearest heal	th facility and p	population	coverage, for
23 24	128	two cyclone-affe	cted regions.				
24	129						
26 27	130	Table 1 – Overvie	ew of data layers and	l data sources			
28 29		Layer name	Source ^a	Source date ^b	Download date	Туре	Original resolution
30 31 22		Administrative boundaries	INE & UN-OCHA ROSEA (HDX)	02.04.19	31.07.19	Polygon	-
32 33		Land cover	Copernicus	15.11.18	31.07.19	Raster	100 meters
34		Elevation	SRTM CGIAR	25.11.18	20.09.19	Raster	30 meters
35		Rivers and lakes	DNGRH	12.8.19	19.9.19	Polygon	-
36		Flood extent Idai	Sentinel 1 (HDX)	19.03.19	31.07.19	Polygon	-
37		Flood extent	Copernicus EMSR354	02.05.19	31.07.19	Polygon	-
38		Kenneth	(INGC Geonode)				
39 40		Roads	OpenStreetMap (INGC Geonode)	25.11.18	07.08.19	Lines	-
41 42		Road damages (Idai/Kenneth)	LOG-WFP	19.03.19/ 03.05.19	23.09.19	PDF file	-
43		Health facilities	SIS-MA (HDX)	31.12.17	08.08.19	Points	-
44 45		Health facilities	Provided by WHO-	48h – 1 week	17.09.19	Points	-

134 54 135 Program 55

131

132

133

damages

density

Population

56 136 ^b Source date represents the imagery acquisition date for the flood extents and the release date for all other data

Mozambique

Facebook/CIESIN

population density

- 57 137 58
- 59 60

45

46

47

48

49 50

51

52 53 post cyclone

^a Abbreviations: CIESN = Center for International Earth Science Information Network, HDX = Humanitarian Data Exchange,

INE = National Institute for Statistics Mozambique, INGC = National Institute for Disaster Management Mozambique, SIS-

Office for the Coordination of Humanitarian Affairs Southern and Eastern Africa, LOG-WFP = Logistics Cluster World Food

MA = Ministry of Health Mozambique, SRTM = Shuttle Radar Topography Mission, UN-OCHA ROSEA = United Nations

01.10.18

06.08.19

Raster

30 meters

3 4	138	2.2 Data sources and preparation
5	139	The projection, resolution and alignment of geospatial data was processed using Quantum
0 7	140	Geographical Information System (QGIS) (version 3.4) ²⁴ and, to a limited extent, R (version
8 9 10 11 12 13 14	141	3.5.2) ²⁵ . As indicated in Table 1, most data layers were retrieved from open data platforms.
	142	All raster- and shapefiles were saved in the projection system of Mozambique, i.e. UTM-37S
	143	[EPSG:32737]. The data preparation process is briefly described below, and fully detailed in
	144	Supplementary 1.
16 17	145	
17	146	Elevation data were obtained from the Shuttle Radar Topography Mission (SRTM) in tiles at
19 20	147	a resolution of 30 meters ²⁶ . Slopes were derived from it and accounted for when modelling
21 22	148	walking movements.
23 24	149	
25 26	150	Land cover data was downloaded for the whole African continent at 100 meter resolution
27	151	from Copernicus Global Land Service ²⁷ and was clipped to the extent of Mozambique. As
20 29	152	analyses were carried out at 30-meter resolution the land cover raster was resampled at a
30 31	153	resolution of 30 meters, using nearest neighbor interpolation.
32 33 34 35 36 37 38	154	
	155	The pre-cyclone road network dataset was retrieved from Open Street Map (OSM) through
	156	the Geonode Platform of the National Institute for Disaster Management Mozambique
	157	(INGC), and linked to the road damage information as indicated by the Logistics Cluster of
40	158	the World Food Program (LOG-WFP) ^{28,29} . Historical post-cyclone status of roads and road
41 42	159	segments were manually digitized from pdf maps provided by LOG-WFP. The maps were
43 44	160	cross-referenced with the OSM road network layer, to include post-cyclone road damage
45 46	161	status, i.e. 1) open 2) restricted 3) closed. Road damages as a consequence of cyclones Idai
47 48	162	and Kenneth were taken from maps dated March 19 and May 3 2019, respectively (Table 1)
49	163	^{28,29} . Information on road type and damage were combined in order to obtain unique road
51	164	type-damage combinations.
52 53	165	
54 55	166	Information on rivers and lake layout were obtained as shapefiles from the National
56 57	167	Directorate for Water Resource Management (DNGRH). Only primary rivers and lakes were
58 59	168	considered as barriers to movement, under the assumption that smaller rivers and streams
60	169	were passable by the population. Flood extents for Idai (on 19 March 2019) and Kenneth (on

Page 9 of 32

BMJ Open

1 2		
3 4	170	2 May 2019) were sourced as shapefiles from Sentinel-1 and Copernicus EMSR354,
5	171	respectively. The flood extents were visually inspected and found to be largest on those two
7	172	dates, and thus represent the biggest constraints for health care access. All flooded areas
8 9 10 11 12 13	173	were treated under two scenarios: 1) as being impassable, under the assumption that
	174	people avoid traversing flood water to prevent further injury, 2) as being passable by foot at
	175	an average walking speed of 1.5 km/h. In the first scenario, health facilities located on flood
14 15	176	extents were always treated as inaccessible since they are located on barriers.
16	177	
17	178	High-resolution population density estimates for children under five were obtained from the
19 20	179	Facebook Connectivity Lab and Center for International Earth Science Information network ³⁰
21 22	180	with a 30-meter resolution.
23 24	181	
25 26	182	Additionally, geographic coordinates of all villages (i.e. communities) in Idai-affected
27	183	districts were obtained from UNICEF Mozambique, which had gathered this information
20 29	184	through a community mapping initiative conducted by health officials, 6 to 8 months before
30 31	185	Cyclone Idai made landfall. These community locations were used to extract pre- and post-
32 33	186	cyclone travel time for each community to the nearest functional health center.
34 35	187	
36 37	188	The geographic coordinates of all health facilities were sourced from the health
38	189	management information system, Ministry of Health in Mozambique (SIS-MA). Data
40	190	cleaning was undertaken in cases where the geographic coordinates for health facilitates
41 42	191	were located outside the international border of Mozambique or for coordinates falling on
43 44	192	barriers to movement (Supplementary 1). Information on damaged health facilities was
45 46	193	provided in tabular format by the World Health Organization (WHO). The health system in
47 48	194	Mozambique comprises four levels; the primary level consists of urban and rural health
49	195	centers, the secondary level consists of general, rural and district hospitals, the tertiary level
51	196	comprises provincial capital hospitals, and quaternary facilities comprise the central and
52 53	197	specialized hospitals ³¹ . Health facilities of all levels were included in the model.
54 55	198	
56 57	199	Districts that were most affected by Cyclones Idai and Kenneth ("cyclone-affected districts",
58 59 60	200	thereafter) were identified in close collaboration with UNICEF and humanitarian responders.

Page 10 of 32

1 2		
3 4	201	All statistics presented below were calculated for these identified districts, with 26 such
5	202	districts in the Idai-affected region and 11 districts in the Kenneth-affected region (Figure 1).
0 7	203	
8 9	204	2.3 Geographical accessibility modelling
10 11	205	To model travel times and population coverages, we used AccessMod 5 (version 5.6.30) ^{23,32} .
12 13	206	AccessMod models geographic accessibility using terrain-based least-cost path distance
14 15	207	calculation. This open-source software has been successfully applied in many different
16 17	208	settings, among which accessibility and referral assessments of health facility networks,
18	209	optimization modelling of health programs in obstetric and neonatal care (EmONC) ³³ ,
19 20	210	primary health care ³⁴ , emergency care ³⁵ , referral times ³⁶ , and treatment of fever cases ³⁷ .
21 22	211	
23 24	212	Using the data preparation modules in AccessMod, we overlaid the roads, rivers, lakes,
25 26	213	flood extent, and landcover datasets to obtain a single 30-m resolution raster data set, to
27 28	214	which different travel scenarios were applied.
20 29 30 31	215	
	216	The travel scenarios (presented in Supplementary 2) were derived using local information as
32 33	217	model inputs on pre-cyclone and post-cyclone travel speeds and travel modes. Both
34 35	218	scenarios were developed in close collaboration with UNICEF Mozambique, with focus on
36 37	219	geographic accessibility to functional health facilities for the target population of children
38 39	220	under 5. Post-cyclone travel speeds were adjusted for wet weather conditions as heavy
40 41	221	rains persisted in the direct aftermath of both cyclones. During the post-cyclone situation,
41	222	restricted and closed roads were assumed to be unpassable by any vehicle; but where flood
43 44	223	waters were not inundating roads, they were perceived to be accessible by foot. All
45 46	224	landcover classes outside of the road network and the barriers were considered as passable.
47 48	225	We assumed a functional bridge where a road segment crossed a river.
49 50	226	
50 51	227	To account for uncertainty of the assumed travel speeds, we also considered both pre- and
52	228	post-cyclone motorized travel speeds with a 20% slower and 20% faster speed, as adapted
54 55	229	from Ouma et al. (2018) ³⁵ . Population coverage of the network of health centers was
56 57	230	calculated at the 2-hour maximum travel time limit. This limit was deemed appropriate to
58 59	231	capture the extent of effective access, and is often used in health accessibility studies,
60	232	notably in maternal health (Ebener et al., 2019). A paired T-test was used to check for

1 2							
3 4	233	statistically significant difference between pre-cyclone and post-cyclone population					
5 6	234	coverage (R version 3.5.2).					
7 8	235						
9 10	236	FIGURE 1					
11	237						
12 13	238	2.4 Patients and the public involvement					
14 15	239	There was no patient or public involvement in this study. Health facility functionality status					
16 17	240	was shared in tabular format by WHO. All other geospatial data were publicly available.					
18	241						
19 20	242	3. RESULTS					
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	243	3.1 Pre-cyclone accessibility					
	244	Pre-cyclone coverage in Idai-affected districts (Figure 3a) was highest in Cidade De Chimoio					
	245	and Cidade Da Beira, with 99.8% and 99.5% of all children under 5 covered within the 2					
	246	hours catchment limit, respectively (Supplementary 3). However, this coverage ranged from					
	247	35.8-99.8% in all Idai-affected districts (Supplementary 3). Absolute pre-cyclone coverage					
	248	was also highest in Cidade De Chimoio and Cidade Da Beira, where 57,476, and 66,135					
	249	children were within 2 hours travel time from a health facility (Figure 2). In Kenneth-					
	250	affected districts (Figure 1b), pre-cyclone coverage was highest in Cidade De Pemba, where					
36 37	251	100% of the children under 5 were expected to be able to reach a health facility within 2					
38	252	hours travel time (Supplementary 4). The lowest pre-cyclone coverage was seen in Mazeze,					
39 40	253	where only 52.6% of children under 5 were within 2 hours travel time from a health facility					
41 42	254	(Supplementary 4). Absolute pre-cyclone coverage in Kenneth-affected districts was highest					
43 44	255	in Cidade De Pemba (n = 35,467 children) and Chiure (n= 18,257 children) (Figure 2). Figure					
45 46	256	3a and Figure 4a present the pre-cyclone travel time rasters for the cyclone-affected areas.					
47	257						
40 49	258	FIGURE 2					
50 51	259						
52 53	260	3.2 Accessibility losses in affected districts					
54 55	261	Geographical accessibility to health care significantly decreased in the cyclone affected					
56 57	262	districts, as a result of reduced travel speeds, road constraints and non-functional health					
58 50	263	facilities (Figure 3B and Figure 4B). In Figure 3C, ratios of pre-cyclone and post-cyclone					
60	264	travel time rasters are mapped for Idai-affected districts, with ratios close to 1 indicating					

similar travel times pre- and post-cyclone, and ratios closer to 0 indicating large pre- and post-cyclone accessibility differences. Figure 4C presents the same results for Kenneth-affected districts. Regions shown in red indicate localities with relatively large differences between pre- and post-cyclone travel times (Figure 3C). In the Idai-affected region, especially in the districts surrounding the flood water and closed roads, accessibility is severely impacted. In Idai affected districts, the percentage of children under 5 covered within 2 hours travel time, generally decreased from 78.8% to 52.5%, implying that 136,941 previously covered children under 5, lost timely access to health care (Table 2).

Table 2- Overview of pre- and post-cyclone population coverage in Idai and Kenneth

275	5 affe	cted distr	icts.		
				Pre	-cyclone
_					
	Cyclone	Travel	P-value*	Children	Childre

Cyclone	Travel	P-value*	Children	Children	Children	Children	Children <5	Children <5
	time		<5 covered	<5 covered	<5 covered	<5 covered	coverage	coverage
			(nr.)	(%)	(nr.)	(%)	loss (nr.)	loss (%)
	30 minutes	0.009	298432	57.3	153842	29.5	144591	27.7
Idai	1 hour	0.002	346409	66.5	206610	39.6	139799	26.8
	2 hours	< 0.001	410696	78.8	273755	52.5	136941	26.3
	30 minutes	0.001	131120	72.0	63953	48.8	30415	23.2
Kenneth	1 hour	0.010	99056	73.8	86997	64.8	12060	9.0
	2 hours	0.039	110348	82.2	96019	71.5	14330	10.7

Post-cyclone

*P-values were obtained through a paired T-test.

The largest relative population coverage decline, within 2 hours travel time, was observed in Machanga, where 77.6% of the previously covered population was no longer able to access a facility under 2 hours in the aftermath of Idai (Figure 2). In terms of absolute coverage, Nhamatanda was the heaviest affected district, with a coverage loss of 25,121 children under 5, followed by Morrumbala (n = 19,554 children), Cidade Da Beira (n = 17,355 children), and Buzi (n= 9,949 children) (Figure 2). Uncertainty modelling, by accounting for 20% slower and 20% faster motorized travel speeds, indicated localities with travel time differences up to 3-hours comparing slower and faster travel speeds (Figure 3D). This information indicates where accessibility and coverage losses may be either under- or overestimated, which can help guide resource allocation for decreasing this uncertainty. Relative population coverage in all Kenneth-affected districts decreased from 82.2% to 71.5%, corresponding to 14,330 children having lost access to the nearest facility within 2

Page 13 of 32

BMJ Open

ว
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10
10
20
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
20
70
4U 41
41

hours travel time (Table 2). The most affected district in terms of relative coverage loss was Macomia, where 88.9% of previously covered children lost access (Supplementary 3-Supplementary 4). Mazeze was the heaviest affected district in terms of absolute coverage loss, as 5,496 children lost access in the aftermath of cyclone Kenneth, followed by Macomia (n= 3,727 children), Chiure (n= 2,307 children), Quissanga (n= 1,270 children) and Mueda (n= 750 children) (Figure 2). Pre-cyclone population coverage significantly (p < 0.05) differed from post-cyclone population coverage under all travel time limits (30 minutes, 1 hour, 2 hours) and for both cyclones (Table 2). Since flood waters slowly receded in the days/weeks after the cyclones, we ran an additional scenario where flood waters were passable at a 1.5km/h walking speed. Considering this scenario, absolute coverage losses for Idai-affected districts within 2 hours travel time were highest in Morrumbala (n= 29,566 children), Nhamatanda (n= 25,758 children), Dacata (n= 8,914 children), and Bùzi (n= 8,757 children). In Kenneth-affected districts, Mazeze (n= 6,167 children), Chiure (n= 4,684 children) and Macomia (n= 3,727 children) had the highest coverage losses in 2 hours catchments under the passable scenario. 3.3 Travel time in affected communities The most affected villages in Idai-affected districts, in terms of reduced accessibility to the nearest health facility were communities located in the district Bùzi and Muanza in Sofala province. The community Mucinemo in Bùzi was found to have a pre-cyclone travel time of 1.3 hours to the nearest health facility. However, this travel time upsurged to 63.6 hours in the direct aftermath of cyclone Idai (Supplementary 5-Supplementary 6). Generally, the 6

most affected communities in terms of accessibility in Idai affected districts all had a pre-

cyclone travel time between 1 hour and 3 hours, while all post-cyclone travel times increased to over 55 hours (Supplementary 6). Overall, post-cyclone accessibility ranged from some minutes up to 78 hours, with the highest travel time for the community of

Chipota, Muanza.

FIGURE 3 & 4

3.4 Health facility closures The sole effect of non-functionality of health facilities was isolated by comparing two separate scenarios; 1) a post-cyclone scenario where all health facilities were considered functional, and 2) a post-cyclone scenario where functionality status was considered. By comparing these scenarios to the pre-cyclone accessibility, the coverage losses caused by the disruption to transportation only (i.e. adjusted travel speeds and road constraints) could be isolated from the reduction in coverage due to the damage to health facilities (i.e. non-functional health facilities), providing a way to assess the likely impact of future programs aimed at reinforcing health facilities for disasters. In order to make these comparisons, both scenarios were run under the assumption that flood waters were fully passable. In case all health facilities remained functional in Idai-affected districts (i.e. disruption was due to transportation only), the overall coverage within 2 hours travel time would decrease from 79.3% to 57.7%, a difference of 21.6% (n = 112,538 children). Damage to health facilities caused an additional coverage decline of 5.3% (n = 27,840 children) in Idai-affected districts. However, hospital closures did not evenly affect all districts. In 17 out of 26 Idai-affected districts, hospital closures had no additional effect on accessibility, implying that coverage losses were only caused by disruption to transportation networks. However, in the remaining 9 Idai-affected districts, hospital closures were responsible for an additional 1.9-59.7% coverage loss within 2 hours catchment. Health facility closures in Machanga affected the relative coverage the most, with 59.7% coverage loss (n= 3,642 children) caused by non-functionality of 3 out of 6 health facilities. Absolute coverage losses as an effect of non-functional health facilities, were highest in Nhamatanda, where 12,946 (31.0%) children under 5 years old lost access due to health facility closures. In Nhamatanda, 9 out of 16 health facilities became unfunctional as a consequence of Cyclone Idai. Health facility closures did not have an additional effect on post-cyclone accessibility in Kenneth affected districts.

1 2					
- 3 4 5 6 7 8 9 10 11 12 13	349	4. DISCUSSION			
	350	Population coverage significantly decreased (p <0.05) and travel times substantially			
	351	increased in the direct aftermath of the cyclones. Damage to transport networks and			
	352	reduced travel speeds resulted in the most substantial population coverage losses in both			
	353	Idai- and Kenneth-affected districts.			
	354				
14 15	355	In a post-disaster setting, access to health care is essential for effective response and			
16	356	recovery ³⁸ . The results of our study can be implemented beyond the response phase of the			
17 18	357	cyclones. Although the emphasis of the results is on identification of population coverage			
19 20	358	losses on district level directly post-cyclone, the information presented here also provides a			
21 22	359	platform for discussing health system recovery, mitigation and preparedness ³⁹ .			
22 23 24 25	360				
	361	Early identification of underserved districts in the response phase can help reduce the			
26 27	362	impacts caused by health service interruption, through targeted deployment of medical			
28 29	363	services in districts with largest coverage losses and lowest baseline accessibility ⁴⁰ .			
30 31	364	Information on population coverage losses per cyclone affected district can support			
32	365	decision-making in the prioritization and planning of these medical services, by targeting			
33 34	366	where the deployment of medical services reaches the highest number of people. Growing			
35 36	367	access to open data and post-disaster information enables prompt accessibility modelling in			
37 38	368	the aftermath of a natural disaster and the growing ability to quickly assemble this data			
39 40	369	provides an opportunity to integrate accessibility modelling in the early response phase of a			
41	370	natural disaster, so resources can be allocated in an informed way and health impacts can			
42 43	371	be reduced.			
44 45	372				
46 47	373	Although flood waters receded in the weeks after the disasters, there were still 94 unsafe			
48 49	374	and non-functional health facilities in June 2019 as a consequence of substantial damages			
50 51	375	from the 2 cylones ^{14,41} . While it is critical to restore access to essential health services as			
51 52 53 54	376	soon as possible, the WHO reported that the reconstruction of all destructed and damaged			
	377	facilities may take up to 5 years ¹⁴ .			
55 56	378				
57 58	379	Furthermore, the extensive damages to the road network will continue to limit movements			
59	380	of the population, further complicating physical accessibility ⁵ . Our results have clearly			
00					

Page 16 of 32

pointed that road damages are responsible for a relatively larger loss of accessibility compared to the non-functionality of facilities. This calls for a concerted effort between road and health authorities when prioritizing reconstruction efforts. It was estimated by WHO that damages to (health) infrastructure translated into 200,000 people living more than 5 kilometers from a functioning health facility ⁴¹. However, our results, which provide a more realistic representation of accessibility, by accounting for topography, barriers to movement, and population distribution suggest this is an underestimate. We estimated that as a result of the damage to infrastructure and barriers to movement, 314,591 children under 5 live further than 1 hour travelling from a functioning health facility.

Fourteen percent of all health facilities in cyclone-affected districts have been damaged or fully destroyed. Rebuilding more resilient facilities and infrastructure, both in terms of physical structure and in coping capacity, are needed to prevent similar impacts in future disasters ⁴¹. The results presented here show the importance of joint efforts to reduce both impacts on health facilities and the existing road network. However, resources are limited, and efficient financial planning is needed to outline health system investment plans ^{5,11}. The results of our accessibility modelling can be used to prioritize health facility reconstruction for facilities with highest population coverages. Cyclone Idai for instance, caused the destruction of the only tertiary hospital in four affected provinces that serves an estimated 12 million people ³⁸. Targeting hospitals with coverage numbers like these, to be strengthened for future disaster impacts and to support them in providing continuity of care in the aftermath of future disasters can help reduce coverage losses and health impacts subsequently ⁴².

Due to the persisting health system disruption, humanitarian responders have identified the need to deploy community health workers (CHWs) and mobile outreach services to cover accessibility losses caused by the cyclones and to extend the reach of existing functional services ^{38,43}. These study findings can assist policymakers in identifying and prioritizing severely impacted districts and communities and regions where CHWs deployment can make a difference. Supplementary material 3 to 6 present the most affected communities in terms of increased travel time and coverage losses, directly post-cyclone. These analyses can be routinely updated to assess the effect of health system recovery on accessibility.

Page 17 of 32

BMJ Open

The districts that were most affected by Cyclone Idai and Kenneth were historically and are in the future also prone to disasters ^{38,41}. Ideally, accessibility modelling could be applied to simulate the effects of historical disasters on accessibility, as indicated in Supplementary 5 and Supplementary 6, so targeted preventive measures can be taken for future disasters. Post-disaster accessibility modelling can help identify weak spots in the geographical accessibility to the health system and helps to distinguish pre-existing accessibility gaps (Figure 3A and 4A) from coverage losses as a result of disasters (Figure 3B and 4B). This information is essential in health system recovery, strengthening and preparing for future disasters.

Limitations and uncertainties of this study were primarily linked to the data. The unfortunate event of natural disaster generally accelerates data availability in affected countries, but with the challenges of data quality, consistency, and format ⁴⁴. In this study, data from various sources were combined to represent the post-cyclone situation as realistically as possible, but since data gathering was ongoing, it was expected that some data were incomplete or not fully processed at the time of usage. Health facility coordinates for instance had duplicate occurrences in the database and health facility damages were solely indicated by name, which resulted in manual spatial merging. Co-occurrences of rivers that were indicated as floods were seen in the flood extent layer, minimally overestimating actual flood extents in some parts of the affected regions. Besides post-disaster data uncertainty, pre-disaster spatial data were also checked against background satellite imagery. The hydrography of primary rivers stored in the data was found not to be fully representative for actual hydrography in some regions, this could be a consequence of digitizing against a less granular spatial resolution ⁴⁵. In some cases, passages and bridges were detected on satellite background imagery where the OpenStreetMap road layer did not present presence of roads. The absence of roads in places were hydrography is potentially overestimated, results in isolated land pockets, where accessibility cannot be modelled, and the population is assumed to be fully isolated.

Next to data uncertainties, travel scenarios present a source of uncertainty as assumptions on travel speeds and modes are uniformly generalized across regions. In addition, we assumed that roads indicated as being restricted or closed, were considered only passable

3 4 5 6 7 8 9 10 11 12 13 14	445	by foot if they were not inundated. However, some of the restricted roads were in fact
	446	passable by 4x4 vehicles. Since car ownership and access to motorized transport by the
	447	target population was expected to be very low, especially post-cyclone, it was decided to
	448	run the accessibility model for restricted and closed roads only by means of walking.
	449	
	450	Our accessibility modelling assumes that patients always travel to the nearest health facility.
	451	However, literature has shown that patients sometimes bypass health facilities in search of
16	452	higher quality care in Mozambique ^{46,47} . Previous research, has shown that 30.8% of
17	453	pregnant women bypassed the nearest health facility in search of better prenatal care ⁴⁶ .
19 20	454	Our results can therefore present slight underestimations of actual travel times.
21 22	455	
23 24	456	Despite some of the limitations, the results presented here provide important initial
25 26	457	information for post-cyclone health system recovery which can be expanded through future
27	458	research. Since post-disaster needs continuously change based on the nature of the event
28 29	459	(e.g. receding flood waters, reconstruction efforts, and deployment of temporary medical
30 31	460	services), following studies should also be focused on the ability to dynamically model
32 33	461	accessibility based on these changes, so accessibility can be continuously monitored.
34 35	462	Additionally, it would be interesting to assess the effect of CHW deployment and mobile
36 37	463	outreach communities on improved accessibility and population coverage statistics, to
38	464	quantify the effect of these interventions.
40	465	
41 42	466	Post-disaster accessibility modelling can increase our understanding of spatial differences in
43 44	467	health care needs in the direct aftermath of a disaster and can help target limited resources
45 46	468	efficiently. Currently, there is no standardized approach among humanitarian agencies to
47 48 49 50 51 52 53 54 55	469	assess post-disaster accessibility losses, potentially resulting in uncoordinated decision
	470	making for temporary health facility locations which could result in duplicated efforts by
	471	humanitarian actors on the ground. The results in this paper not only reflect the importance
	472	of incorporating accessibility modelling in early disaster response, but also provide a
	473	platform for discussing health system recovery, mitigation and preparedness.
56 57	474	
58 59 60	475	

1		
2 3 4	476	AUTHOR CONTRIBUTION
5 6 7	477	Fleur Hierink: conceptualization, methodology, formal analysis, writing, editing,
, 8 9	478	visualization, supervision. Nelson Rodrigues: data sharing, methodology, writing, editing,
10 11 12	479	validation. Maria Muñiz: writing, editing. Rocco Panciera: methodology, writing, editing.
13 14	480	Nicolas Ray: conceptualization, methodology, writing, editing, validation, supervision.
15 16	481	
17 18 19	482	DATA SHARING STATEMENT
19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 90 41 42 43 44 45 46 47 48 90 51 52 54 55 56 57 58 90 50 51 52 53 54 55 56 57 58 50 51 52 53 54 57 58	483	Data available upon request.

2						
3	484	REFERENCES				
4 5	10F	1 Delemeter DL Messing ID Chartridge ANA et al Measuring geographic access to health				
6	485	1. Delamater PL, Messina JP, Shortridge AM, et al. Measuring geographic access to health				
7	486	care: raster and network-based methods. International journal of nealth geographics				
8	487	2012;11(1):15.				
9	488	2. Davis JR, Wilson S, Brock-Martin A, et al. The impact of disasters on populations with				
10	489	health and health care disparities. <i>Disaster medicine and public health preparedness</i>				
12	490	2010;4(1):30-38.				
13	491	3. Abbas HB, Routray JK. A semi-quantitative risk assessment model of primary health care				
14	492	service interruption during flood: Case study of Aroma locality, Kassala State of				
15	493	Sudan. International Journal of Disaster Risk Reduction 2013;6:118-28.				
16	494	4. Makanga PT, Schuurman N, Sacoor C, et al. Seasonal variation in geographical access to				
1/ 10	495	maternal health services in regions of southern Mozambique. International journal				
10 19	496	of health geographics 2017;16(1):1.				
20	497	5. UN-OCHA. Humanitarian Reponse Plan (2018-2019): revised following Cyclones Idai and				
21	498	Kenneth, May 2019.				
22	499	6. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. The American				
23	500	journal of tropical medicine and hygiene 2019:tpmd190285.				
24 25	501	7. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019,				
26	502	Período abrangido 9 a 22 de Setembro de 2019, 2019.				
27	503	8. Cambaza F. Mongo F. Anapakala F. et al. Outbreak of Cholera Due to Cyclone Kenneth in				
28	504	Northern Mozambique 2019 International journal of environmental research and				
29	505	nublic health 2019:16(16):2925				
30	506	9 Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues:				
32	507	Reliefweh: 2019 [undated 17 May 2019] Available from:				
33	508	https://reliefweb.int/report/mozambigue/after-cyclones-idai-and-kenneth-recovery-				
34	500	mazambiguo continuos accossod 16 Oct 2019				
35	509	10 UNICEE Ovelong response mid year sitron #12: Marsh July 2010 Mezambigue situation				
36	510	10. ONICEF. Cyclone response mid-year sitrep #12. March-July 2019. Mozambique situation				
37	511	11 Davi & Cyclone Idei: 1 month later, devectation paraists. The langest				
39	512					
40	513	2019;393(10181):1585.				
41	514	12. Kann R, Manmud AS, Schrödder A, et al. Rapid Forecasting of Cholera Risk in				
42	515	Mozambique: Translational Challenges and Opportunities. Prenospital and disaster				
43 44	516	medicine 2019;34(5):557-62.				
44	517	13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs				
46	518	remain [Report]. 3 May 2019 [Available from:				
47	519	https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai-				
48	520	<u>continues-health-needs-remain</u> .				
49	521	14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June				
50 51	522	2019. Available from: <u>https://www.who.int/emergencies/cyclone-idai/events-as-</u>				
52	523	they-happen accessed 16 October 2019.				
53	524	15. UNICEF. Strategy for health (2016–2030). New York: United Nations Children's Fund 2015				
54	525	16. Datar A, Liu J, Linnemayr S, et al. The impact of natural disasters on child health and				
55	526	investments in rural India. Social Science & Medicine 2013;76:83-91.				
56 57	527	17. Kuruvilla S, Bustreo F, Kuo T, et al. The Global strategy for women's, children's and				
57 58	528	adolescents' health (2016–2030): a roadmap based on evidence and country				
59	529	experience. Bulletin of the World Health Organization 2016;94(5):398.				
60						

1						
2						
5 4	530	18. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and				
5	531	Kenneth Operations Update 2: 24 June 2019, 2019.				
6	532	19. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization				
7	533	in post-disaster health care facility location decisions. Operations Research for				
8	534	Health Care 2017;12:43-59.				
9	535	20. Humanitarian Data Exchange. Mozambique 2019 [Available from:				
10	536	https://data.humdata.org/event/idai accessed 25 April 2019.				
12	537	21. Tapia AH, Maldonado E, Tchouakeu LMN, et al. Coordinating humanitarian information.				
13	538	Information Technology & People 2012				
14	539	22. Thévenaz C. Resodihardio SL. All the best laid plans conditions impeding proper				
15	540	emergency response. International Journal of Production Economics 2010:126(1):7-				
16 17	541	21.				
18	542	23. Ray N. Ebener S. AccessMod 3.0: computing geographic coverage and accessibility to				
19	543	health care services using anisotronic movement of natients. International journal of				
20	544	health geographics 2008-7(1):63				
21	545	24 OGIS geographic information system [program] 2019				
22	545	25. B: A Language and Environment for Statistical Computing [program] 5 version. Vienna				
25 24	540	Austria: P Foundation for Statistical Computing 2018				
25	547	26 Janvis A. Bouter H. Nolson A. et al. Hole field coomless SPTM data. International Control				
26	540	for Tropical Agriculture (CIAT) http://crtmcsicgigrorg 2008				
27	549	101 Tropical Agriculture (CIAT). <u>Intep.//sruncsicgiurory</u> 2008				
28	550	27. Buchnorn IVI, Smets B, Berteis L, et al. Copernicus Global Land Service: Land Cover 100m				
29 30	551	Collection 2: epoch 2015. Dataset of the global component of the Copernicus Land				
31	552	Monitoring Service. 2019				
32	553	28. LOG-WFP. IVIOZAMBIQUE: Access Constraints as of 19 March 2019, 2019.				
33	554	29. LOG-WFP. Mozambique - Cabo Delgado: Access constraints map 3 May 2019, 2019.				
34	555	30. Facebook Connectivity Lab and Center for International Earth Science Information				
35	556	Network - CIESIN - Columbia University. High Resolution Settlement Layer (HRSL).				
37	557	https://data.humdata.org/dataset/highresolutionpopulationdensitymaps-moz 201				
38	558	[accessed 6 August 2019].				
39	559	31. dos Anjos Luis A, Cabral P. Geographic accessibility to primary healthcare centers in				
40	560	Mozambique. International journal for equity in health 2016;15(1):173.				
41	561	32. WHO. Health economics: GeoAccess 2019 [Available from:				
42 43	562	https://www.who.int/choice/geoaccess/en/ accessed 15 March 2019.				
44	563	33. Ebener S, Stenberg K, Brun M, et al. Proposing standardised geographical indicators of				
45	564	physical access to emergency obstetric and newborn care in low-income and mid				
46	565	income countries. BMJ global health 2019;4(Suppl 5)				
47	566	34. Munoz UH, Källestål C. Geographical accessibility and spatial coverage modeling of the				
48 49	567	primary health care network in the Western Province of Rwanda. International				
50	568	journal of health geographics 2012;11(1):40.				
51	569	35. Ouma PO, Maina J, Thuranira PN, et al. Access to emergency hospital care provided by				
52	570	the public sector in sub-Saharan Africa in 2015: a geocoded inventory and spatial				
53	571	analysis. The Lancet Global Health 2018;6(3):e342-e50.				
54 55	572	36. Schmitz MM, Serbanescu F, Arnott GE, et al. Referral transit time between sending and				
56	573	first-line receiving health facilities: a geographical analysis in Tanzania. BMJ alobal				
57	574	health 2019;4(Suppl 5):e001568.				
58						
59 60						
00						

2		
3	575	37. Alegana VA. Wright JA. Pentrina U. et al. Spatial modelling of healthcare utilisation for
4	576	treatment of fever in Namibia. International journal of health aeographics
5	577	2012:11(1):6.
7	578	38. Moitinho de Almeida M. Guha-Sapir D. Why Mozambique's cyclones tell us disaster
8	579	prenaredness needs health at its core. The BMI opinion 2019 [Available from:
9	580	https://blogs.hmi.com/hmi/2019/05/10/mozambigues-cyclones-disaster-
10	581	nreparedness-needs-health-
11 12	582	core/?utm_source-twitter&utm_medium-bootsuite&utm_term=&utm_content=&u
12	583	tm_campaign=editors accessed 17 December 2019
14	587	39 Khan H. Vasilescu I.G. Khan A. Disaster management cycle-a theoretical approach
15	585	Journal of Management and Marketing 2008:6(1):43-50
16	202	40 Liu A. Sullivan S. Khan M. et al. Community boalth workers in global boalth: scale and
17	500	40. Liu A, Sullivan S, Khall M, et al. Community health workers in global health. Scale and
18 19	507	Scalability. Mount Sinal Journal of Medicine: A Journal of Translational and
20	588	Personalized Medicine 2011;78(3):419-35.
21	589	41. World Health Organization. As post-cyclone resettlement, 200 000 people lack access to
22	590	health services in Mozambique. Reliefweb, 2019.
23	591	42. World Health Organization. Natural disasters: protecting the public's health. Natural
24	592	disasters: protecting the public's health2000.
25	593	43. UNICEF. One year after Cyclone Idai, 2.5 million people in Mozambique remain in need
27	594	of humanitarian assistance: UNICEF prepares for more frequent and ferocious
28	595	disasters as a result of the climate crisis 2020 [Available from:
29	596	https://www.unicef.org/mozambique/en/press-releases/one-year-after-cyclone-
30	597	idai-25-million-people-mozambique-remain-need-humanitarian accessed 16 March
31	598	2020.
5∠ 33	599	44. Altay N, Labonte M. Challenges in humanitarian information management and
34	600	exchange: evidence from Haiti. <i>Disasters</i> 2014;38(s1):S50-S72.
35	601	45. Nelson T, Wulder M, Niemann K. Spatial resolution implications of digitizing aerial
36	602	photography for environmental applications. The Imaging Science Journal
37	603	2001;49(4):223-32.
38 30	604	46. Yao J. Agadianian V. Bypassing health facilities in rural Mozambique: spatial.
40	605	institutional, and individual determinants. BMC health services research
41	606	2018-18(1)-1006
42	607	47 Keyes FB Parker C 7 issette S et al Geographic access to emergency obstetric services:
43	608	a model incorporating nationt hypassing using data from Mozambique BMI Global
44 45	609	Health 2019:1(Suppl 5):e000772
45 46	610	neutin 2013,4(30ppi 3).000772.
47	010	
48		
49		
50		
51 52		
53		
54		
55		
56		
57		
50 59		

Figure 1 - Cyclone affected districts. (A) Idai affected districts. (B) Kenneth affected districts.

Figure 2- Absolute and relative reduction in population coverage pre- and post-cyclone Idai (A) and Kenneth (B). Labels on top of bars indicate absolute reduction in population coverage of children under 5. Labels under districts indicate relative reduction in population coverage. Maximum limits of the bars indicate the absolute pre-cyclone coverage within 2 hours travel time. Limits of the blue filled bar indicate the absolute post-cyclone coverage. The x-axis is ordered according to relative reduction in population coverage.

482x318mm (72 x 72 DPI)

Figure 3 – Accessibility modelling results for Idai districts. Pre-cyclone travel time raster (A). Post-cyclone travel time raster (B). Difference ratio raster between pre- and post-cyclone travel time (C). Uncertainty raster, as a result of the difference between -20% and +20% travel speed accessibility (D).

Figure 4 – Accessibility modelling results Kenneth districts. Pre-cyclone travel time raster (A). Post-cyclone travel time raster (B). Difference ratio raster between pre- and post-cyclone travel time (C). Uncertainty raster, as a result of the difference between -20% and +20% travel speed accessibility (D).

SUPPLEMENTARY MATERIAL

S1-Data preparation for use in AccessMod

All data preparation was carried out in Quantum Geographical Information System (QGIS) (version 3.4)²⁴ in limited combination with R (version 3.5.2)²⁵. As indicated in Table 1, most data layers were retrieved from open data platforms. All raster- and shapefiles were saved in the projection system of Mozambique, i.e. UTM-37S [EPSG:32737]. All raster files were aligned using the digital elevation model (DEM) as reference. The data preparation process is fully described below for each data set.

Elevation

Anisotropic accessibility analyses, in other words analyses accounting for travel speeds on slopes, were carried out for this study. The digital elevation model (DEM) data were obtained in tiles at a resolution of 30 meters ²⁶. All separate tiles were first mosaiced in QGIS 3.4.

Land cover

The land cover data set of the African continent ²⁷ was clipped to the extent of Mozambique, leaving a small buffer around the country to prevent loss of data cells at the border. The data set was resampled at a resolution of 30 meters using nearest neighbor interpolation.

Road network

The pre-cyclone road network dataset was retrieved from Open Street Map (OSM) through the Geonode Platform of the National Institute for Disaster Management Mozambique (INGC), as this dataset was perceived to represent the most recent information on the roads and could be linked to the damaged roads, as indicated by the Logistics Cluster of the World Food Program (LOG-WFP). Road classes that were not indicated as official classification by OSM, were removed from the data ⁴⁸.

LOG-WFP provided the most up to date data on road network damages. However, the road constraint shapefile was updated frequently by overwriting previous versions, without

storing data historically. Therefore, historical post-cyclone status of roads and road segments was manually digitized from pdf maps provided by LOG-WFP ^{28 29}. The pdf maps were manually cross-referenced with the OSM road network layer, to include post-cyclone status, i.e. 1) open 2) restricted 3) closed.

Roads were then reclassified based on the unique combination of road type and postcyclone status, resulting in 34 unique road classes (e.g. primary road, primary road restricted, secondary road closed). All roads were given a specific travel speed, accounting for the different scenarios. In the pre-cyclone scenario for instance, all primary road classes (i.e. primary road, primary road restricted, primary road closed) had the same travel speed. Whereas in the post cyclone scenario, the restricted and closed road types had a travel speed and travel mode accounted for their damages, as can be seen from Supplementary 2.

Barriers to movement

Rivers and lake shapefiles were obtained as lines and polygons from the National Directorate for Water Resource Management (DNGRH) and accuracy was checked using satellite imagery as a reference. Only primary rivers and lakes were taken for the analyses, under the assumption that smaller rivers and streams were passable by the population. Water bodies were perceived as being impassable at all scales.

Flood extent caused by Cyclone Idai was taken from 19 March 2019 and flood extent for Cyclone Kenneth was taken from 2 May 2019, because extents were visually inspected and found to be largest on those dates and thus represent the biggest constraints for health care access. All flooded areas were treated as impassable at those dates, considering the depth and extent of the floods.

Population data

High resolution population density estimates for children under five were downloaded at 30 meter resolution from the Facebook Connectivity Lab and Center for International Earth Science Information network ³⁰. The raster was projected in Mozambique's projection system, UTM-37S [EPSG:32737], by using nearest neighbor interpolation. Loss of population

BMJ Open

caused by reprojection and clipping to country borders, was corrected for by smoothing the lost population equally over the raster cells, using the raster calculator.

Health facilities

The geographic coordinates of all health facilities were obtained through the Humanitarian Data Exchange platform (HDX) and were originally sourced from the Ministry of Health in Mozambique (SIS-MA). The data was cleaned to exclude coordinates far outside of the country borders. Coordinates that fell just outside Mozambique were relocated within the country extents. Five health facilities were cross-referenced with other data sources (e.g. Neonatal Inventory Survey UNICEF, OpenStreetMap, Google Maps) because they were located on barriers, such as open sea, rivers or lakes.

Information on damaged health facilities was provided by the World Health Organization (WHO). This data did not include GPS coordinates, thus names of the damaged health facilities were cross referenced with the original health facility shapefile to include post-cyclone status of each facility, i.e. functional or non-functional. For damaged health facilities that were not included in the original health facility shapefile, coordinates were retrieved from a neonatal inventory performed by United Nations Children Fund (UNICEF) and also added as facility to the original health facility data, representing the pre-cyclone situation. Non-functional health facilities were filtered-out for geographical accessibility analyses reflecting the post-cyclone scenarios.

Travel scenario

Both our travel scenarios were developed in close collaboration with country representatives from UNICEF and were adapted to our target population, namely children under five accompanied by a parent (Supplementary 2). Flood waters were assumed to be a full barrier to movement to the target population, thus health facilities located in flooded zones were completely inaccessible and flood waters were impassable.

Label Pre-cyclone Post-cyclone **Travel mode** Travel mode Travel Travel speed speed (km/h) (km/h) Shrubs Walking Walking 1.5 3 **Herbaceous Vegetation** 3 Walking 1.5 Walking Cultivated and Managed Vegetation 3 Walking 1.5 Walking Agriculture Cropland Walking Urban Built Up 3 Walking 1.5 3 **Bare Sparse Vegetation** Walking 1.5 Walking **Permanent Water Bodies** 3 Walking 1.5 Walking 3 **Temporary Water Bodies** Walking 1.5 Walking 3 Herbaceous Wetland Walking 1.5 Walking **Closed Forest Evergreen Broad Leaf** 3 Walking 1.5 Walking Closed Forest Deciduous Broad Leaf 3 Walking 1.5 Walking **Open Forest Evergreen Broad Leaf** 3 Walking 1.5 Walking Open Forest Deciduous Broad Leaf 3 Walking 1.5 Walking 3 Walking 1.5 Walking Open Sea Trunk 80 50 Motorized Motorized **Trunk Restricted** 80 Motorized 1.5 Walking Trunk Closed 80 1.5 Walking Motorized Primary 80 Motorized 50 Motorized **Primary Restricted** 80 Motorized 1.5 Walking **Primary Closed** 80 Motorized 1.5 Walking Secondary 50 Motorized 40 Motorized Secondary Restricted 50 Motorized 1.5 Walking 50 1.5 Walking Secondary Closed Motorized 30 Motorized 15 Motorized Tertiary Tertiary Closed 30 Motorized 1.5 Walking 30 1.5 Walking **Tertiary Restricted** Motorized Road 20 Motorized 10 Motorized 3 Walking 3 Walking Raceway Residential 20 Motorized 10 Motorized 20 **Residential Closed** Motorized 1.5 Walking Living Street 20 Motorized 10 Motorized 3 1.5 Service Walking Walking Track 15 Motorized 10 Motorized Pedestrian 3 Walking 1.5 Walking 3 Pier Walking 1.5 Walking 3 Path Closed Walking 1.5 Walking Path 3 Walking 1.5 Walking 3 Walking 1.5 Walking Footway Bridleway 3 Walking 1.5 Walking 3 Walking Cycleway Walking 1.5 3 Steps Walking 1.5 Walking 3 Walking 1.5 Walking Unclassified

Supplementary 2- Travel scenarios pre-cyclone and post-cyclone

60

Supplementary 3- Relative population coverage pre- and post-cyclone Idai. Ordered on relative difference. Difference indicated between parentheses. Error bars indicate the coverage uncertainty, considering -20% and +20% travel speeds.

Supplementary 4- Relative population coverage pre- and post-cyclone Kenneth. Ordered on relative difference. Difference indicated between parentheses. Error bars indicate the coverage uncertainty, considering -20% and +20% travel speeds.

Supplementary 5- Travel time per community in Idai affected districts. Fifty most affected

communities by means of accessibility loss. Ordered on absolute travel time difference.

travel time (h) travel time (h) post-cyclone (h) Mucinemo Buzi 1.3 63.6 62.3 Bupira Buzi 1.1 62.3 63.6 63.3 Massuinda Buzi 1.2 60.1 58.9 59.9 Njanga Buzi 2.9 57.3 54.4 Mberealzique Buzi 2.9 57.3 54.4 Shiniziua Chinhale Muanza 24.0 77.8 53.8 Chipota Muanza 22.7 74.5 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 4.8 56.6 51.8 Nacona- Muanza 20.7 72.3 51.7 Mukulumba 1 Muanza 20.2 71.4 51.2 Nanagaa Muanza 10.7 72.3 51.7 Mukulumba 1 Muanza 10.1 54.7 54.9	Community	District	Pre-cyclone	Post-cyclone	Difference pre- and
Mucinemo Buzi 1.3 63.6 62.3 Bupira Buzi 1.1 62.3 61.3 Massuinda Buzi 1.2 60.1 58.9 Njanga Buzi 2.9 57.3 54.4 Mbereaizique Buzi 2.9 57.3 54.4 Shiniziua Chinhale Muanza 24.0 77.8 53.8 Chipota Muanza 22.2 74.1 51.9 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Nkolome Prala Muanza 20.7 72.3 51.7 Mukulumba cidade Muanza 20.4 71.4 51.2 Nhanganga Muanza 20.2 71.4 51.2 Nhanganga Muanza 19.9 70.8 50.9 Puanda Buzi 5.4 55.3 49.9	·····		travel time (h)	travel time (h)	post-cyclone (h)
Bupira Buzi 1.1 62.3 61.3 Massuinda Buzi 1.2 60.1 58.9 Mianga Buzi 1.2 60.1 58.9 Guenje-Sede Buzi 2.9 57.3 54.4 Mbereaizique Buzi 2.9 57.3 54.4 Mbereaizique Buzi 2.9 57.3 54.4 Mbereaizique Buzi 2.9 57.3 54.4 Shinizua Chinhale Muanza 22.7 74.5 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Magua Buzi 4.8 56.6 51.8 Nuclumba 1 Muanza 20.7 72.3 51.7 Mukulumba 2 Muanza 20.2 71.4 51.2 Nanagag Muanza 20.2 71.4 51.2 Mukulumba 1 Muanza 20.2 71.4 51.2	Mucinemo	Buzi	1.3	63.6	62.3
Massuinda Buzi 1.2 60.1 58.9 Njanga Buzi 4.3 59.1 54.4 Mberealzique Buzi 2.9 57.3 54.4 Mberealzique Buzi 2.9 57.3 54.4 Minziua Chinhale Muanza 24.0 77.8 53.8 Chipota Muanza 22.2 74.1 51.9 Chipota Muanza 22.7 74.5 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Musanga Muanza 20.7 71.4 51.4 Mukulumba 1 Muanza 20.2 71.4 51.2 Mukulumba 2 2.9 51.6 48.8 Puanda Buzi 5.4 55.3 49.9 Macoa-Mutanda Buzi 2.9 51.6 48.7 Luanda	Bupira	Buzi	1.1	62.3	61.3
Njanga Buzi 4.3 59.1 54.7 Guenje-Sede Buzi 2.9 57.3 54.4 Shiniziua Chinhale Muanza 24.0 77.8 53.8 Chipota Muanza 24.0 77.8 53.8 Chipota Muanza 22.2 74.1 51.9 Chingamuzi Muanza 22.7 74.5 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Nkolone Praia Muanza 20.7 72.3 51.7 Mukulumba 1 Muanza 20.2 71.4 51.2 Nhanganga Muanza 20.2 71.4 51.2 Nhanda Buzi 5.4 55.3 49.9 Muckulumba 1 Muanza 20.2 71.4 51.2 Nhanganga Muanza 17.4 65.8 48.7 Nuckulumba 1 Muanza 17.4 65.8 47.4 <td>Massuinda</td> <td>Buzi</td> <td>1.2</td> <td>60.1</td> <td>58.9</td>	Massuinda	Buzi	1.2	60.1	58.9
Guenje-Sede Buzi 2.9 57.3 54.4 Mberealzique Buzi 2.9 57.3 54.4 Shinizua Chinhale Muanza 24.0 77.8 53.8 Chipota Muanza 22.2 74.1 51.9 Chingamuzi Muanza 22.7 74.5 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 3.5 55.3 51.7 Mukulumba Muanza 20.7 72.3 51.7 Mukulumba 1 Muanza 20.7 71.4 51.2 Mukulumba 2 0.4 71.8 51.4 Mukulumba 2 0.2 71.4 51.2 Mhanganga Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 49.9 Macova-Mutanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 18.8 67.4 48.6 Nhamacalango	Njanga	Buzi	4.3	59.1	54.7
Mbereaizique Buzi 2.9 57.3 54.4 Shiniziua Chinhale Muanza 24.0 77.8 53.8 Chipota Muanza 24.4 78.0 53.8 Wiriquizi Muanza 22.2 74.1 51.9 Chingamuzi Muanza 22.7 74.5 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 4.8 56.6 51.8 Nkolone Prala Muanza 20.7 72.3 51.4 Mukulumba Muanza 20.2 71.4 51.2 Nhanganga Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 48.9 Puanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 18.8 67.4 48.6 Nhamacalango Muanza 18.0 65.8 47.8 Luanda 2 Muanza 18.0 65.8 47.4	Guenje-Sede	Buzi	2.9	57.3	54.4
Shiniziua Chinhale Muanza 24.0 77.8 53.8 Chipota Muanza 24.4 78.0 53.6 Wiriquizi Muanza 22.2 74.1 51.9 Chigamuzi Muanza 22.7 74.5 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Musacazwidje Buzi 4.8 56.6 51.8 Nkolone Praia Muanza 20.7 72.3 51.7 Mukulumba i Muanza 20.2 71.4 51.2 Nhangang Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 48.7 Luanda Buzi 2.9 51.6 48.7 Luanda Buzi 2.9 51.6 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 1 Muanza 18.8 67.4 48.6 Nhamcalango Muanza 16.4 63.8 47.4 Praia Nov	Mbereaizique	Buzi	2.9	57.3	54.4
Chipota Muanza 24.4 78.0 53.6 Wiriquizi Muanza 22.2 74.1 51.9 Chingamuzi Muanza 22.7 74.5 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 4.8 56.6 51.8 Nkolone Praia Muanza 20.7 72.3 51.7 Mukulumba i Muanza 20.2 71.4 51.2 Nhanganga Muanza 20.2 71.4 51.2 Nhanganga Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 49.9 Macova-Mutanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 17.4 65.8 47.4 Sengo Dondo 5.3 53.5 48.2 Luanda 1 Muanza 17.4 65.8 47.8 Pra	Shiniziua Chinhale	Muanza	24.0	77.8	53.8
Wiriquizi Muanza 22.2 74.1 51.9 Chinganuzi Muanza 22.7 74.5 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Magua Buzi 4.8 56.6 51.8 Nkolone Praia Muanza 20.7 72.3 51.7 Mukulumba cidade Muanza 20.2 71.4 51.2 Nhanganga Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 49.9 Macova-Mutanda Buzi 2.9 51.6 48.7 Luanda Buzi 2.9 51.6 48.6 Sengo Dondo 5.3 53.5 48.2 Luanda 1 Muanza 18.0 65.8 47.8 Praia Nova Dondo 3.9 51.5 47.6 Praia Farol Dondo 7.1 54.5 46.3	Chipota	Muanza	24.4	78.0	53.6
Chingamuzi Muanza 22.7 74.5 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Mussacazwidje Buzi 3.5 55.3 51.8 Musau Buzi 4.8 56.6 51.8 Nkolone Prala Muanza 20.7 72.3 51.7 Mukulumba 1 Muanza 20.2 71.4 51.2 Nhanganga Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 49.9 Macova-Mutanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Nova Dondo 3.8 51.4 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Mscoide Muanza 10.1 56.7 46.6	Wiriguizi	Muanza	22.2	74.1	51.9
Mussaczwidje Buzi 3.5 55.3 51.8 Mussaczwidje Buzi 3.5 55.3 51.8 Magua Buzi 4.8 56.6 51.8 Mkolone Praia Muanza 20.7 72.3 51.7 Mukulumba 1 Muanza 20.4 71.8 51.4 Mukulumba cidade Muanza 20.2 71.4 51.2 Nhanganga Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 49.9 Macova-Mutanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Farol Dondo 3.9 51.5 47.6 Bingue Sele Muanza 16.4 63.8 47.4 Nacode 2 Muanza 10.1 56.7 46.6	Chingamuzi	Muanza	22.7	74.5	51.8
Mussaczwidje Buzi 3.5 55.3 51.8 Magua Buzi 4.8 56.6 51.8 Nkolone Praia Muanza 20.7 72.3 51.7 Mukulumba 1 Muanza 20.4 71.4 51.2 Nhanganga Muanza 19.9 70.8 50.9 Mutxulumba cidade Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 48.9 Puanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 18.8 67.4 48.6 Nhamacalango Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Farol Dondo 3.8 51.4 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Nkonde 2 Muanza 10.1 56.7 46.6	Mussacazwidie	Buzi	3.5	55.3	51.8
Magua Buzi A.8 56.6 51.8 Nkolone Praia Muanza 20.7 72.3 51.7 Mukulumba 1 Muanza 20.4 71.8 51.4 Mukulumba cidade Muanza 20.2 71.4 51.2 Mukulumba cidade Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 49.9 Macova-Mutanda Buzi 6.3 55.1 48.9 Puanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Nova Dondo 3.9 51.5 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Mascial Majaca Chibabava 6.5 53.3 46.8	Mussacazwidie	Buzi	3.5	55.3	51.8
Notolne Praia Duanza 20.7 72.3 51.7 Mukulumba 1 Muanza 20.7 72.3 51.7 Mukulumba cidade Muanza 20.2 71.4 51.2 Nhanganga Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 49.9 Macova-Mutanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 18.8 67.4 48.6 Nhamacalango Muanza 17.4 65.8 48.2 Luanda 1 Muanza 18.0 65.8 47.8 Praia Nova Dondo 3.8 51.5 47.6 Praia Farol Dondo 3.8 51.4 47.4 Nkonde 2 Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 6.3 52.4 46.3	Magua	Buzi	4.8	56.6	51.8
Nuclei Talu Mudaniza 20.7 71.5 51.7 Mukulumba 1 Muanza 20.2 71.4 51.2 Nhanganga Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 49.9 Macova-Mutanda Buzi 6.3 55.1 48.9 Puanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 17.4 65.8 47.8 Praia Nova Dondo 3.9 51.5 47.6 Praia Farol Dondo 3.8 51.4 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Mossitche Dondo 7.1 54.5 47.4 Goonda Majaca Chibabava 6.5 53.3 46.8 Ngalazi Dondo 6.0 52.3 46.3	Nkolone Praia	Muanza	20.7	72.3	51.0
Mukulumba i Muanza 20.7 71.0 51.7 Nhanganga Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 49.9 Macova-Mutanda Buzi 6.3 55.1 48.9 Puanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Nova Dondo 3.9 51.5 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Nkonde 2 Muanza 10.1 56.7 46.6 Ngonole Muanza 10.1 56.7 46.3 Nhacudiza Dondo 5.3 51.3 45.6 Ngalazi Dondo 6.0 52.3 46.3 Ngalazi Dondo 2.0 47.7 45.7 Macarate </td <td>Mukulumba 1</td> <td>Muanza</td> <td>20.7</td> <td>72.5</td> <td>51.7</td>	Mukulumba 1	Muanza	20.7	72.5	51.7
Manganga Muanza 19.9 70.8 50.9 Mutanda Buzi 5.4 55.3 49.9 Macova-Mutanda Buzi 6.3 55.1 48.9 Puanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 18.8 67.4 48.6 Nhamacalango Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Farol Dondo 3.8 51.4 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 6.3 52.3 46.3 Nganole Muanza 10.1 56.7 46.6 Ngalazi Dondo 2.0 47.7 45.7 Macarate	Mukulumba cidada	Muanza	20.4	71.0	51.4
Hutanganga Mutanda Buzi 5.4 55.3 49.9 Mutanda Buzi 5.4 55.1 48.9 Puanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 18.8 67.4 48.6 Nhamacalango Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Nova Dondo 3.9 51.5 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Nkonde 2 Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Goonda Majaca Chibabava 6.5 53.3 46.8 Ngalazi Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.6 Doudo 2.0 47.7 45.7 51.3 4	Nhanganga	Muanza	10.0	71.4	51.2
Macova-Mutanda Buzi 5.4 55.3 49.9 Macova-Mutanda Buzi 6.3 55.1 48.9 Puanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Farol Dondo 3.9 51.5 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Nkonde 2 Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 7.1 56.7 46.6 Ngalazi Dondo 6.0 52.3 46.3 Nhacudjica Buzi 6.3 52.4 46.1 Chitabava 5.3 51.0 45.7 Macarate Chibabava 5.3 51.0 45.6 Dondo 1.4	Mutanda	Ruzi	17.7		30.9
Mactora-Mutanda Buzi 0.3 55.1 44.5 Puanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Nova Dondo 3.9 51.5 47.6 Praia Farol Dondo 3.8 51.4 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Nkonde 2 Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 6.0 52.3 46.6 Nganole Muanza 10.1 56.7 46.6 Nacudjica Buzi 5.7 51.3 45.7 Macarate Chibabava 5.3 51.0 45.7 Nhac	Masawa Mutanda	Buzi	5.4	55.5	49.9
Puanda Buzi 2.9 51.6 48.7 Luanda 1 Muanza 18.8 67.4 48.6 Nhamacalango Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Nova Dondo 3.9 51.5 47.6 Praia Farol Dondo 3.8 51.4 47.4 Nkonde 2 Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 6.5 53.3 46.8 Ngmole Muanza 10.1 56.7 46.6 Ngalazi Dondo 6.0 52.3 46.3 Nhardigica Buzi 6.3 52.4 46.1 Chibabava 5.3 51.0 45.7 Macarate Chibabava 5.3 51.0 45.6 Docue Buzi 5.7	Nacova-iviutanda	Buzi	0.3	55.1	48.9
Luanda 1 Muanza 18.8 67.4 48.6 Nhamacalango Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Nova Dondo 3.9 51.5 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Nkonde 2 Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 6.5 53.3 46.8 Ngomole Muanza 10.1 56.7 46.6 Nacaujica Buzi 6.3 52.4 46.1 Chitabava 5.3 51.0 45.7 Macarate Chibabava 5.3 51.0 45.6 Docue Bu	Puanda	Buzi	2.9	51.6	48.7
Nhamacalango Muanza 17.4 65.8 48.4 Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Nova Dondo 3.9 51.5 47.6 Praia Farol Dondo 3.8 51.4 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Goonda Majaca Chibabava 6.5 53.3 46.8 Ngmole Muanza 10.1 56.7 46.6 Ngalazi Dondo 6.0 52.3 46.3 Nhacudjica Buzi 6.3 52.4 46.1 Chibabava 5.3 51.0 45.7 Macarate Chibabava 5.3 51.0 45.7 Nhamissasa Muanza 15.9 61.5 45.6 Docue Buzi 5.7 51.3 45.6 Nherere 2	Luanda 1	Muanza	18.8	67.4	48.6
Sengo Dondo 5.3 53.5 48.2 Luanda 2 Muanza 18.0 65.8 47.8 Praia Nova Dondo 3.9 51.5 47.6 Praia Farol Dondo 3.8 51.4 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Massitche Dondo 6.5 53.3 46.8 Ngomole Muanza 10.1 56.7 46.6 Ngalazi Dondo 6.0 52.3 46.3 Nhacudjica Buzi 6.3 52.4 46.1 Chitundo Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.6 Docue Buzi 5.7 51.3 45.6 Docue Buzi 5.7 51.3 45.6 Nherere 2 Muanza 14.0 59.0 45.0 Parange	Nhamacalango	Muanza	17.4	65.8	48.4
Luanda 2 Muanza 18.0 65.8 47.8 Praia Nova Dondo 3.9 51.5 47.6 Praia Farol Dondo 3.8 51.4 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Nkonde 2 Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Goonda Majaca Chibabava 6.5 53.3 46.8 Ngomole Muanza 10.1 56.7 46.6 Ngalazi Dondo 6.0 52.3 46.3 Nhacudjica Buzi 6.3 52.4 46.1 Chitundo Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.6 Docue Buzi 5.7 51.3 45.6 Nherere 2 Muanza 14.0 59.0 45.0 Parange Buzi 5.9 50.9 45.0 Bi	Sengo	Dondo	5.3	53.5	48.2
Praia Nova Dondo 3.9 51.5 47.6 Praia Farol Dondo 3.8 51.4 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Nkonde 2 Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Goonda Majaca Chibabava 6.5 53.3 46.8 Ngomole Muanza 10.1 56.7 46.6 Ngalazi Dondo 6.0 52.3 46.3 Nhacudjica Buzi 6.3 52.4 46.1 Chitundo Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.6 Docue Buzi 5.7 51.3 45.6 Khome 1 Dondo 1.4 46.8 45.0 Parange Buzi 5.9 50.9 45.0 Parange Buzi 5.9 50.9 45.0 Njocho <td>Luanda 2</td> <td>Muanza</td> <td>18.0</td> <td>65.8</td> <td>47.8</td>	Luanda 2	Muanza	18.0	65.8	47.8
Praia Farol Dondo 3.8 51.4 47.6 Bingue Sede Muanza 16.4 63.8 47.4 Nkonde 2 Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Goonda Majaca Chibabava 6.5 53.3 46.8 Ngomole Muanza 10.1 56.7 46.6 Ngalazi Dondo 6.0 52.3 46.3 Nhacudjica Buzi 6.3 52.4 46.1 Chitundo Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.6 Docue Buzi 5.7 51.3 45.6 Nherere 2 Muanza 14.0 59.0 45.0 Parange Buzi 5.9 50.9 45.0 Parange Buzi 5.9 50.9 45.0 Njocho Buzi 5.9 50.9 45.0 Machanga <td>Praia Nova</td> <td>Dondo</td> <td>3.9</td> <td>51.5</td> <td>47.6</td>	Praia Nova	Dondo	3.9	51.5	47.6
Bingue Sede Muanza 16.4 63.8 47.4 Nkonde 2 Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Goonda Majaca Chibabava 6.5 53.3 46.8 Ngomole Muanza 10.1 56.7 46.6 Ngalazi Dondo 6.0 52.3 46.3 Nhacudjica Buzi 6.3 52.4 46.1 Chitundo Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.6 Docue Buzi 5.7 51.3 45.6 Docue Buzi 5.7 51.3 45.6 Parange Buzi 3.6 48.6 45.0 Parange Buzi 5.9 50.9 45.0 Njocho Buzi 5.1 49.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge	Praia Farol	Dondo	3.8	51.4	47.6
Nkonde 2 Muanza 16.4 63.8 47.4 Massitche Dondo 7.1 54.5 47.4 Goonda Majaca Chibabava 6.5 53.3 46.8 Ngomole Muanza 10.1 56.7 46.6 Ngalazi Dondo 6.0 52.3 46.3 Nhacudjica Buzi 6.3 52.4 46.1 Chitundo Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.7 Macarate Dondo 1.0 57 51.3 45.6 Docue Buzi 5.7 51.3 45.6 Docue Buzi 5.9 61.5 45.0 Parange Buzi 3.6 48.6 45.0 Parange Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 M	Bingue Sede	Muanza	16.4	63.8	47.4
Massitche Dondo 7.1 54.5 47.4 Goonda Majaca Chibabava 6.5 53.3 46.8 Ngomole Muanza 10.1 56.7 46.6 Ngalazi Dondo 6.0 52.3 46.3 Nhacudjica Buzi 6.3 52.4 46.1 Chitundo Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.7 Nhamissassa Muanza 15.9 61.5 45.6 Docue Buzi 5.7 51.3 45.6 Nherere 2 Muanza 14.0 59.0 45.0 Nijocho Buzi 5.9 50.9 45.0 Parange Buzi 5.9 50.9 45.0 Njocho Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca	Nkonde 2	Muanza	16.4	63.8	47.4
Goonda Majaca Chibabava 6.5 53.3 46.8 Ngomole Muanza 10.1 56.7 46.6 Ngalazi Dondo 6.0 52.3 46.3 Nhacudjica Buzi 6.3 52.4 46.1 Chitundo Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.7 Nhamissassa Muanza 15.9 61.5 45.6 Docue Buzi 5.7 51.3 45.6 Nherere 2 Muanza 14.0 59.0 45.0 Parange Buzi 5.9 50.9 45.0 Njocho Buzi 5.9 50.9 45.0 Njocho Buzi 5.9 50.9 45.0 Njocho Buzi 5.1 49.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge	Massitche	Dondo	7.1	54.5	47.4
Ngomole Muanza 10.1 56.7 46.6 Ngalazi Dondo 6.0 52.3 46.3 Nhacudjica Buzi 6.3 52.4 46.1 Chitundo Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.7 Nhamissassa Muanza 15.9 61.5 45.6 Docue Buzi 5.7 51.3 45.6 Khome 1 Dondo 1.4 46.8 45.4 Nherere 2 Muanza 14.0 59.0 45.0 Parange Buzi 5.9 50.9 45.0 Njocho Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Vala-vala <td< td=""><td>Goonda Majaca</td><td>Chibabava</td><td>6.5</td><td>53.3</td><td>46.8</td></td<>	Goonda Majaca	Chibabava	6.5	53.3	46.8
Ngalazi Dondo 6.0 52.3 46.3 Nhacudjica Buzi 6.3 52.4 46.1 Chitundo Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.7 Nhamissassa Muanza 15.9 61.5 45.6 Docue Buzi 5.7 51.3 45.6 Khome 1 Dondo 1.4 46.8 45.4 Nherere 2 Muanza 14.0 59.0 45.0 Parange Buzi 5.9 50.9 45.0 Njocho Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Birirane Muanza 13.1 57.2 44.1 Vala-vala <t< td=""><td>Ngomole</td><td>Muanza</td><td>10.1</td><td>56.7</td><td>46.6</td></t<>	Ngomole	Muanza	10.1	56.7	46.6
Nhacudjica Buzi 6.3 52.4 46.1 Chitundo Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.7 Nhamissassa Muanza 15.9 61.5 45.6 Docue Buzi 5.7 51.3 45.6 Khome 1 Dondo 1.4 46.8 45.4 Nherere 2 Muanza 14.0 59.0 45.0 Parange Buzi 3.6 48.6 45.0 Njocho Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gor	Ngalazi	Dondo	6.0	52.3	46.3
Chitundo Dondo 2.0 47.7 45.7 Macarate Chibabava 5.3 51.0 45.7 Nhamissassa Muanza 15.9 61.5 45.6 Docue Buzi 5.7 51.3 45.6 Khome 1 Dondo 1.4 46.8 45.4 Nherere 2 Muanza 14.0 59.0 45.0 Parange Buzi 3.6 48.6 45.0 Njocho Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire <t< td=""><td>Nhacudjica</td><td>Buzi</td><td>6.3</td><td>52.4</td><td>46.1</td></t<>	Nhacudjica	Buzi	6.3	52.4	46.1
Macarate Chibabava 5.3 51.0 45.7 Nhamissassa Muanza 15.9 61.5 45.6 Docue Buzi 5.7 51.3 45.6 Khome 1 Dondo 1.4 46.8 45.4 Nherere 2 Muanza 14.0 59.0 45.0 Parange Buzi 3.6 48.6 45.0 Njocho Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Birirane Muanza 13.1 57.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 5.2 49.2 44.1 Muche	Chitundo	Dondo	2.0	47.7	45.7
Nhamissassa Muanza 15.9 61.5 45.6 Docue Buzi 5.7 51.3 45.6 Khome 1 Dondo 1.4 46.8 45.4 Nherere 2 Muanza 14.0 59.0 45.0 Parange Buzi 3.6 48.6 45.0 Njocho Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Birirane Muanza 13.1 57.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 2.6 46.1 43.5 Maza 2.6 46.1 43.5 43.5	Macarate	Chibabava	5.3	51.0	45.7
Docue Buzi 5.7 51.3 45.6 Khome 1 Dondo 1.4 46.8 45.4 Nherere 2 Muanza 14.0 59.0 45.0 Parange Buzi 3.6 48.6 45.0 Njocho Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Birirane Muanza 13.1 57.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 2.6 46.1 43.5 Mbazwirasse Gorongosa 1.0 44.5 43.5	Nhamissassa	Muanza	15.9	61.5	45.6
Khome 1 Dondo 1.4 46.8 45.4 Nherere 2 Muanza 14.0 59.0 45.0 Parange Buzi 3.6 48.6 45.0 Njocho Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Birirane Muanza 13.1 57.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 2.6 46.1 43.5	Docue	Buzi	5.7	51.3	45.6
Nherere 2 Muanza 14.0 59.0 45.0 Parange Buzi 3.6 48.6 45.0 Njocho Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Birirane Muanza 13.1 57.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 5.2 49.2 44.1	Khome 1	Dondo	1.4	46.8	45.4
Parange Buzi 3.6 48.6 45.0 Njocho Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Birirane Muanza 13.1 57.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 2.6 46.1 43.5	Nherere 2	Muanza	14.0	59.0	45.0
Njocho Buzi 5.9 50.9 45.0 Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Birirane Muanza 13.1 57.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 2.6 46.1 43.5 Mbazwirasse Gorongosa 1.0 44.5 43.5	Parange	Buzi	3.6	48.6	45.0
Binda Machanga 0.7 45.2 44.6 Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Birirane Muanza 13.1 57.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 2.6 46.1 43.5 Nhazwirasse Gorongosa 1.0 44.5 42.5	Njocho	Buzi	5.9	50.9	45.0
Khome 2 Dondo 0.6 45.2 44.6 Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Birirane Muanza 13.1 57.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 2.6 46.1 43.5 Nhazwirasse Gorongosa 1.0 44.5 43.5	Binda	Machanga	0.7	45.2	44.6
Veruca Chibabava 4.1 48.6 44.5 Mamunge Buzi 5.1 49.2 44.1 Birirane Muanza 13.1 57.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 2.6 46.1 43.5 Nhazwirasse Gorongosa 1.0 44.5 43.5	Khome 2	Dondo	0.6	45.2	44.6
Mamunge Buzi 5.1 49.2 44.1 Birirane Muanza 13.1 57.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 2.6 46.1 43.5 Nhazwirasse Gorongosa 1.0 44.5 43.5	Veruca	Chibabava	4.1	48.6	44.5
Birirane Muanza 13.1 57.2 44.1 Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 2.6 46.1 43.5 Nhazwirasse Gorongosa 1.0 44.5 43.5	Mamunge	Buzi	5.1	49.2	44.1
Vala-vala Buzi 5.2 49.2 44.1 Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 2.6 46.1 43.5 Nhazwirasse Gorongosa 1.0 44.5 43.5	Birirane	Muanza	13.1	57.2	44.1
Muche Gorongosa 1.5 45.5 44.0 Machiquire Buzi 2.6 46.1 43.5 Nhazwirasse Gorongosa 1.0 44.5 43.5	Vala-vala	Buzi	5.2	49.2	44.1
Machiquire Buzi 2.6 46.1 43.5 Nhazwicasse Gorongosa 1.0 44.5 43.5	Muche	Gorongosa	1 5	45 5	44 0
Nhazwirasso Gorongosa 1.0 M.5 42.5	Machiguire	Buzi	2.5		/12 5
	Nhazwicasso	Gorongosa	1.0	11 5	/2 5

60

communities in Idai affected districts.

BMJ Open

Modelling geographical accessibility to support disaster response and rehabilitation of a health care system: An impact analysis of Cyclones Idai and Kenneth in Mozambique

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039138.R1
Article Type:	Original research
Date Submitted by the Author:	29-Jul-2020
Complete List of Authors:	Hierink, Fleur; University of Geneva, Institute of Global Health; University of Geneva, Institute for Environmental Sciences Rodrigues, Nelson; UNICEF Mozambique Muñiz, Maria; United Nations Childrens Fund, Eastern and Southern Africa Regional Office Panciera, Rocco; United Nations Childrens Fund, Health Section Ray, Nicolas; University of Geneva, Institute of Global Health; University of Geneva, Institute for Environmental Sciences
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Global health
Keywords:	International health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Organisation of health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Geographical mapping < TROPICAL MEDICINE, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Modelling geographical accessibility to support disaster response and rehabilitation of a health care system:

An impact analysis of Cyclones Idai and Kenneth in Mozambique

Fleur Hierink^{1,2}, Nelson Rodrigues³, Maria Muñiz⁴, Rocco Panciera⁵, Nicolas Ray^{1,2}

1. Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland

2. Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland

3. The United Nations Children's Fund, Mozambique, Maputo, Mozambique

4. The United Nations Children's Fund, Eastern and Southern Africa Regional Office,

Nairobi, Kenya

5. The United Nations Children's Fund, Health Section, New York, United States of America

CORRESPONDENCE:

Fleur Hierink

fleur.hierink@unige.ch

GeoHealth group

Institute for Environmental Sciences

Office B401, UNI CARLVOGT

66 Bd Carl Vogt, 1205 Geneva

Switzerland

KEYWORDS:

.th Sec International health services, organization of health services, geographical mapping, risk management

2							
3 4	1	ABSTRACT					
5 6	2	Objectives					
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	3	Modelling and assessing the loss of geographical accessibility is key to support disaster					
	4	response and rehabilitation of the health care system. The aim of this study was therefore					
	5	to estimate post-disaster travel times to functional health facilities and analyze losses in					
	6	accessibility coverage after Cyclones Idai and Kenneth in Mozambique in 2019.					
	7						
	8	Setting					
	9	We modeled travel time of vulnerable population to the nearest functional health facility in					
19 20	10	two cyclone-affected regions in Mozambique. Modelling was done using AccessMod 5,					
21 22	11	where roads, rivers, lakes, flood extent, topography, and land cover datasets were overlaid					
23 24	12	with health facility coordinates and high-resolution population data to obtain accessibility					
24 25 26 27 28 29 30	13	coverage estimates under different travel scenarios.					
	14						
	15	Outcome measures					
30 31	16	Travel time to functional health facilities and accessibility coverage estimates were used to					
32 33	17	identify spatial differences between pre-disaster and post-disaster geographical					
34 35 36 37	18	accessibility.					
	19						
38	20	Results					
40	21	We found that accessibility coverage decreased in the flood affected districts, as a result of					
41 42	22	reduced travel speeds, road constraints and non-functional health facilities. In Idai-affected					
43 44	23	districts, accessibility coverage decreased from 78.8% to 52.5%, implying that 136,941					
45 46	24	children under 5 were no longer able to reach the nearest facility within 2 hours travel time.					
40 47 48	25	In Kenneth-affected districts, accessibility coverage decreased from 82.2% to 71.5%,					
49	26	corresponding to 14,330 children under 5 having to travel more than 2 hours to reach the					
51	27	nearest facility. Damage to transport networks and reduced travel speeds resulted in the					
52 53 54 55 56 57 58 59	28	most substantial accessibility coverage losses in both Idai and Kenneth-affected districts.					
60							

3 4	29	Conclusions					
5	30	Post-disaster accessibility modelling can increase our understanding of spatial differences in					
7	31	geographic access to care in the direct aftermath of a disaster and can inform targeting and					
8 9 10 11	32	prioritization of limited resources. Our results reflect opportunities for integrating					
	33	accessibility modelling in early disaster response, and to inform discussions on health					
12 13	34	system recovery, mitigation and preparedness.					
14 15	35						
16 17	36 37	STRENGTHS AND LIMITATIONS OF THIS STUDY					
18 19	38	 This is the first study presenting the applicability of post-disaster geographical 					
20 21	39	accessibility modelling.					
22 23	40	• The approach enables quantification of disaster impacts on geographical health care					
24 25	41	accessibility to prioritize post-disaster interventions and to build resilience for future					
26 27	42	disasters.					
28 29	43	 To account for uncertainty of the assumed travel speeds, we considered -20% and 					
30 31	44	+20% intervals on motorized travel speeds.					
32	45	Data from various sources and administrative levels were combined to represent the					
34 25	46	post-cyclone situation as realistically as possible, but since data gathering was					
35 36	47	ongoing, it was expected that some data were incomplete or not fully processed at					
37 38	48	the time of usage.					
39 40	49	Our accessibility modelling assumes that patients always travel to the nearest health					
41 42	50	facility. However, literature has shown that patients sometimes bypass health					
43 44	51	facilities in search of higher quality care in Mozambique.					
45 46							
47							
48 49							
50 51							
52							
55 54							
55 56							
57							
58 59							
60							

2	
3 4	52
5	53
7	54
8 9	55
10 11	56
12 13	57
14	58
16	59
17 18	60
19 20	61
21 22	62
23 24	63
25	64
20	65
28 29	66
30 31	67
32 33	68
34 35	69
36 37	70
38	71
39 40	72
41 42	73
43 44	74
45 46	75
47	76
40 49	77
50 51	78
52 53	79
54 55	80
56 57	81
58	82
59 60	

53 Geographical provimity

1. INTRODUCTION

Geographical proximity to health facilities is a crucial aspect of accessibility, utilization and
the provision of health services to populations in need¹. Road networks and natural barriers
(such as rivers, water bodies, and flooded areas) are important factors that determine the
geographical (i.e. physical) accessibility of a population to the network of functional health
facilities. During natural disasters, roads and health facilities are often damaged, yet health
care demand rises substantially at the same time due to injuries and increased
communicable disease risks^{2,3}. The interplay between the disruption of health
infrastructure, transport network, and the rise in health care demand, is known to disable a
large portion of the population's access to care they need in the aftermath of a disaster^{3,4}.
This is especially the case in already medically underserved regions, where the event can
lead to new health disparities or exacerbate existing ones².

In March and April 2019, two cyclones made landfall in Mozambique. This was the first time in history that two strong cyclones hit Mozambique consecutively in the same season⁵. On 14 March 2019 Tropical Cyclone Idai made landfall in Beira, followed by a week of heavy rains and winds, the storm ended on 21 March 2019⁶. In the middle of the humanitarian emergency response for Cyclone Idai, a second cyclone hit Northern Mozambique. Cyclone Kenneth, a category 4 cyclone and the strongest recorded cyclone on the African continent, made landfall in Pemba, Cabo Delgado on 25 April 2019^{7,8}. The two cyclones combined had a death toll of 648, with 603 fatalities due to Idai and 45 deaths caused by Kenneth, and left over 2.2 million people in need of humanitarian assistance⁵. The cyclone's destruction isolated entire communities for weeks due to flood waters, destroyed telecommunication networks, and extensive road damage^{9,10}. In addition, stagnant waters, inability in accessing safe water and sanitation, and overcrowding in temporary accommodation led to a cholera outbreak and a significant increase in malaria cases^{5,8,11,12}. Major damage to 113 health facilities were reported after both cyclones, causing severe disruption in health service provision and restricting the population's access to adequate health care^{13,14}. Although many humanitarian actors have estimated substantial losses in health care accessibility and availability^{5,9,10,13,15}, the quantitative impact of Cyclone Idai and Kenneth on geographical accessibility to health care remains unknown.

 Page 6 of 37

Since 2005 the humanitarian sector applies a *cluster approach* to coordinate emergency operations between all humanitarian response organizations involved¹⁶. This means that all humanitarian organizations are cooperating in the main sectors of humanitarian action (e.g. water, health, logistics) and have clear responsibilities for coordination¹⁶. A post disaster needs assessment (PDNA) is the first step in the humanitarian response cycle to formulate a disaster response and recovery plan¹⁷. Guidelines from the World Health Organization (WHO) for a PDNA for the health cluster specifically, advise on a comparison between baseline and post-disaster accessibility through the evaluation of key indicators in their presented framework¹⁸. However, the suggested key indicators reflect rather static measures of accessibility, such as hospital beds per 10,000 population or number of damaged health facilities¹⁸. Yet, international efforts to support humanitarian responses on the ground accelerate post-disaster data gathering, enabling a more realistic quantification of accessibility to health care by means of health facility damages, loss of road access, and barriers to movement such as flood waters¹⁹. Guidance on assessing loss in geographical accessibility while considering spatial barriers remains abstract or even lacking in disaster management frameworks. Meanwhile, geographical accessibility models hold actionable information and have the potential to quantify gaps and overlaps in (temporary) service provisioning, enabling coordinated, targeted and centralized decision making for humanitarian action²⁰, enhancing both financial and operational efficiency^{21,22}. This study therefore presents a data processing and spatial accessibility modelling method to assess post-disaster accessibility to health facilities and analyze accessibility coverage losses as a result of cyclones Idai and Kenneth in Mozambique. The approach enables quantification of disaster impacts on geographical health care accessibility to prioritize post-disaster interventions and to build resilience for future disasters. This is the first study presenting the applicability of post-disaster geographical accessibility modelling. 2. METHODS 2.1 Overall methodology In this study, accessibility is measured as the travel time to health facilities and accessibility coverage (i.e. coverage) is defined as the estimated number or percentage of people covered or located within a travel time catchment area²³. To model accessibility to health

BMJ Open

facilities, we consider topography, road networks, constraints to movement (e.g. rivers, lakes and flood extent), target population distribution, and the locations of functional health facilities. We accessed and prepared multiple data layers (Table 1) assembled in the aftermath of Cyclone Idai and Kenneth, between April-September 2019. A total of three scenarios were prepared, representing 1) pre-Idai and pre-Kenneth (before March 2019), 2) post-Idai (up to one-week post-cyclone), and 3) post-Kenneth (up to one-week post-cyclone) situations. We modeled population travel time to the nearest health facility and accessibility coverage, for two cyclone-affected regions.

	Layer name	Source ^a	Source date ^b	Download date	Туре	Original resolution
	Administrative boundaries	INE & UN-OCHA ROSEA (HDX) ²⁴	02.04.19	31.07.19	Polygon	-
	Cyclone trajectory (Idai/Kenneth)	GDACS ^{25,26}	<u>15.03.19</u> / <u>25.04.19</u>	08.03.2020	Polygon	-
	Land cover	Copernicus ²⁷	15.11.18	31.07.19	Raster	100 meters
	Elevation	SRTM CGIAR ²⁸	25.11.18	20.09.19	Raster	30 meters
	Rivers and lakes	DNGRH	12.8.19	19.9.19	Polygon	-
	Primary streams	DNGRH	12.8.19	19.9.19	Lines	-
	Flood extent, Idai	UNOSAT/ <u>Sentinel</u> -1 (HDX) ²⁹	19.03.19	31.07.19	Polygon	-
	Flood extent, Kenneth	<u>Copernicus</u> EMSR354 (INGC <u>Geonode)</u> ³⁰	02.05.19	31.07.19	Polygon	-
	Roads	OpenStreetMap (INGC Geonode) ³¹	25.11.18	07.08.19	Lines	-
	Road damages (Idai/Kenneth)	LOG-WFP ^{32,33}	<u>19.03.19</u> / <u>03.05.19</u>	23.09.19	PDF file	-
	Health facilities	SIS-MA (HDX) ³⁴	31.12.17	08.08.19	Points	-
	Health facilities	Provided by	Represents	17.09.19	Points	-
	damages	WHO- Mozambique	health facility status 48h until 1 week post cyclone			
	Population density	Facebook/CIESIN population density ³⁵	01.10.18	06.08.19	Raster	30 meters
125 126	^a Abbreviations: CIESN = C Water Resource Managen	enter for International E nent, HDX = Humanitaria	Earth Science Info	rmation Network, E GDACS = Global Di	NGRH = Natior saster Alert and	nal Directorate for d Coordination
127 System, INE = National Institute for Statistics Mozambique, INGC = National Institute for Disaster Manage						agement
128	JN-OCHA ROSEA =					
129	United Nations Office for	the Coordination of Hun	nanitarian Affairs :	Southern and Easte	rn Africa, UNOS	SAT = United Nations
130	Operational Satellite Appl	ister World Food Pr	ood Program			

2							
3 4	131	^b Source date represents the imagery acquisition date for the flood extents and the release date for all other data 2.2					
5 6	132	Data sources and preparation					
7	133	The projection, resolution and alignment of geospatial data was processed using Quantum					
9	134	Geographical Information System (QGIS) (version $3.4)^{36}$ and, to a limited extent, R (version					
10 11	135	3.5.2) ³⁷ . As indicated in Table 1, most data layers were retrieved from open data platform:					
12 13	136	All rasters and shapefiles were saved in the projection system of Mozambique, i.e. UTM-37S					
14 15	137	[EPSG:32737]. The data preparation process is briefly described below, and fully detailed in					
16	138	Supplement 1.					
17	139						
19 20	140	Elevation data were obtained from the Shuttle Radar Topography Mission (SRTM) in tiles at					
21 22	141	a resolution of 30 meters and mosaiced to cover the whole country ³⁸ . Slopes were derived					
23 24	142	from it and accounted for when modelling walking movements.					
25 26	143						
20	144	Land cover data was downloaded for the whole African continent at 100 meter resolution					
28 29	145	from Copernicus Global Land Service ²⁷ and was clipped to the extent of Mozambique. As					
30 31	146	analyses were carried out at 30-meter resolution the land cover raster was resampled at a					
32 33	147	resolution of 30 meters, using nearest neighbor interpolation.					
34 35	148						
36 37	149	The pre-cyclone road network dataset was retrieved from Open Street Map (OSM) through					
38	150	the Geonode Platform of the National Institute for Disaster Management Mozambique					
39 40	151	(INGC), and linked to the road damage information as indicated by the Logistics Cluster of					
41 42	152	the World Food Program (LOG-WFP) ^{39,40} . Historical post-cyclone status of roads and road					
43 44	153	segments were manually digitized from PDF maps provided by LOG-WFP. The maps were					
45 46	154	cross-referenced with the OSM road network layer, to include post-cyclone road damage					
47 49	155	status, (i.e. 1) open, 2) restricted, and 3) closed). Road damages as a consequence of					
40 49	156	cyclones Idai and Kenneth were taken from maps dated March 19 and May 3, 2019,					
50 51	157	respectively (Table 1) ^{39,40} . Information on road type and damage were combined in order to					
52 53	158	obtain unique road type-damage combinations (Supplement 2).					
53 54 55 56	159						
	160	Information on rivers and lake layout were obtained as shapefiles from the National					
58	161	Directorate for Water Resource Management (DNGRH). Only primary rivers and lakes were					
59 60	162	considered as barriers to movement, under the informed assumption that smaller rivers and					

Page 9 of 37

1

BMJ Open

2	
3 4	163
5	164
6 7	165
8 9	166
10 11	167
12	168
13 14	169
15 16	170
17 18	171
19	172
20 21	172
22 23	173
24 25	174
26	175
27 28	176
29 30	177
31	178
32 33	179
34 35	180
36 37	181
38	182
39 40	183
41 42	184
43 44	185
45	186
46 47	187
48 49	188
50 51	100
51 52	103
53 54	190
55	191
56 57	192

163 streams were passable by the population. This assumption was checked for several 164 instances against background satellite imagery. Flood extents for Idai (on 19 March 2019)²⁹ and Kenneth (on 2 May 2019)³⁰ were sourced as shapefiles from Sentinel-1 and Copernicus 165 166 EMSR354, respectively. The flood extents were visually inspected and found to be largest on 167 those two dates, and thus represent the biggest constraints for health care access. All 168 flooded areas were treated under two scenarios: 1) as being impassable, under the 169 assumption that people avoid traversing flood water to prevent further injury, 2) as being 170 passable by foot at an average walking speed of 1.5 km/h. In the first scenario, health 171 facilities located on flood extents were always treated as inaccessible since they are located 172 on barriers.

174 While cyclones impact entire populations, the burden disproportionately affects children and women ⁴¹. It is estimated that for cyclones Idai and Kenneth more than 50% of the 175 176 affected population were children, and with flood waters rising above 6 meters, their 177 movements to safety and health care were particularly limited ⁵. Moreover, children under 178 5 represent the age group used as benchmark for child survival targets in both the 179 Millennium Development Goals (MDGs) and the Sustainable Development Goals (SDGs), as such this cohort is frequently used as baseline⁴². In this context and through the 180 181 collaborative work with UNICEF, this analysis aimed at informing the impact of the disasters 182 on the burden for specific child health services that target children under 5, (e.g. 183 immunization). We therefore focused our analyses on children under 5.

High-resolution population density estimates for children under five were obtained from the 185 186 Facebook Connectivity Lab and Center for International Earth Science Information Network (CIESN)³⁵ with a 30-meter resolution. Although several gridded populations datasets are 187 188 available, the Facebook CIESN dataset was assumed to have the most realistic reallocation 189 of population to settlements⁴³. In addition, other frequently used high resolution gridded population datasets, such as WorldPop⁴⁴, use distances from roads and villages as 190 191 covariates, and this can produce collinearity when used in conjunction with accessibility 192 models. Population density was used to run zonal statistics on the cyclone-affected districts. 58 193 In this step the total population per district is summed and the estimated absolute number 59

3 4	194	of children under 5 that are able to reach a facility in a pre-defined travel time catchment
5	195	are calculated.
o 7	196	
8 9	197	Additionally, geographic coordinates of all villages (i.e. communities) in Idai-affected
10 11	198	districts were obtained from UNICEF Mozambique, which had gathered this information
12 13	199	through a community mapping initiative conducted by health officials, 6 to 8 months before
14 15	200	Cyclone Idai made landfall. These community locations were used to extract pre- and post-
16 17	201	cyclone travel time for each community to the nearest functional health center.
18	202	Unfortunately, geographic coordinates of villages in Kenneth-affected districts were not
19 20	203	available at the time of study.
21 22	204	
23 24	205	The geographic coordinates of all health facilities were sourced from the health
25 26	206	management information system, Ministry of Health in Mozambique (SIS-MA). Data
27 28	207	cleaning was undertaken in cases where the geographic coordinates for health facilities
20	208	were located outside the international border of Mozambique or for coordinates falling on
30 31	209	barriers to movement (Supplement 1). Information on damaged health facilities was
32 33	210	provided in tabular format by the World Health Organization (WHO). The health system in
34 35	211	Mozambique comprises 4 levels; the primary level consists of urban and rural health
36 37	212	centers, the secondary level consists of general, rural and district hospitals, the tertiary level
38 30	213	comprises provincial capital hospitals, and quaternary facilities comprise the central and
40	214	specialized hospitals ⁴⁵ . Health facilities of all levels were included in the model.
41 42	215	
43 44	216	Districts that were most affected by Cyclones Idai and Kenneth ("cyclone-affected districts",
45 46	217	thereafter) were identified in close collaboration with UNICEF and humanitarian responders.
47 48	218	All statistics presented below were calculated for these identified districts, with 26 such
49	219	districts in the Idai-affected region and 11 districts in the Kenneth-affected region (Figure 1a
51	220	& 1b). Storm trajectories of both cyclones and road damages in both districts are also
52 53	221	presented (Figure 1c-1f).
54 55	222	
56 57	223	2.3 Geographical accessibility modelling
58 59	224	To model travel times and accessibility coverages, we used AccessMod 5 (version 5.6.30), in
60	225	particular the "accessibility" and "zonal statistics" modules ^{23,46} . AccessMod models

Page 11 of 37

BMJ Open

1 2							
3 4 5 6 7 8 9	226	geographic accessibility using terrain-based least-cost path distance calculation. This open-					
	227	source software has been successfully applied in many different settings, among which					
	228	accessibility and referral assessments of health facility networks, optimization modelling of					
	229	health programs in obstetric and neonatal care (EmONC) ⁴⁷ , primary health care ⁴⁸ ,					
10 11	230	emergency care ⁴⁹ , referral times ⁵⁰ , and treatment of fever cases ⁵¹ .					
12 13	231						
14 15 16 17 18 19 20 21 22 23 24 25	232	Using the "merge land cover" module in AccessMod, we overlaid the roads, rivers, lakes,					
	233	flood extent, and landcover datasets to obtain a single 30-m resolution raster dataset, to					
	234	which different travel scenarios were applied.					
	235						
	236	The travel scenarios (presented in Supplement 2) were derived using local information as					
	237	model inputs on pre-cyclone and post-cyclone travel speeds and travel modes. Both					
25 26	238	scenarios were developed in close collaboration with UNICEF Mozambique, with focus on					
26 27 28 29 30 31 32 33	239	geographical accessibility to functional health facilities for the target population of child					
	240	under 5. Post-cyclone travel speeds were adjusted for wet weather conditions as heavy					
	241	rains persisted in the direct aftermath of both cyclones. During the post-cyclone situatio					
	242	restricted and closed roads that were not inundated were assumed to be unpassable by any					
34 35	243	vehicle; but they were perceived to be accessible by foot. All landcover classes outside of					
36 37	244	the road network and the barriers were considered as passable. We assumed a functional					
38 30	245	bridge where a road segment crossed a river.					
39 40 41 42	246						
	247	To account for uncertainty of the assumed travel speeds, we also considered both pre- and					
43 44	248	post-cyclone motorized travel speeds with a 20% slower and 20% faster speed, as adapted					
45 46	249	from Ouma et al. ⁴⁹ . Accessibility coverage of the network of health centers was calculated at					
47 48	250	the 2-hour maximum travel time limit. This limit was deemed appropriate to capture the					
49 50	251	extent of effective access, and is often used in health accessibility studies, notably in					
50 51 52 53 54 55	252	maternal health ⁴⁷ .					
	253						
	254	FIGURE 1					
56 57	255						
58 50	256						
60							

2							
3 4 5 6 7 8 9 10 11 12 13 14 15	257	2.4 Patients and the public involvement					
	258	There was no patient or public involvement in this study. Health facility functionality status					
	259	was shared in tabular format by WHO. All other geospatial data were publicly available.					
	260						
	261	3. RESULTS					
	262	All statistics mentioned in the results are estimates of children covered by functional health					
	263	facilities based on our accessibility model.					
16 17	264						
17 18 19 20 21 22 23 24	265	3.1 Pre-cyclone accessibility					
	266	Pre-cyclone coverage in Idai-affected districts (Figure 2a) was highest in Cidade De Chim					
	267	and Cidade Da Beira, with 99.8% and 99.5% of all children under 5 covered within the 2 hour					
	268	catchment limit, respectively (Supplement 3). However, this coverage ranged from 35.8-					
25 26	269	99.8% in all Idai-affected districts (Supplement 3). Absolute pre-cyclone coverage was also					
26 27 28 29 30 31 32 33 34 35	270) highest in Cidade De Chimoio and Cidade Da Beira, where 57,476, and 66,135 children w					
	271	within 2 hours travel time from a health facility (Figure 2). In Kenneth-affected distri					
	272	2 (Figure 2b), pre-cyclone coverage was highest in Cidade De Pemba, where 100% of the					
	273	children under 5 were expected to be able to reach a health facility within 2 hours travel					
	274	time (Supplement 4). The lowest pre-cyclone coverage was seen in Mazeze, where only					
36 37	275	52.6% of children under 5 were within 2 hours travel time from a health facility (Supplement					
38	276	4). Absolute pre-cyclone coverage in Kenneth-affected districts was highest in Cidade De					
40	277	Pemba (n = 35,467 children) and Chiure (n= 18,257 children) (Figure 2). Pre-cyclone travel					
41 42	278	time rasters for the cyclone-affected areas were mapped (Figure 3A & Figure 4A).					
43 44 45 46	279						
	280	FIGURE 2					
47 48	281						
49 50	282						
50 51	283	3.2 Losses in accessibility coverage					
52 53	284	Geographical accessibility to health care decreased in the cyclone-affected districts, as a					
53 54 55 56 57 58	285	result of reduced travel speeds, road constraints and non-functional health facilities (Figure					
	286	3B and Figure 4B). Ratios of pre-cyclone and post-cyclone travel time rasters are mapped for					
	287	Idai-affected districts, with ratios close to 1 indicating similar travel times pre- and post-					
60	288	cyclone, and ratios closer to 0 indicating large pre- and post-cyclone accessibility differences					

1

2	
3	289
4 5	290
6 7	291
8 9	292
) 10	202
11 12	293
13	294
14 15	295
16	296
17 18	297
19	298
20 21	
22	
23 24	
25	
26	
27 20	
20 29	
30	
31	
32 33	
34	299
35 36	300
37	301
39	302
40 41	303
42 43	304
44	305
45 46	306
47 48	200
49	307
50 51	308
52	309
53 54	310
55	
	311

289 (Figure 3C). The same results for Kenneth-affected districts are presented (Figure 4C). 290 Regions shown in red indicate localities with relatively large differences between pre- and

291 post-cyclone travel times (Figure 3C). In the Idai-affected region, especially in the districts

292 surrounding the flood water and closed roads, accessibility is severely impacted. In Idai-

293 affected districts, the percentage of children under 5 covered within 2 hours travel time,

generally decreased from 78.8% to 52.5%, implying that 136,941 previously covered 294

295 children under 5, lost timely access to health care (Table 2).

297 Table 2- Overview of pre- and post-cyclone accessibility coverage in Idai and Kenneth-

298 affected districts.

		Pre-c	yclone	Post-cyclone			
Cyclone	Travel time	Children <5 covered (nr.)	Children <5 covered (%)	Children <5 covered (nr.)	Children <5 covered (%)	Children <5 coverage loss (nr.)	Children <5 coverage loss (%)
	30 minutes	298,432	57.3	153,842	29.5	144,591	27.7
Idai	1 hour	346,409	66.5	206,610	39.6	139,799	26.8
	2 hours	410,696	78.8	273,755	52.5	136,941	26.3
	30 minutes	131,120	72.0	63,953	48.8	304,15	23.2
Kenneth	1 hour	99,056	73.8	86,997	64.8	12,060	9.0
	2 hours	110,348	82.2	96,019	71.5	14,330	10.7

The largest relative accessibility coverage decline, within 2 hours travel time, was observed 300 301 in Machanga, where 77.6% of the previously covered population was no longer able to 302 access a facility under 2 hours in the aftermath of Idai (Figure 2). In terms of absolute 303 coverage, Nhamatanda was the most affected district, with a coverage loss of 25,121 304 children under 5, followed by Morrumbala (n = 19,554 children), Cidade Da Beira (n = 305 17,355 children), and Buzi (n= 9,949 children) (Figure 2). Uncertainty modelling, by 306 accounting for 20% slower and 20% faster motorized travel speeds⁴⁹, indicated localities 307 with travel time differences up to 3-hours comparing slower and faster travel speeds (Figure 308 3D & Figure 4D). This information indicates where our travel time assumptions have the 309 largest effect on accessibility and coverage losses and where this may be either under- or 310 overestimated based which can help guide resource allocation for decreasing this 311 uncertainty. 312 58 59 60

3 4	313	Relative accessibility coverage in all Kenneth-affected districts decreased from 82.2% to				
5 6 7 8 9 10 11	314	71.5%, corresponding to 14,330 children having lost access to the nearest facility within 2				
	315	hours travel time (Table 2). The most affected district in terms of relative coverage loss was				
	316	Macomia, where 88.9% of the children that were covered pre-cyclone lost access				
	317	(Supplement 3 & 4). Mazeze was the most affected district in terms of absolute coverage				
12 13	318	loss, as 5,496 children lost access in the aftermath of cyclone Kenneth, followed by				
14 15	319	Macomia (n= 3,727 children), Chiure (n= 2,307 children), Quissanga (n= 1,270 children) and				
16 17	320	Mueda (n= 750 children) (Figure 2).				
18	321					
19 20	322	Since flood waters slowly receded in the days/weeks after the cyclones, we ran an				
21 22	323	additional scenario where flood waters were passable at a 1.5km/h walking speed.				
23 24 25 26 27 28 29	324	Considering this scenario, absolute coverage losses for Idai-affected districts within 2 ho				
	325	travel time were highest in Morrumbala (n= 29,566 children), Nhamatanda (n= 25,758				
	326	6 children), Dacata (n= 8,914 children), and Bùzi (n= 8,757 children). In Kenneth-affected				
	327	districts, Mazeze (n= 6,167 children), Chiure (n= 4,684 children) and Macomia (n= 3,727				
30 31	328	children) had the highest coverage losses in 2 hour catchments under the passable scenario.				
32 33 34 35 36 37 38 39 40	329					
	330	3.3 Travel time in affected communities				
	331	The most affected villages in Idai-affected districts, in terms of reduced accessibility to the				
	332	nearest health facility were communities located in Bùzi and Muanza districts in Sofala				
	333	province. Mucinemo in Bùzi district was found to have a pre-cyclone travel time of 1.3 hours				
41 42	334	to the nearest health facility. However, this travel time upsurged to 63.6 hours in the direct				
43 44	335	aftermath of cyclone Idai (Supplements 5 & 6). Generally, the 6 most affected communities				
45 46	336	in terms of accessibility in Idai-affected districts all had a pre-cyclone travel time between 1				
47	337	hour and 3 hours, while all post-cyclone travel times increased to over 55 hours				
40 49	338	(Supplement 6). Overall, post-cyclone accessibility ranged from some minutes up to 78				
50 51	339	hours, with the highest travel time found in Chipota, in Muanza district.				
52 53	340					
54 55	341	FIGURE 3 & 4				
56 57	342					
58 59 60	343	3.4 Health facility closures				

Page 15 of 37

BMJ Open

The effect of non-functioning health facilities were isolated by comparing two separate scenarios; 1) a post-cyclone scenario where all health facilities were considered functional, and 2) a post-cyclone scenario where modified functionality status was considered. By comparing these pre-cyclone and post-cyclone scenarios, the coverage losses caused by the transportation-specific disruptions (i.e. adjusted travel speeds and road constraints) could be isolated from the reduction in coverage due to the damage to health facilities (i.e. non-functional health facilities), providing a way to assess the likely impact of future programs aimed at reinforcing health facilities for disasters. In order to make these comparisons in this specific example, both scenarios were run under the assumption that flood waters were fully passable. In all other instances throughout the paper, flood waters were considered impassable. In case all health facilities remained functional in Idai-affected districts (i.e. disruption was due to transportation only), the overall coverage within 2 hours travel time would decrease from 79.3% to 57.7%, a difference of 21.6% (n = 112,538 children). Damage to health facilities caused an additional coverage decline of 5.3% (n = 27,840 children) in Idai-affected districts. However, hospital closures did not evenly affect all districts. In 17 out of 26 Idai-affected districts, hospital closures had no additional effect on accessibility. However, in the remaining 9 Idai-affected districts, hospital closures were responsible for an additional 1.9-59.7% coverage loss within 2 hours catchment. Health facility closures in Machanga affected the relative coverage the most, with 59.7% coverage loss (n= 3,642 children) caused by non-functionality of 3 out of 6 health facilities. Absolute coverage losses as an effect of non-functional health facilities, were highest in Nhamatanda, where 12,946 (31.0%) children under 5 years old lost access due to health facility closures. In Nhamatanda, 9 out of 16 health facilities became unfunctional as a consequence of Cyclone Idai. Health facility closures did not have an additional effect on post-cyclone accessibility in Kenneth-affected districts.

4. DISCUSSION

Accessibility coverage decreased and travel times substantially increased, in the direct aftermath of the cyclones. Damage to transport networks and reduced travel speeds resulted in the most substantial accessibility coverage losses in both Idai- and Kenneth-affected districts. In Kenneth-affected districts, it was found that hospital closures did not have an additional effect on post-cyclone accessibility this is likely caused by the fact that

flood extents and hospital closures were of much smaller magnitudes in the Kenneth-affected region than in the Idai-affected region. In a post-disaster setting, access to health care is essential for effective response and recovery⁵². The results of our study can be implemented beyond the response phase of the cyclones. Although the emphasis of the results is on identification of decreased accessibility coverage directly after the cyclones, the information presented here also provides a platform for discussing health system recovery, mitigation and preparedness⁵³. Early identification of underserved districts in the response phase can help reduce the impacts caused by health service interruption, through targeted deployment of medical services in districts with largest accessibility coverage losses and lowest baseline accessibility⁵⁴. Information on accessibility coverage losses per cyclone-affected district can support decision-making in the prioritization and planning of these medical services, by targeting where the deployment of medical services reaches the highest number of people. Growing access to open data and post-disaster information enables prompt accessibility modelling in the aftermath of a natural disaster and the growing ability to quickly assemble this data provides an opportunity to integrate accessibility modelling in the early response phase of a natural disaster, so resources can be allocated in an informed way and health impacts can be reduced. In this specific study, all data for an initial post-cyclone accessibility study became available between 1 week and 1 month post-disaster (Table 1). This allows for an accessibility analysis in the early stages of a disaster response. Generally, data on flood extents and road damages, acquired from satellite imagery, were downloadable within 1 week post-disaster. Whereas information that had to be ground validated, such as health facility functionality, became available approximately 1 month post-disaster. Furthermore, the extensive damages to the road network will continue to limit movements of the population, further complicating physical accessibility⁵. Our results indicate that road damages are responsible for a relatively large loss of accessibility. This calls for a concerted effort between road and health authorities when prioritizing reconstruction efforts. It was estimated by WHO that damages to (health) infrastructure translated into 200,000 people living more than 5 kilometers from a functioning health facility⁵⁵. However, our results, which provide a more realistic representation of accessibility, by accounting for topography,

BMJ Open

barriers to movement, and population distribution, suggest this figure is an underestimate. We estimated that as a result of the damage to infrastructure and barriers to movement, 314,591 children under 5 live further than 1 hour travelling from a functioning health facility.

Fourteen percent of all health facilities in Cyclone Idai- and Kenneth-affected cyclone-districts have been damaged or fully destroyed, although more health facilities were temporarily impacted in service provisioning due to flooding, electricity constraints or damage to equipment ^{14,56}. While it is critical to restore access to essential health services as soon as possible, the WHO reported that the reconstruction of all destructed and damaged facilities may take up to 5 years¹⁴. To restore baseline accessibility, the establishment of mobile outreach units, deployment of community health workers (CHWs), together with the reconstruction of damaged facilities should be implemented. However, under the umbrella of Building Back Better (BBB), rebuilding more resilient facilities and infrastructure, that are able to withstand future hazards under the "Hospitals Safe from Disasters" approach, are needed to prevent similar impacts in future disasters^{55,56}. The results presented here show the importance of joint efforts to reduce both impacts on health facilities and the existing road network. However, resources are limited, and efficient financial planning is needed to outline health system investment plans^{5,11}. The results of our accessibility modelling can be used to prioritize health facility reconstruction for facilities with highest accessibility coverages. Cyclone Idai for instance, caused the destruction of the only tertiary hospital in 4 affected provinces that serves an estimated 12 million people⁵². Targeting hospitals with coverage numbers like these, to be strengthened for future disaster impacts and to support them in providing continuity of care in the aftermath of future disasters can help reduce health losses⁵⁷.

Due to the persisting health system disruption, humanitarian responders have identified the need to deploy community health workers (CHWs) and mobile outreach services to cover accessibility losses caused by the cyclones and to extend the reach of existing functional services^{52,58}. These study findings can assist policymakers in identifying and prioritizing severely impacted districts and communities and regions where deployment of CHWs can make a difference. Supplementary material 3 to 6 present the most affected communities in

terms of increased travel time and coverage losses, directly post-cyclone. These analyses can be routinely updated to assess the effect of health system recovery on accessibility. The districts that were most affected by Cyclone Idai and Kenneth were historically, and are in the future, also prone to disasters due to their topography (i.e. coastal cities, cyclone belt Indian Ocean, and low elevation)^{52,55}. Ideally, accessibility modelling could be applied to simulate the effects of historical disasters on accessibility, as indicated in Supplement 5 and Supplement 6, so targeted preventive measures can be taken for future disasters. Post-disaster accessibility modelling can help identify weak spots in geographical accessibility to the health system and helps to distinguish pre-existing accessibility gaps (Figure 3A and 4A) from accessibility coverage losses as a result of disasters (Figure 3B and 4B). This information is essential in health system recovery, strengthening and preparing for future disasters.

Limitations and uncertainties of this study were primarily linked to the data. While the occurrence of natural disasters generally accelerates data availability in affected countries, there also are challenges of data quality, consistency, and format⁵⁹. In this study, data from various sources were combined to represent the post-cyclone situation as realistically as possible, but since data gathering was ongoing, it was expected that some data were incomplete or not fully processed at the time of usage. Health facility coordinates for instance had duplicate occurrences in the database and health facility damages were solely indicated by name, which resulted in manual spatial merging. Co-occurrences of rivers that were indicated as floods were seen in the flood extent layer, minimally overestimating actual flood extents in some parts of the affected regions. Besides post-disaster data uncertainty, pre-disaster spatial data were also checked against background satellite imagery. The hydrography of primary rivers stored in the data was found not to be fully representative for actual hydrography in some regions. This could be a consequence of digitizing against a less granular spatial resolution⁶⁰. In some cases, passages and bridges were detected on satellite background imagery where the OpenStreetMap road layer did not present presence of roads. In places where hydrography is potentially overestimated and not all roads are mapped, isolated land pockets are created in the merged land cover. When modelling accessibility in these land pockets the population is assumed to be fully isolated from health care.

BMJ Open

2	472					
4 5	473	Next to data uncertainties, travel scenarios present a source of uncertainty as assumptions				
6 7	474	on travel speeds and modes are uniformly generalized across regions. In addition, we				
8 9 10 11	475	assumed that roads indicated as being restricted or closed, were considered only passable				
	476	by foot if they were not inundated. However, some of the restricted roads were in fact				
12 13	477	passable by 4x4 vehicles. Other means of transport (e.g., bicycle, motorcycle) may also have				
14 15 16 17	478	been used in some places, which would increase accessibility to health centres. Since car				
	479	ownership and access to motorized transport by the target population was expected to be				
18	480	very low, especially post-cyclone, it was decided to run the accessibility model for restricted				
20	481	and closed roads only by means of walking.				
21 22	482					
23 24	483	Our accessibility modelling assumes that patients always travel to the nearest health facility.				
25 26	484	However, literature has shown that patients sometimes bypass health facilities in search of				
27 28	485	higher quality care in Mozambique ^{61,62} . Previous research, has shown that 30.8% of				
29 30	486	pregnant women bypassed the nearest health facility in search of better prenatal care ⁶¹ .				
31 32	487	Our results can therefore present slight underestimations of actual travel times.				
32 33	488					
34 35	489	Despite some of the limitations, the results presented here provide important initial				
36 37 38 39 40 41	490	information for post-cyclone health system recovery which can be expanded through future				
	491	research. Since post-disaster needs continuously change based on the nature of the event				
	492	(e.g. receding flood waters, reconstruction efforts, and deployment of temporary medical				
42	493	services), following studies should also be focused on the ability to dynamically model				
43 44	494	accessibility based on these changes, so accessibility can be continuously monitored and				
45 46	495	humanitarian service delivery can be updated accordingly in disaster-affected districts.				
47 48	496	Additionally, it would be interesting to assess the effect of CHW deployment and mobile				
49 50	497	outreach communities on improved accessibility and accessibility coverage estimates, to				
51 52	498	quantify the effect of these interventions.				
52 53 54 55 56 57 58 59	499					
	500	Post-disaster accessibility modelling can increase our understanding of spatial differences in				
	501	health care needs in the direct aftermath of a disaster and can help target limited resources				
	502	efficiently. Currently, there is no standardized approach in the humanitarian program cycle				
60	503	to assess post-disaster accessibility losses against baseline accessibility ¹⁸ . The lack of a				

standardized methodology to spatially assess disaster impacts on accessibility can result in
uncoordinated decision making for temporary health facility locations, introducing
duplication probability, and complicates prioritization in recovery efforts. The results in this
paper not only reflect the importance of incorporating accessibility modelling in early
disaster response, but also provide a platform for discussing health system recovery,
mitigation and preparedness.

for open teries only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2							
3 4	510	ACKNOWLEDGEMENTS					
5 6 7	511	We thank Michelle Schmitz and Peter Macharia for useful comments on an earlier version of					
7 8 9	512	2 the manuscript.					
10 11	513						
12 13	514	DECLARATION OF COMPETING INTEREST					
14 15 16	515	The authors declare that they have no known competing financial interests or personal					
17 18	516	relationships that could have appeared to influence the work reported in this paper.					
19 20 21	517						
22 23	518	FUNDING STATEMENT					
24 25 26	519	This study was partly funded by UNICEF.					
27 28	520						
29 30 31	521						
32 33	522	Fleur Hierink: conceptualization, methodology, formal analysis, writing, editing,					
34 35 36	523	visualization, supervision. Nelson Rodrigues: data sharing, methodology, writing, editing,					
37 38	524	validation. Maria Muñiz: writing, editing. Rocco Panciera: methodology, writing, editing.					
39 40 41	525	Nicolas Ray: conceptualization, methodology, writing, editing, validation, supervision.					
42 43	526						
44 45	527	DATA SHARING STATEMENT					
40 47 48	528	Data available upon request.					
49 50							
50 51							
52							
53							
54							
55 54							
50 57							
58							
59							
60							

2						
3 ⊿	529	REFERENCES				
5	530	1. Delamater PL, Messina JP, Shortridge AM, et al. Measuring geographic access to health				
6	531	care: raster and network-based methods. International journal of health apparantics				
7	532	2012:11(1):15.				
8 9	533	2. Davis JR. Wilson S. Brock-Martin A. et al. The impact of disasters on populations with				
10	534	health and health care disparities. Disaster medicine and nublic health preparedness				
11	535	2010:4(1):30-38.				
12	536	3 Abbas HB Routray IK A semi-quantitative risk assessment model of primary health care				
13	537	service interruption during flood: Case study of Aroma locality. Kassala State of				
14 15	538	Sudan International Journal of Disaster Risk Reduction 2013:6:118-28				
16	539	4 Makanga PT, Schuurman N, Sacoor C, et al. Seasonal variation in geographical access to				
17	540	maternal health services in regions of southern Mozambique. International journal				
18	540 541	of health apparanhics 2017:16(1):1				
19 20	542	5 United Nations Office of Coordinated Humanitarian Affairs, Humanitarian Reponse Plan				
20	543	(2018-2019): revised following Cyclones Idai and Kenneth, May 2019				
22	544	6 Chen WH Azman AS Mitigating Cholera in the Aftermath of Cyclone Idai. The American				
23	545	iournal of tronical medicine and hydiene 2019 tomd 190285				
24	546	7 World Health Organization, Relatório da Situação Nacional 11: 04 de Outubro de 2019				
25 26	547	Período abrangido 9 a 22 de Setembro de 2019, 2019. [Available from]:				
27	548	https://www.afro.who.int/sites/default/files/2019-				
28	549	10/National SitRen%2011_MO7_9%20a%2022%20de%20Setembro%202019_PORT				
29	550	ndf				
30 21	550	8 Cambaza E. Mongo F. Ananakala E. et al. Outbreak of Cholera Due to Cyclone Kenneth in				
32	552	Northern Mozambique, 2019, International journal of environmental research and				
33	553	public health 2019:16(16):2925.				
34	554	9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambigue Continues:				
35	555	Reliefweb: 2019 [updated 17 May 2019. [Available from]:				
37	556	https://reliefweb.int/report/mozambigue/after-cyclones-idai-and-kenneth-recovery-				
38	557	mozambigue-continues accessed 16 Oct 2019.				
39	558	10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019.				
40 41	559	11. Devi S. Cyclone Idai: 1 month later, devastation persists. <i>The Lancet</i>				
41	560	2019;393(10181):1585.				
43	561	12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in				
44	562	Mozambique: Translational Challenges and Opportunities. Prehospital and disaster				
45	563	medicine 2019;34(5):557-62.				
40 47	564	13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs				
48	565	remain [Report]. 3 May 2019 [[Available from]:				
49	566	https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai-				
50	567	continues-health-needs-remain.				
51	568	14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June				
53	569	2019. [Available from]: <u>https://www.who.int/emergencies/cyclone-idai/events-as-</u>				
54	570	they-happen accessed 16 October 2019.				
55	571	15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and				
56 57	572	Kenneth 2019.				
58	573	16. Humanitarian Response. What is the Cluster Approach? [[Available from]:				
59	574	https://www.humanitarianresponse.info/en/about-clusters/what-is-the-cluster-				
60	575	approach accessed 10 Jul 2020.				

1								
2								
4	576	17. Humanitarian Response. Humanitarian Programme Cycle [[Available from]:						
5	577	https://www.humanitarianresponse.info/en/programme-cycle/space accessed 10						
6	578	Jul 2020.						
7	579	18. World Health Organization. Post-Disaster Needs Assessments Guidelines. 2014.						
8	580	19. Humanitarian Data Exchange. Mozambique 2019 [[Available from]:						
9 10	581	https://data.humdata.org/event/idai accessed 25 April 2019.						
11 12	582 583	20. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. <i>Operations Research for</i>						
13	584	Health Care 2017;12:43-59.						
14 15	585	21. Tapia AH, Maldonado E, Tchouakeu LMN, et al. Coordinating humanitarian information.						
16	586	Information Technology & People 2012						
17	587	22. Thévenaz C, Resodihardjo SL. All the best laid plans conditions impeding proper						
18 10	588	emergency response. International Journal of Production Economics 2010;126(1):7-						
20	589	21.						
21	590	23. Ray N, Ebener S. AccessMod 3.0: computing geographic coverage and accessibility to						
22	591	health care services using anisotropic movement of patients. International journal of						
23	592	health geographics 2008;7(1):63.						
24 25	593	24. Instituto Nacional de Estatistica; United Nations Office for Coordination of Humanitarian						
25 26	594	Affairs Regional Office for Southern and Eastern Africa. Mozambique administrative						
27	595	level shapefiles. 2019. [Dataset]. [Available from]:						
28	596	https://data.humdata.org/dataset/mozambique-administrative-levels-0-3. Accessed:						
29	597	Jul 07, 2019						
30	598	25. Global Disaster Alert and Coordination System. Overall Red alert Tropical Cyclone for						
31	599	IDAI-19. 2019. [Dataset]. [Available from]:						
33	600	https://www.gdacs.org/resources.aspx?eventid=1000552&episodeid=24&eventtype						
34	601	<u>=TC</u> . Accessed: March 2020						
35	602	26. Global Disaster Alert and Coordination System. Overall Red alert Tropical Cyclone for						
36	603	KENNETH-19. 2019. [Dataset]. [Available from]:						
3/ 20	604	https://www.gdacs.org/report.aspx?eventtype=TC&eventid=1000559&episodeid=12						
39	605	. Accessed: March 2020						
40	606	27. Buchhorn M, Smets B, Bertels L, et al. Copernicus Global Land Service: Land Cover 100m.						
41	607	epoch "2015", Globe. 2019. Version V2.0.2. [Dataset]. [Available from]:						
42	608	https://lcviewer.vito.be/download doi: 10.5281/zenodo.3243509. Accessed: 31 Jul,						
43	609	2019						
44 45	610	28. U.S. Geological Survey (USGS). Shuttle Radar Topography Mission 1 Arc-Second Global:						
46	611	SRTM1N22W016V3, 2000. [Dataset]. [Available from]:						
47	612	https://search.earthdata.nasa.gov/search_doi:						
48	613	10 5067/MEASURES/NASADEM/NASADEM_SIM_001_Accessed: 20 Sent_2019						
49 50	614	29 UN Operational Satellite Applications Programme (UNOSAT) UNOSAT Geospatial Data						
50 51	615	on Floods in Mozambique - March 2019, 2019, [Dataset], [Available from].						
52	616	https://data.humdata.org/dataset/uposat-analysis-on-floods-in-mozambique-						
53	617	march-2019 Accessed: 31 Jul 2019						
54	610	20 Congraticus EMSP2E4, TC Konnoth Congraticus EMSP2E4 Elogd Extent 20100E02, 2010						
55	610	50. Copenticus Livisio534. To Kenneth Copenticus Livisio534 Flood Extern 20190502. 2019.						
56 57	013	[Dataset]. [Available 11011].						
58	620	0E02 Accessed: 211ul 2010						
59	021	$\overline{0002}$. Allesseu. 51jul, 2019						
60								

1							
2							
5 4	622	31. OpenStreetMap. Osm Roads (Daily extract). 2018. [Dataset]. [Available from]:					
5	623	https://geonode.ingc.gov.mz/layers/geonode:osm_roads. Accessed: 07 Aug, 2019					
6	624	32. World Food Program. Mozambique: Access Constraints as of 19 March 2019.					
7	625	www.logcluster.org, 2019. [Map]. [Available from]:					
8	626	https://logcluster.org/sites/default/files/maps/moz_op_accessconstraints_a3p_201					
9 10	627	<u>90319.pdf</u> . Accessed: 23 Sept, 2019					
11	628	33. World Food Program. Mozambique - Cabo Delgado - Access Constraints Map, 3 May					
12	629	2019. <u>www.logcluster.org</u> , 2019. [Map]. [Available from]:					
13	630	https://logcluster.org/map/mozambique-cabo-delgado-access-constraints-map-3-					
14	631	<u>may-2019</u> . Accessed: 23 Sept, 2019					
15 16	632	34. SIS-MA MMoH. Mozambique - Health facilities. 2019. [Dataset]. [Available from]:					
17	633	https://data.humdata.org/dataset/mozambique-health-facilities. Accessed: 17 Sept,					
18	634	2019					
19	635	35. Facebook Connectivity Lab and Center for International Earth Science Information					
20	636	Network - CIESIN - Columbia University. High Resolution Settlement Layer (HRSL).					
21	637	https://data.humdata.org/dataset/highresolutionpopulationdensitymaps-moz 2019					
22 23	638	Jaccessed 6 August 2019.					
24	639	36. OGIS geographic information system [program], 2019.					
25	640	37. R: A Language and Environment for Statistical Computing [program], 5 version, Vienna,					
26	641	Austria: R Foundation for Statistical Computing 2018					
27 20	642	38 Jarvis A Reuter H. Nelson A. et al. Hole-field seamless SRTM data. International Centre					
20 29	643	for Tropical Agriculture (CIAT) http://srtmcsicajarorg 2008					
30	644 644	39 LOG-WEP Mozambique: Access Constraints as of 19 March 2019 2019 [Man]					
31	645	[Available from]: https://logcluster.org/man/mozambique-access-constraints-man-					
32	646	19-march-2019					
33 24	647	40 LOG-WEP Mozambique - Cabo Delgado: Access constraints man 3 May 2019, 2019					
54 35	648	[Man] [Available from]: https://logcluster.org/man/mozambigue-cabo-delgado-					
36	640	2000 2000 2000 2000 2000 2000 2000 200					
37	650	41 UNICEE Stratogy for boalth (2016, 2020) New York: United Nations Children's Fund 2015					
38	650	41. ONICEP. Strategy for Health (2010–2050). New York. Onlined Nations Children's Fund 2015					
39 40	653	42. Golding N, Burstein K, Longbotton J, et al. Mapping under-5 and neonatal mortality in					
40 41	052	Annea, 2000–15. a baseline analysis for the Sustainable Development Goals. The					
42	053	Luncel 2017;390(10108):2171-82.					
43	054	43. Thematic Research Network on Data and Statistics (TRENDS). Leaving no one of the map:					
44	055	A guide for gridded population data for sustainable development. 2020. [Available					
45	656						
46 47	657	https://static1.squarespace.com/static/5b4f63e14eddec3/4f416232/t/5eb2b65ec5/					
48	658	5060f0adb1feb/1588//0424043/Leaving+no+one+off+the+map-4.pdf					
49	659	44. Tatem AJ. WorldPop, open data for spatial demography. <i>Scientific data</i> 2017;4(1):1-4.					
50	660	45. dos Anjos Luis A, Cabral P. Geographic accessibility to primary healthcare centers in					
51	661	Mozambique. International journal for equity in health 2016;15(1):173.					
52 52	662	46. World Health Organization. Health economics: GeoAccess 2019 [[Available from]:					
55 54	663	https://www.who.int/choice/geoaccess/en/ accessed 15 March 2019.					
55	664	47. Ebener S, Stenberg K, Brun M, et al. Proposing standardised geographical indicators of					
56	665	physical access to emergency obstetric and newborn care in low-income and middle-					
57	666	income countries. BMJ global health 2019;4(Suppl 5)					
58							
72							

1								
2								
3 ⊿	667	48. Munoz UH, Källestål C. Geographical accessibility and spatial coverage modeling of the						
5	668	primary health care network in the Western Province of Rwanda. International						
6	669	journal of health geographics 2012;11(1):40.						
7	670	49. Ouma PO, Maina J, Thuranira PN, et al. Access to emergency hospital care provided by						
8	671	the public sector in sub-Saharan Africa in 2015: a geocoded inventory and spatial						
9	672	analysis. The Lancet Global Health 2018:6(3):e342-e50.						
10	673	50. Schmitz MM. Serbanescu F. Arnott GF. et al. Referral transit time between sending and						
12	674	first-line receiving health facilities: a geographical analysis in Tanzania. BMI global						
13	675	health 2019-4(Suppl 5):e001568						
14	676	51 Alegana VA Wright IA Pentrina II et al Spatial modelling of healthcare utilisation for						
15	677	treatment of fever in Namibia. International journal of health acographics						
16	670							
17	670	2012,11(1).0. 52 Maitinha da Almaida M. Cuba Sanir D. Why Mazambigua's gydanas tall us disastar						
10	679	52. Moltimo de Amerida M, Guna-Sapir D. Why Mozambique's cyclones ten us disaster						
20	680	preparedness needs nearth at its core: The Bivij opinion 2019 [[Available from]:						
21	681	https://blogs.bmj.com/bmj/2019/05/10/mozambiques-cyclones-disaster-						
22	682	preparedness-needs-health-						
23	683	<u>core/?utm_source=twitter&utm_medium=hootsuite&utm_term=&utm_content=&u</u>						
24	684	tm_campaign=editors accessed 17 December 2019.						
25 26	685	53. Khan H, Vasilescu LG, Khan A. Disaster management cycle-a theoretical approach.						
20	686	Journal of Management and Marketing 2008;6(1):43-50.						
28	687	54. Liu A, Sullivan S, Khan M, et al. Community health workers in global health: scale and						
29	688	scalability. Mount Sinai Journal of Medicine: A Journal of Translational and						
30	689	Personalized Medicine 2011;78(3):419-35.						
31	690	55. World Health Organization. As post-cyclone resettlement, 200 000 people lack access to						
32 33	691	health services in Mozambigue. Reliefweb, 2019.						
34	692	56. World Health Organization. Hospitals safe from disasters: Reduce risk, protect health						
35	693	facilities. save lives. 2007.						
36	694	57. World Health Organization, Natural disasters: protecting the public's health. Natural						
37	695	disasters: protecting the public's health2000.						
38	696	58 UNICEE One year after Cyclone Idai 2.5 million people in Mozambique remain in need						
39 40	697	of humanitarian assistance: UNICEE prenares for more frequent and ferocious						
41	698	disasters as a result of the climate crisis 2020 [[Available from]:						
42	600	https://www.upicof.org/mozambiguo/on/pross_roloasos/one_year_after_cyclone						
43	700	idai 25 million neonle mozambique remain need humanitarian accessed 16 March						
44	700							
45 46	701	2020.						
40 47	702	59. Altay N, Labonte M. Challenges in numanitarian information management and						
48	703	exchange: evidence from Halti. <i>Disasters</i> 2014;38(s1):S50-S72.						
49	704	60. Neison T, Wulder M, Niemann K. Spatial resolution implications of digitizing aerial						
50	/05	photography for environmental applications. The Imaging Science Journal						
51	706	2001;49(4):223-32.						
52 52	707	61. Yao J, Agadjanian V. Bypassing health facilities in rural Mozambique: spatial,						
55 54	708	institutional, and individual determinants. BMC health services research						
55	709	2018;18(1):1006.						
56	710	62. Keyes EB, Parker C, Zissette S, et al. Geographic access to emergency obstetric services:						
57	711	a model incorporating patient bypassing using data from Mozambique. BMJ Global						
58	712	Health 2019;4(Suppl 5):e000772.						
59 60	713							
00								

2		
3 4	714	Figure legends:
5	715	
6	716	Figure 1 - Cyclone affected districts, cyclone trajectory, and road damages. (A) Idai affected
7 8	717	districts. (B) Kenneth affected districts. (C) Idai cyclone trajectory [*] . (D) Kenneth cyclone
9	718	trajectory [*] . (E) Road damages in Idai-affected districts. (F) Road damages in Kenneth-
10	719	affected districts.
12	720	*Cyclone paths as reported on Global Disaster Alert and Coordination System (GDACS) ^{25,26} .
13	721	
14 15	722	Figure 2- Absolute and relative reduction in population coverage pre- and post-cyclone
16	723	Idai (A) and Kenneth (B). Labels on top of bars indicate absolute reduction in population
17	724	coverage of children under 5. Labels under districts indicate relative reduction in population
18 19	725	coverage. Maximum limits of the bars indicate the absolute pre-cyclone coverage within 2
20	726	hours travel time. Limits of the blue filled bar indicate the absolute post-cyclone coverage.
21	727	The x-axis is ordered according to relative reduction in population coverage.
22 23	728	
24	729	Figure 3 – Accessibility modelling results for Idai districts. Pre-cyclone travel time raster
25 26	730	(A). Post-cyclone travel time raster (B). Difference ratio raster between pre- and post-
20 27	731	cyclone travel time (C). Uncertainty raster, as a result of the difference between -20% and
28	732	+20% travel speed accessibility (D).
29 30	733	
31	734	Figure 4 – Accessibility modelling results Kenneth districts. Pre-cyclone travel time raster
32	735	(A). Post-cyclone travel time raster (B). Difference ratio raster between pre- and post-
33 34	736	cyclone travel time (C). Uncertainty raster, as a result of the difference between -20% and
35	737	+20% travel speed accessibility (D).
36 27	738	
38	739	
39		
40 41		
42		
43		
44 45		
46		
47 49		
49		
50		
51 52		
53		
54		
55 56		
57		
58 50		
60		

Figure 1 - Cyclone affected districts, cyclone trajectory, and road damages. (A) Idai affected districts. (B)
 Kenneth affected districts. (C) Idai cyclone trajectory*. (D) Kenneth cyclone trajectory*. (E) Road damages in Idai-affected districts. (F) Road damages in Kenneth-affected districts.
 *Cyclone paths as reported on Global Disaster Alert and Coordination System (GDACS) 25,26.

236x292mm (300 x 300 DPI)

Figure 2- Absolute and relative reduction in population coverage pre- and post-cyclone Idai (A) and Kenneth (B). Labels on top of bars indicate absolute reduction in population coverage of children under 5. Labels under districts indicate relative reduction in population coverage. Maximum limits of the bars indicate the absolute pre-cyclone coverage within 2 hours travel time. Limits of the blue filled bar indicate the absolute post-cyclone coverage. The x-axis is ordered according to relative reduction in population coverage.

2777x1736mm (72 x 72 DPI)

Figure 4 – Accessibility modelling results Kenneth districts. Pre-cyclone travel time raster (A). Post-cyclone travel time raster (B). Difference ratio raster between pre- and post-cyclone travel time (C). Uncertainty raster, as a result of the difference between -20% and +20% travel speed accessibility (D).

209x296mm (300 x 300 DPI)

SUPLEMENTARY MATERIAL

Supplement 1-Data preparation for use in AccessMod

All data preparation was carried out in Quantum Geographical Information System (QGIS) (version 3.4)²⁴ in limited combination with R (version 3.5.2)²⁵. As indicated in Table 1, most data layers were retrieved from open data platforms. All raster- and shapefiles were saved in the projection system of Mozambique, i.e. UTM-37S [EPSG:32737]. All raster files were aligned using the digital elevation model (DEM) as reference. The data preparation process is fully described below for each data set.

Elevation

Anisotropic accessibility analyses, in other words analyses accounting for travel speeds on slopes, were carried out for this study. Elevation data were obtained from the Shuttle Radar Topography Mission (SRTM) in tiles at a resolution of 30 meters and mosaiced to cover the whole country³⁸. Slopes were derived from it and accounted for when modelling walking movements.

Land cover

The land cover data set of the African continent²⁷ was clipped to the extent of Mozambique, leaving a small buffer around the country to prevent loss of data cells at the border. The data set was resampled at a resolution of 30 meters using nearest neighbor interpolation.

Road network

The pre-cyclone road network dataset was retrieved from Open Street Map (OSM) through the Geonode Platform of the National Institute for Disaster Management Mozambique (INGC), as this dataset was perceived to represent the most recent information on the roads and could be linked to the damaged roads, as indicated by the Logistics Cluster of the World Food Program (LOG-WFP). Road classes that were not indicated as official classification by OSM, were removed from the data⁴⁸.

LOG-WFP provided the most up to date data on road network damages. However, the road constraint shapefile was updated frequently by overwriting previous versions, without

storing data historically. Therefore, historical post-cyclone status of roads and road segments was manually digitized from PDF maps provided by LOG-WFP^{28,29}. The PDF maps were manually cross-referenced with the OSM road network layer, to include post-cyclone status, i.e. 1) open 2) restricted 3) closed.

Roads were then reclassified based on the unique combination of road type and postcyclone status, resulting in 34 unique road classes (e.g. primary road, primary road restricted, secondary road closed). All roads were given a specific travel speed, accounting for the different scenarios. In the pre-cyclone scenario for instance, all primary road classes (i.e. primary road, primary road restricted, primary road closed) had the same travel speed. Whereas in the post cyclone scenario, the restricted and closed road types had a travel speed and travel mode accounted for their damages, as can be seen from Suplement 2.

Barriers to movement

Rivers and lake shapefiles were obtained as lines and polygons from the National Directorate for Water Resource Management (DNGRH) and accuracy was checked using satellite imagery as a reference, using Microsoft Bing Imagery as a background through the QGIS QuickMapServices Plugin. Only primary rivers and lakes were taken for the analyses, under the assumption that smaller rivers and streams were passable by the population. Water bodies were perceived as being impassable at all scales.

Flood extent caused by Cyclone Idai was taken from 19 March 2019 and flood extent for Cyclone Kenneth was taken from 2 May 2019, because extents were visually inspected and found to be largest on those dates and thus represent the biggest constraints for health care access. All flooded areas were treated as impassable at those dates, considering the depth and extent of the floods.

Population data

High resolution population density estimates for children under five were downloaded at 30 meter resolution from the Facebook Connectivity Lab and Center for International Earth Science Information network³⁰. The raster was projected in Mozambique's projection system, UTM-37S [EPSG:32737], by using nearest neighbor interpolation. Loss of population

BMJ Open

caused by reprojection and clipping to country borders, was corrected for by smoothing the lost population equally over the raster cells. This was done by using a multiplication factor of the difference between the total sum of population before and after data processing using the raster calculator.

Health facilities

The geographic coordinates of all health facilities were obtained through the Humanitarian Data Exchange platform (HDX) and were originally sourced from the Ministry of Health in Mozambique (SIS-MA)³⁴. The data was cleaned to exclude coordinates far outside of the country borders. Coordinates that fell just outside Mozambique were relocated within the country extents. Five health facilities were cross-referenced with other data sources (e.g. Neonatal Inventory Survey UNICEF, OpenStreetMap, Google Maps) because they were located on barriers, such as open sea, rivers or lakes.

Information on damaged health facilities was provided by the World Health Organization (WHO). This data did not include GPS coordinates, thus names of the damaged health facilities were cross referenced with the original health facility shapefile to include post-cyclone status of each facility, i.e. functional or non-functional. For damaged health facilities that were not included in the original health facility shapefile, coordinates were retrieved from a neonatal inventory performed by United Nations Children Fund (UNICEF) and also added as facility to the original health facility data, representing the pre-cyclone situation. Non-functional health facilities were filtered-out for geographical accessibility analyses reflecting the post-cyclone scenarios.

Travel scenario

Both our travel scenarios were developed in close collaboration with country representatives from UNICEF and were adapted to our target population, namely children under five accompanied by a parent (Suplement 2). Flood waters were assumed to be a full barrier to movement to the target population, thus health facilities located in flooded zones were completely inaccessible and flood waters were impassable.

Supplement 2- Travel scenarios pre-cyclone and post-cyclone

Label	Pre-cyclone		Post-cyclone	
	Travel speed (km/h)	Travel mode	Travel speed (km/h)	Travel mode
Shrubs	3	Walking	1.5	Walking
Herbaceous Vegetation	3	Walking	1.5	Walking
Cultivated and Managed Vegetation Agriculture Cropland	3	Walking	1.5	Walking
Urban Built Up	3	Walking	1.5	Walking
Bare Sparse Vegetation	3	Walking	1.5	Walking
Permanent Water Bodies	3	Walking	1.5	Walking
Temporary Water Bodies	3	Walking	1.5	Walking
Herbaceous Wetland	3	Walking	1.5	Walking
Closed Forest Evergreen Broad Leaf	3	Walking	1.5	Walking
Closed Forest Deciduous Broad Leaf	3	Walking	1.5	Walking
Open Forest Evergreen Broad Leaf	3	Walking	1.5	Walking
Open Forest Deciduous Broad Leaf	3	Walking	1.5	Walking
Open Sea	3	Walking	1.5	Walking
Trunk	80	Motorized	50	Motorized
Trunk Restricted	80	Motorized	1.5	Walking
Trunk Closed	80	Motorized	1.5	Walking
Primary	80	Motorized	50	Motorized
Primary Restricted	80	Motorized	1.5	Walking
Primary Closed	80	Motorized	1.5	Walking
Secondary	50	Motorized	40	Motorized
Secondary Restricted	50	Motorized	1.5	Walking
Secondary Closed	50	Motorized	1.5	Walking
Tertiary	30	Motorized	15	Motorized
Tertiary Closed	30	Motorized	1.5	Walking
Tertiary Restricted	30	Motorized	1.5	Walking
Road	20	Motorized	10	Motorized
Raceway	3	Walking	3	Walking
Residential	20	Motorized	10	Motorized
Residential Closed	20	Motorized	1.5	Walking
Living Street	20	Motorized	10	Motorized
Service	3	Walking	1.5	Walking
Track	15	Motorized	10	Motorized
Pedestrian	3	Walking	1.5	Walking
Pier	3	Walking	1.5	Walking
Path Closed	3	Walking	1.5	Walking
Path	3	Walking	1.5	Walking
Footway	3	Walking	1.5	Walking
Bridleway	3	Walking	1.5	Walking
Cycleway	3	Walking	1.5	Walking
Steps	3	Walking	1.5	Walking
Unclassified	3	Walking	1.5	Walking
		5		0

Supplement 3- Relative population coverage pre- and post-cyclone Idai. Ordered on relative difference. Difference indicated between parentheses. Error bars indicate the coverage uncertainty, considering -20% and +20% travel speeds.

Supplement 4- Relative population coverage pre- and post-cyclone Kenneth. Ordered on relative difference. Difference indicated between parentheses. Error bars indicate the coverage uncertainty, considering -20% and +20% travel speeds.

Supplement 5- Travel time per community in Idai affected districts. Fifty most affected

communities by means of accessibility loss. Ordered on absolute travel time difference.

Community	District	Pre-cyclone	Post-cyclone	Difference pre- and
		travel time (h)	travel time (h)	post-cyclone (h)
Mucinemo	Buzi	1.3	63.6	62.3
Bupira	Buzi	1.1	62.3	61.3
Massuinda	Buzi	1.2	60.1	58.9
Njanga	Buzi	4.3	59.1	54.7
Guenie-Sede	Buzi	2.9	57.3	54.4
Mbereaizique	Buzi	2.9	57.3	54.4
Shiniziya Chinhale	Muanza	24.0	77.8	53.8
Chipota	Muanza	24.4	78.0	53.6
Wiriquizi	Muanza	22.2	74.1	51.9
Chingamuzi	Muanza	22.2	74 5	51.8
Mussacazwidie	Buzi	3.5	55.3	51.8
Mussacazwidje	Buzi	3.5	55.3	51.8
Magua	Buzi	3.5	56.6	51.0
Nkolono Droio	Muanza	4.0		51.0 E1 7
	Muanza	20.7	71.0	51./
	Nucrea	20.4	/1.8	51.4
IVIUKUIUMDA CIdade	iviuanza	20.2	/1.4	51.2
Nnanganga	Muanza	19.9	/0.8	50.9
Mutanda	Buzi	5.4	55.3	49.9
Macova-Mutanda	Buzi	6.3	55.1	48.9
Puanda	Buzi	2.9	51.6	48.7
Luanda 1	Muanza	18.8	67.4	48.6
Nhamacalango	Muanza	17.4	65.8	48.4
Sengo	Dondo	5.3	53.5	48.2
Luanda 2	Muanza	18.0	65.8	47.8
Praia Nova	Dondo	3.9	51.5	47.6
Praia Farol	Dondo	3.8	51.4	47.6
Bingue Sede	Muanza	16.4	63.8	47.4
Nkonde 2	Muanza	16.4	63.8	47.4
Massitche	Dondo	7.1	54.5	47.4
Goonda Majaca	Chibabava	6.5	53.3	46.8
Ngomole	Muanza	10.1	56.7	46.6
Ngalazi	Dondo	6.0	52.3	46.3
Nhacudjica	Buzi	6.3	52.4	46.1
Chitundo	Dondo	2.0	47.7	45.7
Macarate	Chibabava	5.3	51.0	45.7
Nhamissassa	Muanza	15.9	61.5	45.6
Docue	Buzi	5.7	51.3	45.6
Khome 1	Dondo	1.4	46.8	45.4
Nherere 2	Muanza	14.0	59.0	45.0
Parange	Buzi	3.6	48.6	45.0
Njocho	Buzi	5.9	50.9	45.0
Binda	Machanga	0.7	45.2	44.6
Khome 2	Dondo	0.6	45.2	44.6
Veruca	Chibabava	4,1	48.6	44 5
Mamunge	Buzi	5 1	49.2	<u> </u>
Birirane	Muanza	12 1	57.2	<u>++.1</u> ЛЛ 1
Vala-vala	Ruzi	5.7	/0 7	44.1 // 1
vala-vala Mucho	Gorongoso), <u>/</u> 1 E	45.2 AE E	44.1
Machiguira		1.0	43.3	44.U 42 F
Nhonwisses	BUZI	2.0	40.1	43.5
innazwicasse	Gorongosa	1.0	44.5	43.5

Supplement 6- Travel time per community in Idai affected districts. Point locations of

communities in Idai affected districts.

BMJ Open

Modelling geographical accessibility to support disaster response and rehabilitation of a health care system: An impact analysis of Cyclones Idai and Kenneth in Mozambique

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039138.R2
Article Type:	Original research
Date Submitted by the Author:	08-Sep-2020
Complete List of Authors:	Hierink, Fleur; University of Geneva, Institute of Global Health; University of Geneva, Institute for Environmental Sciences Rodrigues, Nelson; UNICEF Mozambique Muñiz, Maria; United Nations Childrens Fund, Eastern and Southern Africa Regional Office Panciera, Rocco; United Nations Childrens Fund, Health Section Ray, Nicolas; University of Geneva, Institute of Global Health; University of Geneva, Institute for Environmental Sciences
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Global health
Keywords:	International health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Organisation of health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Geographical mapping < TROPICAL MEDICINE, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Modelling geographical accessibility to support disaster response and rehabilitation of a health care system:

An impact analysis of Cyclones Idai and Kenneth in Mozambique

Fleur Hierink^{1,2}, Nelson Rodrigues³, Maria Muñiz⁴, Rocco Panciera⁵, Nicolas Ray^{1,2}

1. Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland

2. Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland

3. The United Nations Children's Fund, Mozambique, Maputo, Mozambique

4. The United Nations Children's Fund, Eastern and Southern Africa Regional Office,

Nairobi, Kenya

5. The United Nations Children's Fund, Health Section, New York, United States of America

CORRESPONDENCE:

Fleur Hierink

fleur.hierink@unige.ch

GeoHealth group

Institute for Environmental Sciences

Office B401, UNI CARLVOGT

66 Bd Carl Vogt, 1205 Geneva

Switzerland

KEYWORDS:

.th Sec International health services, organization of health services, geographical mapping, risk management

2 3	1	ABSTRACT
4 5	2	Obiectives
6 7	3	Modelling and assessing the loss of geographical accessibility is key to support disaster
8 9	4	response and rehabilitation of the health care system. The aim of this study was therefore
10	5	to estimate post-disaster travel times to functional health facilities and analyze losses in
12	6	accessibility coverage after Cyclones Idai and Kenneth in Mozambique in 2019
13 14	7	
15 16	8	Setting
17 18	9	We modeled travel time of vulnerable population to the nearest functional health facility in
19 20	10	two cyclone-affected regions in Mozambigue. Modelling was done using AccessMod version
21	11	5.6.30, where roads, rivers, lakes, flood extent, topography, and land cover datasets were
22	12	overlaid with health facility coordinates and high-resolution population data to obtain
24 25	13	accessibility coverage estimates under different travel scenarios.
26 27	14	
28 29	15	Outcome measures
30 31	16	Travel time to functional health facilities and accessibility coverage estimates were used to
32	17	identify spatial differences between pre-disaster and post-disaster geographical
33 34	18	accessibility.
35 36	19	
37 38	20	Results
39 40	21	We found that accessibility coverage decreased in the flood affected districts, as a result of
41 42	22	reduced travel speeds, road constraints and non-functional health facilities. In Idai-affected
43 44	23	districts, accessibility coverage decreased from 78.8% to 52.5%, implying that 136,941
45 46	24	children under 5 were no longer able to reach the nearest facility within 2 hours travel time.
47	25	In Kenneth-affected districts, accessibility coverage decreased from 82.2% to 71.5%,
49 50	26	corresponding to 14,330 children under 5 having to travel more than 2 hours to reach the
50 51	27	nearest facility. Damage to transport networks and reduced travel speeds resulted in the
52 53 54 55 56 57 58	28	most substantial accessibility coverage losses in both Idai and Kenneth-affected districts.
59 60		

3 4	29	Conclusions
5	30	Post-disaster accessibility modelling can increase our understanding of spatial differences in
7	31	geographic access to care in the direct aftermath of a disaster and can inform targeting and
8 9	32	prioritization of limited resources. Our results reflect opportunities for integrating
10 11	33	accessibility modelling in early disaster response, and to inform discussions on health
12 13	34	system recovery, mitigation and preparedness.
14 15	35	
16 17 18	36 37	STRENGTHS AND LIMITATIONS OF THIS STUDY
19 20	38	 This is the first study presenting the applicability of post-disaster geographical
20 21	39	accessibility modelling.
22 23	40	The approach enables quantification of disaster impacts on geographical health care
24 25	41	accessibility to prioritize post-disaster interventions and to build resilience for future
26 27	42	disasters.
28 29	43	 To account for uncertainty of the assumed travel speeds, we considered -20% and
30 31	44	+20% intervals on motorized travel speeds.
32	45	Data from various sources and administrative levels were combined to represent the
34 25	46	post-cyclone situation as realistically as possible, but since data gathering was
35 36	47	ongoing, it was expected that some data were incomplete or not fully processed at
37 38	48	the time of usage.
39 40	49	Our accessibility modelling assumes that patients always travel to the nearest health
41 42	50	facility. However, literature has shown that patients sometimes bypass health
43 44	51	facilities in search of higher-quality care in Mozambique.
45 46		
47		
48 49		
50 51		
52 53		
54 55		
55 56		
57 58		
59 60		

1 2		
3 4	52	1. INTRODUCTION
5 6	53	Geographical proximity to health facilities is a crucial aspect of accessibility, utilization and
7	54	the provision of health services to populations in need ¹ . Road networks and natural barriers
8 9	55	(such as rivers, water bodies, and flooded areas) are important factors that determine the
10 11	56	geographical (i.e. physical) accessibility of a population to the network of functional health
12 13	57	facilities. During natural disasters, roads and health facilities are often damaged, yet health
14 15	58	care demand rises substantially at the same time due to injuries and increased
16 17	59	communicable disease risks ^{2,3} . The interplay between the disruption of health
18	60	infrastructure, transport network, and the rise in health care demand, is known to disable a
19 20	61	large portion of the population's access to care they need in the aftermath of a disaster ^{3,4} .
21 22	62	This is especially the case in already medically underserved regions, where the event can
23 24	63	lead to new health disparities or exacerbate existing ones ² .
25 26	64	
27 28	65	In March and April 2019, two cyclones made landfall in Mozambique. This was the first time
29	66	in history that two strong cyclones hit Mozambique consecutively in the same season ⁵ . On
30 31	67	14 March 2019, Tropical Cyclone Idai made landfall in Beira. Followed by a week of heavy
32 33	68	rains and winds the storm ended on 21 March 2019 ⁶ . In the middle of the humanitarian
34 35	69	emergency response for Cyclone Idai, a second cyclone hit Northern Mozambique. Cyclone
36 37	70	Kenneth, a category 4 cyclone and the strongest recorded cyclone on the African continent,
38	71	made landfall in Pemba, Cabo Delgado on 25 April 2019 ^{7,8} . The two cyclones combined had
40	72	a death toll of 648, with 603 fatalities due to Idai and 45 deaths caused by Kenneth, and left
41 42	73	over 2.2 million people in need of humanitarian assistance ⁵ . The cyclone's destruction
43 44	74	isolated entire communities for weeks due to flood waters, destroyed telecommunication
45 46	75	networks, and extensive road damage ^{9,10} . In addition, stagnant waters, inability in accessing
47 48	76	safe water and sanitation, and overcrowding in temporary accommodation led to a cholera
49	77	outbreak and a significant increase in malaria cases ^{5,8,11,12} . Major damage to 113 health
51	78	facilities were reported after both cyclones, causing severe disruption in health service
52 53	79	provision and restricting the population's access to adequate health care ^{13,14} . Although
54 55	80	many humanitarian actors have estimated substantial losses in health care accessibility and
56 57	81	availability ^{5,9,10,13,15} , the quantitative impact of Cyclone Idai and Kenneth on geographical
58 59	82	accessibility to health care remains unknown. Modelling geographical accessibility and
60	83	population coverage by means of travel time to health facilities, can give important insights

1 2		
3	84	for targeting humanitarian action and preparing for future disasters in a coordinated
5	85	manner ¹⁶ .
6 7	86	
8 9	87	Currently, quantitative post-disaster accessibility assessments are not a part of standardized
10 11	88	response guidelines, preventing coordinated and centralized decision making on temporary
12 13	89	facility location to serve beneficiaries in the most optimal way ¹⁶ .Guidelines for a post-
14 15	90	disaster needs assessment from the World Health Organization (WHO) ¹⁷ , advise on a
16 17	91	comparison between baseline and post-disaster accessibility through the evaluation of key
17 18 19 20	92	indicators. However, the suggested key indicators reflect rather static measures of
	93	accessibility, such as hospital beds per 10,000 population or number of damaged health
21 22	94	facilities ¹⁷ .
23 24	95	
25 26	96	Yet, international efforts to support humanitarian responses on the ground accelerate post-
27 28	97	disaster data gathering, enabling a more realistic quantification of accessibility to health
29 30 31 32 33 34 35 36 37 38 30	98	care by means of health facility damages, loss of road access, and barriers to movement
	99	such as flood waters ¹⁸ . Guidance on assessing loss in geographical accessibility while
	100	considering spatial barriers remains abstract or even lacking in disaster management
	101	frameworks. Meanwhile, geographical accessibility models hold actionable information and
	102	have the potential to quantify gaps and overlaps in (temporary) service provisioning,
	103	enabling coordinated, targeted and centralized decision making for humanitarian action ¹⁶ ,
40	104	enhancing both financial and operational efficiency ^{19,20} .
41 42	105	
43 44	106	This study therefore presents a data processing and spatial accessibility modelling method
45 46	107	to assess post-disaster accessibility to health facilities and analyze accessibility coverage
47 48	108	losses as a result of cyclones Idai and Kenneth in Mozambique. The approach enables
49	109	quantification of disaster impacts on geographical health care accessibility to prioritize post-
51	110	disaster interventions and to build resilience for future disasters. This is the first study
52 53	111	presenting the applicability of post-disaster geographical accessibility modelling.
54 55		
56 57		
58 59		
60		

3 4	112	2. METHODS					
5	113	2.1 Overall method	dology				
7	114	In this study, acces	sibility is measure	d as the trave	l time to healt	h facilities a	and accessibility
8 9	115	coverage (i.e. cove	rage) is defined as	s the estimate	d number or p	ercentage o	of people
10 11	116	covered or located	within a travel tin	ne catchment	area ²¹ . To mo	del accessib	oility to health
12	117	facilities, we consid	ler topography, ro	oad networks,	constraints to	movement	(e.g. rivers,
14 17	118	lakes and flood extent), target population distribution, and the locations of functional health					
15 16	119	facilities. We acces	sed and prepared	multiple data	layers (Table	1) assemble	ed in the
17 18	120	aftermath of Cyclo	nes Idai and Kenn	eth, between	April-Septemb	oer 2019. A t	total of three
19 20	121	scenarios were prepared, representing 1) pre-Idai and pre-Kenneth (before March 2019), 2)					
21 22	122	post-Idai (up to one-week post-cyclone), and 3) post-Kenneth (up to one-week post-cyclone)					
23 24	123	situations. We modeled population travel time to the nearest health facility and accessibility					
25	124	coverage, for two cyclone-affected regions.					
26 27	125						
28 29	126	Table 1 – Overview	of data layers an	d data source	S		
30 31		Layer name	Source ^a	Source date ^b	Download date	Туре	Original resolution
32 33 24		Administrative boundaries	INE & UN-OCHA ROSEA (HDX) ²²	02.04.19	31.07.19	Polygon	-
34 35 26		Cyclone trajectory (Idai/Kenneth)	GDACS ^{23,24}	<u>15.03.19</u> / 25.04.19	08.03.2020	Polygon	-
37		Land cover	Copernicus ²⁵	15.11.18	31.07.19	Raster	100 meters
38		Elevation	SRTM CGIAR ²⁶	25.11.18	20.09.19	Raster	30 meters
39		Rivers and lakes	DNGRH	12.8.19	19.9.19	Polygon	-
40		Primary streams	DNGRH	12.8.19	19.9.19	Lines	-

Layer name	Source ^a	Source date ^b	Download date	Туре	Original resolution
Administrative boundaries	INE & UN-OCHA ROSEA (HDX) ²²	02.04.19	31.07.19	Polygon	-
Cyclone trajectory (Idai/Kenneth)	GDACS ^{23,24}	<u>15.03.19</u> / <u>25.04.19</u>	08.03.2020	Polygon	-
Land cover	Copernicus ²⁵	15.11.18	31.07.19	Raster	100 meters
Elevation	SRTM CGIAR ²⁶	25.11.18	20.09.19	Raster	30 meters
Rivers and lakes	DNGRH	12.8.19	19.9.19	Polygon	-
Primary streams	DNGRH	12.8.19	19.9.19	Lines	-
Flood extent, Idai	UNOSAT/ <u>Sentinel</u> -1 (HDX) ²⁷	19.03.19	31.07.19	Polygon	-
Flood extent, Kenneth	Copernicus EMSR354 (INGC Geonode) ²⁸	02.05.19	31.07.19	Polygon	-
Roads	OpenStreetMap (INGC Geonode) ²⁹	25.11.18	07.08.19	Lines	-
Road damages (Idai/Kenneth)	LOG-WFP ^{30,31}	<u>19.03.19</u> / <u>03.05.19</u>	23.09.19	PDF file	-
Health facilities	SIS-MA (HDX) ³²	31.12.17	08.08.19	Points	-
Health facilities damages	Provided by WHO- Mozambique	Represents health facility status 48h until 1 week post-cyclone	17.09.19	Points	-
Population density	Facebook/CIESIN population density ³³	01.10.18	06.08.19	Raster	30 meters

3 4	127	^a Abbreviations: CIESN = Center for International Earth Science Information Network, DNGRH = National Directorate for
5	128	Water Resource Management, HDX = Humanitarian Data Exchange, GDACS = Global Disaster Alert and Coordination
6 7	129	System, INE = National Institute for Statistics Mozambique, INGC = National Institute for Disaster Management
8	130	Mozambique, SIS-MA = Ministry of Health Mozambique, SRTM = Shuttle Radar Topography Mission, UN-OCHA ROSEA =
9	131	United Nations Office for the Coordination of Humanitarian Affairs Southern and Eastern Africa, UNOSAT = United Nations
10 11	132	Operational Satellite Applications Program, LOG-WFP = Logistics Cluster World Food Program
12 13	133	^b Source date represents the imagery acquisition date for the flood extents and the release date for all other data
14	134	
15 16	135	2.2 Data sources and preparation
17 18	136	The projection, resolution and alignment of geospatial data was processed using Quantum
19	137	Geographical Information System (QGIS) (version 3.4) ³⁴ and, to a limited extent, R (version
20	138	3.5.2) ³⁵ . As indicated in Table 1, most data layers were retrieved from open data platforms.
22 23	139	All rasters and shapefiles were saved in the projection system of Mozambique, i.e. UTM-37S
24 25	140	[EPSG:32737]. The data preparation process is briefly described below and is fully detailed
26 27	141	in Supplement 1.
28	142	
30	143	Elevation data were obtained from the Shuttle Radar Topography Mission (SRTM) in tiles at
31 32 33 34	144	a resolution of 30 meters and mosaiced to cover the whole country ³⁶ . Slopes were derived
	145	from it and were accounted for when modelling walking movements.
35 36	146	
37 38	147	Land cover data was downloaded for the whole African continent at 100 meter resolution
39 40	148	from Copernicus Global Land Service ²⁵ and was clipped to the extent of Mozambique. As
40 41	149	analyses were carried out at 30-meter resolution, the land cover raster was resampled at a
42 43	150	resolution of 30 meters, using nearest neighbor interpolation.
44 45	151	
46 47	152	The pre-cyclone road network dataset was retrieved from Open Street Map (OSM) through
48 49	153	the Geonode Platform of the National Institute for Disaster Management Mozambique
50 51	154	(INGC), and linked to the road damage information as indicated by the Logistics Cluster of
52	155	the World Food Program (LOG-WFP) ^{37,38} . Historical post-cyclone status of roads and road
53 54	156	segments were manually digitized from PDF maps provided by LOG-WFP. The maps were
55 56	157	cross-referenced with the OSM road network layer, to include post-cyclone road damage
57 58	158	status, (i.e. 1) open, 2) restricted, and 3) closed). Road damages as a consequence of
59 60	159	cyclones Idai and Kenneth were taken from maps dated March 19 and May 3, 2019,

BMJ Open

2	
3 ⊿	160
5	161
6 7	162
8	163
9 10	103
11 12	164
12 13	165
14 15	166
16	167
17	168
19 20	169
21 22	170
23 24	171
25 26	172
27 28	173
29	174
30 31	175
32 33	176
34 35	177
36 37	178
38	179
40	180
41 42	181
43 44	182
45 46	183
47	184
49	185
50 51	186
52	187
53 54	107
55	188

respectively (Table 1)^{37,38}. Information on road type and damage were combined in order to
 obtain unique road type-damage combinations (Supplement 2).

53 Information on rivers and lake layout were obtained as shapefiles from the National 54 Directorate for Water Resource Management (DNGRH). Only primary rivers and lakes were 55 considered as barriers to movement, under the informed assumption that smaller rivers and 56 streams were passable by the population. This assumption was checked for several instances against background satellite imagery. Flood extents for Idai (on 19 March 2019) 57 58 and Kenneth (on 2 May 2019) were sourced as shapefiles from Sentinel-1 and Copernicus EMSR354, respectively^{27,28}. The flood extents were visually inspected and found to be 59 70 largest on those two dates, and thus represent the biggest constraints for health care 71 access. All flooded areas were treated under two scenarios: 1) as being impassable, under 72 the assumption that people avoid traversing flood water to prevent further injury, 2) as 73 being passable by foot at an average walking speed of 1.5 km/h. In the first scenario, health 74 facilities located on flood extents were always treated as inaccessible since they are located 75 on barriers.

77 While cyclones impact entire populations, the burden disproportionately affects children 78 and women³⁹. It is estimated that for cyclones Idai and Kenneth more than 50% of the 79 affected population were children, and with flood waters rising above 6 meters, their 30 movements to safety and health care were particularly limited⁵. Moreover, children under 5 31 represent the age group used as benchmark for child survival targets in both the Millennium 32 Development Goals (MDGs) and the Sustainable Development Goals (SDGs)⁴⁰. In this 33 context and through the collaborative work with UNICEF, this analysis aimed at informing 34 the impact of the disasters on the burden for specific child health services that target 35 children under 5 (e.g. immunization).

37 High-resolution population density estimates for children under five were obtained from the Facebook Connectivity Lab and Center for International Earth Science Information Network 38 55 56 189 (CIESN)³³ with a 30-meter resolution. Although several gridded populations datasets are 57 58 190 available, the Facebook CIESN dataset was assumed to have the most realistic reallocation 59 60 of population to settlements⁴¹. In addition, other frequently used high-resolution gridded 191

population datasets, such as WorldPop⁴², use distances from roads and villages as covariates, and this can produce collinearity when used in conjunction with accessibility models. Population density was used to run zonal statistics on the cyclone-affected districts. In this step the total population per district is summed and the estimated absolute number of children under 5 that are able to reach a facility in a pre-defined travel time catchment are calculated.

Additionally, geographic coordinates of all villages (i.e. communities) in Idai-affected districts were obtained from UNICEF Mozambique, which had gathered this information through a community mapping initiative conducted by health officials, 6 to 8 months before Cyclone Idai made landfall. These community locations were used to extract pre- and post-cyclone travel time for each community to the nearest functional health center. Unfortunately, geographic coordinates of villages in Kenneth-affected districts were not available at the time of study.

29 206

The geographic coordinates of all health facilities were sourced from the health management information system, Ministry of Health in Mozambique (SIS-MA)³². Data cleaning was undertaken in cases where the geographic coordinates for health facilities were located outside the international border of Mozambique or for coordinates falling on barriers to movement (Supplement 1). Information on damaged health facilities was provided in tabular format by the World Health Organization (WHO). The health system in Mozambique comprises 4 levels; the primary level consists of urban and rural health centers, the secondary level consists of general, rural and district hospitals, the tertiary level comprises provincial capital hospitals, and quaternary facilities comprise the central and specialized hospitals⁴³. Health facilities of all levels were included in the model.

217

Districts that were most affected by Cyclones Idai and Kenneth ("cyclone-affected districts", thereafter) were identified in close collaboration with UNICEF and humanitarian responders. All statistics presented below were calculated for these identified districts, with 26 such districts in the Idai-affected region and 11 districts in the Kenneth-affected region (Figures 1a & 1b). Storm trajectories of both cyclones and road damages in both districts are also presented (Figure 1c-1f).

1 2		
3	224	
4 5 6	225	2.3 Geographical accessibility modelling
0 7	226	To model travel times and accessibility coverages, we used AccessMod 5 (version 5.6.30), in
8 9	227	particular the "accessibility" and "zonal statistics" modules ^{21,44} . AccessMod models
10 11	228	geographical accessibility using terrain-based least-cost path distance calculation. This open-
12 13	229	source software has been successfully applied in many different settings, among which
14 15	230	accessibility and referral assessments of health facility networks, optimization modelling of
16	231	health programs in obstetric and neonatal care (EmONC) ⁴⁵ , primary health care ⁴⁶ ,
17	232	emergency care ⁴⁷ , referral times ⁴⁸ , and treatment of fever cases ⁴⁹ .
19 20	233	
21 22	234	Using the "merge land cover" module in AccessMod, we overlaid the roads, rivers, lakes,
23 24	235	flood extent, and landcover datasets to obtain a single 30-m resolution raster dataset, to
25 26	236	which different travel scenarios were applied.
27	237	
20 29	238	The travel scenarios (presented in Supplement 2) were derived using local information as
30 31	239	model inputs on pre-cyclone and post-cyclone travel speeds and travel modes. Both
32 33	240	scenarios were developed in close collaboration with UNICEF Mozambique, with focus on
34 35	241	geographical accessibility to functional health facilities for the target population of children
36 37	242	under 5. Post-cyclone travel speeds were adjusted for wet weather conditions as heavy
38	243	rains persisted in the direct aftermath of both cyclones. During the post-cyclone situation,
40	244	restricted and closed roads that were not inundated were assumed to be unpassable by any
41 42	245	vehicle; but they were perceived to be accessible by foot. All landcover classes outside of
43 44	246	the road network and the barriers were considered as passable. We assumed a functional
45 46	247	bridge where a road segment crossed a river.
47 48	248	
49 50	249	To account for uncertainty of the assumed travel speeds, we also considered both pre- and
50	250	post-cyclone motorized travel speeds with a 20% slower and 20% faster speed, as adapted
52 53	251	from Ouma et al. ⁴⁷ . Accessibility coverage of the network of health centers was calculated at
54 55	252	the 2-hour maximum travel time limit. This limit was deemed appropriate to capture the
56 57	253	extent of effective access, and is often used in health accessibility studies, notably in
58 59 60	254	maternal health ⁴⁵ .

256	FIGURE 1
257	2.4 Patients and the public involvement
259	There was no patient or public involvement in this study. Health facility functionality status
260	was shared in tabular format by WHO. All other geospatial data were publicly available.
261	
262	3. RESULTS
263	All statistics mentioned in the results are estimates of children covered by functional health
264	facilities based on our accessibility model.
265	
266	3.1 Pre-cyclone accessibility
267	Pre-cyclone coverage in Idai-affected districts (Figure 2a) was highest in Cidade De Chimoio
268	and Cidade Da Beira, with 99.8% and 99.5% of all children under 5 covered within the 2 hou
269	catchment limit, respectively (Supplement 3). However, this coverage ranged from 35.8-
270	99.8% in all Idai-affected districts (Supplement 3). Absolute pre-cyclone coverage was also
271	highest in Cidade De Chimoio and Cidade Da Beira, where 57,476, and 66,135 children were
272	within 2 hours travel time from a health facility (Figure 2). In Kenneth-affected districts
273	(Figure 2b), pre-cyclone coverage was highest in Cidade De Pemba, where 100% of the
274	children under 5 were expected to be able to reach a health facility within 2 hours travel
275	time (Supplement 4). The lowest pre-cyclone coverage was seen in Mazeze, where only
276	52.6% of children under 5 were within 2 hours travel time from a health facility (Supplemen
277	4). Absolute pre-cyclone coverage in Kenneth-affected districts was highest in Cidade De
278	Pemba (n = 35,467 children) and Chiure (n= 18,257 children) (Figure 2). Pre-cyclone travel
279	time rasters for the cyclone-affected areas were mapped (Figure 3A & Figure 4A).
280	
281	FIGURE 2
282	
283	
284	3.2 Losses in accessibility coverage
285	Geographical accessibility to health care decreased in the cyclone-affected districts, as a
286	result of reduced travel speeds, road constraints and non-functional health facilities (Figure

~		
3 4	287	3B and Figure 4B). Ratios of pre-cyclone and post-cyclone travel time rasters are mapped for
5 6	288	Idai-affected districts, with ratios close to 1 indicating similar travel times pre- and post-
7 8	289	cyclone, and ratios closer to 0 indicating large pre- and post-cyclone accessibility differences
9	290	(Figure 3C). The same results for Kenneth-affected districts are presented (Figure 4C).
10 11	291	Regions shown in red indicate localities with relatively large differences between pre- and
12 13	292	post-cyclone travel times (Figure 3C). In the Idai-affected region, especially in the districts
14 15	293	surrounding the flood water and closed roads, accessibility is severely impacted. In Idai-
16 17	294	affected districts, the percentage of children under 5 covered within 2 hours travel time,
18	295	generally decreased from 78.8% to 52.5%, implying that 136,941 previously-covered
19 20 21	296	children under 5, lost timely access to health care (Table 2).

Table 2- Overview of pre- and post-cyclone accessibility coverage in Idai and Kenneth-affected districts.

		Pre-cy	yclone	Post-cyclone			
Cyclone	Travel time	Children <5 covered (nr.)	Children <5 covered (%)	Children <5 covered (nr.)	Children <5 covered (%)	Children <5 coverage loss (nr.)	Children <5 coverage loss (%)
	30 minutes	298,432	57.3	153,842	29.5	144,591	27.7
Idai	1 hour	346,409	66.5	206,610	39.6	139,799	26.8
	2 hours	410,696	78.8	273,755	52.5	136,941	26.3
	30 minutes	131,120	72.0	63,953	48.8	304,15	23.2
Kenneth	1 hour	99,056	73.8	86,997	64.8	12,060	9.0
	2 hours	110,348	82.2	96,019	71.5	14,330	10.7

The largest relative accessibility coverage decline, within 2 hours travel time, was observed in Machanga, where 77.6% of the previously covered population was no longer able to access a facility under 2 hours in the aftermath of Idai (Figure 2). In terms of absolute coverage, Nhamatanda was the most affected district, with a coverage loss of 25,121 children under 5, followed by Morrumbala (n = 19,554 children), Cidade Da Beira (n = 17,355 children), and Buzi (n= 9,949 children) (Figure 2). Uncertainty modelling, by accounting for 20% slower and 20% faster motorized travel speeds⁴⁷, indicated localities with travel time differences up to 3-hours comparing slower and faster travel speeds (Figure 3D & Figure 4D). This information indicates where our travel time assumptions have the largest effect on accessibility and coverage losses and where this may be either under- or overestimated which can help guide resource allocation for decreasing this uncertainty.

2 3	312	
4 5	313	Relative accessibility coverage in all Kenneth-affected districts decreased from 82.2% to
6 7	314	71.5%, corresponding to 14,330 children having lost access to the nearest facility within 2
8 9	315	hours travel time (Table 2). The most affected district in terms of relative coverage loss was
10 11	316	Macomia, where 88.9% of the children that were covered pre-cyclone lost access
11 12 13 14	317	(Supplement 3 & 4). Mazeze was the most affected district in terms of absolute coverage
	318	loss, as 5,496 children lost access in the aftermath of cyclone Kenneth, followed by
15 16	319	Macomia (n= 3,727 children), Chiure (n= 2,307 children), Quissanga (n= 1,270 children) and
17 18	320	Mueda (n= 750 children) (Figure 2).
19 20	321	
21 22	322	Since flood waters slowly receded in the days/weeks after the cyclones, we ran an
22 23 24	323	additional scenario where flood waters were passable at a 1.5km/h walking speed.
24 25	324	Considering this scenario, absolute coverage losses for Idai-affected districts within 2 hours
26 27	325	travel time were highest in Morrumbala (n= 29,566 children), Nhamatanda (n= 25,758
28 29	326	children), Dacata (n= 8,914 children), and Bùzi (n= 8,757 children). In Kenneth-affected
30 31	327	districts, Mazeze (n= 6,167 children), Chiure (n= 4,684 children) and Macomia (n= 3,727
32 33	328	children) had the highest coverage losses in 2 hour catchments under the passable scenario.
34 35	329	
35 36 37 38 39 40 41 42	330	3.3 Travel time in affected communities
	331	The most affected villages in Idai-affected districts, in terms of reduced accessibility to the
	332	nearest health facility were communities located in Bùzi and Muanza districts in Sofala
	333	province. Mucinemo in Bùzi district was found to have a pre-cyclone travel time of 1.3 hours
43 44	334	to the nearest health facility. However, this travel time upsurged to 63.6 hours in the direct
45 46	335	aftermath of cyclone Idai (Supplements 5 & 6). Generally, the 6 most affected communities
47 49	336	in terms of accessibility in Idai-affected districts all had a pre-cyclone travel time between 1
49 50 51 52 53	337	hour and 3 hours, while all post-cyclone travel times increased to over 55 hours
	338	(Supplement 6). Overall, post-cyclone accessibility ranged from some minutes up to 78
	339	hours, with the highest travel time found in Chipota, in Muanza district.
54 55	340	
56 57	341	FIGURE 3 & 4
58 50	342	
60	343	

Page 15 of 37

1 2

BMJ Open

3 4	344	3.4 Health facility closures
5	345	The effects of non-functioning health facilities were isolated by comparing two separate
7	346	scenarios; 1) a post-cyclone scenario where all health facilities were considered functional,
8 9	347	and 2) a post-cyclone scenario where modified functionality status was considered. By
10 11	348	comparing these pre-cyclone and post-cyclone scenarios, the coverage losses caused by the
12 13	349	transportation-specific disruptions (i.e. adjusted travel speeds and road constraints) could
14 15	350	be isolated from the reduction in coverage due to the damage to health facilities (i.e. non-
16 17	351	functional health facilities), providing a way to assess the likely impact of future programs
17	352	aimed at reinforcing health facilities for disasters. In order to make these comparisons in
19 20	353	this specific example, both scenarios were run under the assumption that flood waters were
21 22	354	fully passable. In all other instances throughout the paper, flood waters were considered
23 24	355	impassable. In case all health facilities remained functional in Idai-affected districts (i.e.
25	356	disruption was due to transportation only), the overall coverage within 2 hours travel time
20	357	would decrease from 79.3% to 57.7%, a difference of 21.6% (n = 112,538 children). Damage
28 29	358	to health facilities caused an additional coverage decline of 5.3% (n = 27,840 children) in
30 31	359	Idai-affected districts. However, hospital closures did not evenly affect all districts. In 17 out
32 33	360	of 26 Idai-affected districts, hospital closures had no additional effect on accessibility.
34 35	361	However, in the remaining 9 Idai-affected districts, hospital closures were responsible for an
36 37	362	additional 1.9-59.7% coverage loss within 2 hours catchment. Health facility closures in
38	363	Machanga affected the relative coverage the most, with 59.7% coverage loss (n= 3,642
39 40	364	children) caused by non-functionality of 3 out of 6 health facilities. Absolute coverage losses
41 42	365	as an effect of non-functional health facilities, were highest in Nhamatanda, where 12,946
43 44	366	(31.0%) children under 5 years old lost access due to health facility closures. In
45 46	367	Nhamatanda, 9 out of 16 health facilities became unfunctional as a consequence of Cyclone
47 48	368	Idai. Health facility closures did not have an additional effect on post-cyclone accessibility in
40 49	369	Kenneth-affected districts.
50 51	370	
52 53	371	4. DISCUSSION

Accessibility coverage decreased and travel times substantially increased in the direct
 aftermath of the cyclones. Damage to transport networks and reduced travel speeds
 resulted in the most substantial accessibility coverage losses in both Idai- and Kenneth affected districts. In Kenneth-affected districts, it was found that hospital closures did not

have an additional effect on post-cyclone accessibility this is likely caused by the fact that flood extents and hospital closures were of much smaller magnitudes in the Kenneth-affected region than in the Idai-affected region. In a post-disaster setting, access to health care is essential for effective response and recovery⁵⁰. The results of our study can be implemented beyond the response phase of the cyclones. Although the emphasis of the results is on identification of decreased accessibility coverage directly after the cyclones, the information presented here also provides a platform for discussing health system recovery, mitigation and preparedness⁵¹. Early identification of underserved districts in the response phase can help reduce the impacts caused by health service interruption, through targeted deployment of medical services in districts with the largest accessibility coverage losses and lowest baseline accessibility⁵². Information on accessibility coverage losses per cyclone-affected district can support decision-making in the prioritization and planning of these medical services, by targeting where the deployment of medical services reaches the highest number of people. Growing access to open data and post-disaster information enables prompt accessibility modelling in the aftermath of a natural disaster and the growing ability to quickly assemble this data provides an opportunity to integrate accessibility modelling in the early response phase of a natural disaster, so resources can be allocated in an informed way and health impacts can be reduced. In this specific study, all data for an initial post-cyclone accessibility study became available between 1 week and 1 month post-disaster (Table 1). This allows for an accessibility analysis in the early stages of a disaster response. Generally, data on flood extents and road damages, acquired from satellite imagery, were downloadable within 1 week post-disaster. Whereas information that had to be ground validated, such as health facility functionality, became available approximately 1 month post-disaster. Furthermore, the extensive damages to the road network will continue to limit movements of the population, further complicating physical accessibility⁵. Our results indicate that road damages are responsible for a relatively large loss of accessibility. This calls for a concerted effort between road and health authorities when prioritizing reconstruction efforts. It was estimated by WHO that damages to (health) infrastructure translated into 200,000 people

living more than 5 kilometers from a functioning health facility⁵³. However, our results, which provide a more realistic representation of accessibility, by accounting for topography, barriers to movement, and population distribution, suggest this figure is an underestimate. We estimated that as a result of the damage to infrastructure and barriers to movement, 314,591 children under 5 live further than 1 hour travelling from a functioning health facility.

Fourteen percent of all health facilities in Cyclone Idai- and Kenneth-affected cyclone-districts have been damaged or fully destroyed, although more health facilities were temporarily impacted in service provisioning due to flooding, electricity constraints or damage to equipment^{14,54}. While it is critical to restore access to essential health services as soon as possible, the WHO reported that the reconstruction of all destructed and damaged facilities may take up to 5 years¹⁴. To restore baseline accessibility, the establishment of mobile outreach units, deployment of community health workers (CHWs), together with the reconstruction of damaged facilities should be implemented. However, under the umbrella of Building Back Better (BBB), rebuilding more resilient facilities and infrastructure, that are able to withstand future hazards under the "Hospitals Safe from Disasters" approach, are needed to prevent similar impacts in future disasters^{53,54}. The results presented here show the importance of joint efforts to reduce both impacts on health facilities and the existing road network. However, resources are limited, and efficient financial planning is needed to outline health system investment plans^{5,11}. The results of our accessibility modelling can be used to prioritize health facility reconstruction for facilities with highest accessibility coverages. Cyclone Idai for instance, caused the destruction of the only tertiary hospital in 4 affected provinces that serves an estimated 12 million people⁵⁰. Targeting hospitals with coverage numbers like these, to be strengthened for future disaster impacts and to support them in providing continuity of care in the aftermath of future disasters can help reduce health losses⁵⁵.

Due to the persisting health system disruption, humanitarian responders have identified the need to deploy CHWs and mobile outreach services to cover accessibility losses caused by the cyclones and to extend the reach of existing functional services^{50,56}. These study findings can assist policymakers in identifying and prioritizing severely impacted districts and

 Page 18 of 37

communities and regions where deployment of CHWs can make a difference. Supplementary materials 3-6 present the most affected communities in terms of increased travel time and coverage losses post-cyclone. These analyses can be routinely updated to assess the effect of health system recovery on accessibility. The districts that were most affected by Cyclone Idai and Kenneth were historically, and are in the future, also prone to disasters due to their topography (i.e. due to their location as low-lying coastal cities in the cyclone belt near the Indian Ocean)^{50,53}. Ideally, accessibility modelling could be applied to simulate the effects of historical disasters on accessibility, as indicated in Supplement 5 and Supplement 6, so targeted preventive measures can be taken for future disasters. Post-disaster accessibility modelling can help identify weak spots in geographical accessibility to the health system and helps to distinguish pre-existing accessibility gaps (Figure 3A and 4A) from accessibility coverage losses as a result of disasters (Figure 3B and 4B). This information is essential in health system recovery, strengthening and preparing for future disasters. Limitations and uncertainties of this study were primarily linked to the data. While the occurrence of natural disasters generally accelerates data availability in affected countries, there also are challenges of data quality, consistency, and format⁵⁷. In this study, data from various sources were combined to represent the post-cyclone situation as realistically as possible. But since data gathering was ongoing, it was expected that some data were incomplete or not fully processed at the time of usage. Health facility coordinates had duplicate occurrences in the database and health facility damages were solely indicated by name, which resulted in manual spatial merging. Co-occurrences of rivers that were indicated as floods were seen in the flood extent layer, minimally overestimating actual flood extents in some parts of the affected regions. Besides post-disaster data uncertainty, pre-disaster spatial data were also checked against background satellite imagery. The hydrography of primary rivers stored in the data was found not to be fully representative for actual hydrography in some regions. This could be a consequence of digitizing against a less granular spatial resolution⁵⁸. In some cases, passages and bridges were detected on satellite background imagery where the OpenStreetMap road layer did not present presence of roads. In places where hydrography was potentially overestimated and not all roads are mapped, isolated land pockets were created in the merged land cover. When modelling

Page 19 of 37

BMJ Open

1 2		
3	472	accessibility in these land pockets the population is assumed to be fully isolated from health
5	473	care. In general, we would advise upon a more rigorous and sustainable data management
6 7	474	during and after humanitarian emergency operations to ensure the applicability of
8 9	475	spatiotemporal data analyses to quantify disaster impacts.
10 11 12 13 14 15 16	476	
	477	Next to data uncertainties, travel scenarios present a source of uncertainty as assumptions
	478	on travel speeds and modes are uniformly generalized across regions. In addition, we
	479	assumed that roads indicated as being restricted or closed were considered only passable by
17 18	480	foot if they were not inundated. However, some of the restricted roads were in fact
19 20	481	passable by 4x4 vehicles. Other means of transport (e.g., bicycle, motorcycle) may also have
21 22	482	been used in some places, which would increase accessibility to health centres. Since car
23 24	483	ownership and access to motorized transport by the target population was expected to be
25 26	484	very low, especially post-cyclone, it was decided to run the accessibility model for restricted
20	485	and closed roads only by means of walking.
28 29	486	
30 31	487	Our accessibility modelling assumes that patients always travel to the nearest health facility.
32 33	488	However, literature has shown that patients sometimes bypass health facilities in search of
34 35	489	higher quality care in Mozambique ^{59,60} . Previous research, has shown that 30.8% of
36 37	490	pregnant women bypassed the nearest health facility in search of better prenatal care ⁵⁹ .
38	491	Our results can therefore present slight underestimations of actual travel times.
39 40	492	
41 42	493	Despite some of the limitations, the results presented here provide important initial
43 44	494	information for post-cyclone health system recovery which can be expanded through future
45 46	495	research. Since post-disaster needs continuously change based on the nature of the event
47 48	496	(e.g. receding flood waters, reconstruction efforts, and deployment of temporary medical
49	497	services), following studies should also be focused on the ability to dynamically model
50	498	accessibility based on these changes, so accessibility can be continuously monitored and
52 53	499	humanitarian service delivery can be updated accordingly in disaster-affected districts.
54 55	500	Additionally, it would be interesting to assess the effect of CHW deployment and mobile
56 57	501	outreach communities on improved accessibility and accessibility coverage estimates, to
58 50	502	quantify the effect of these interventions.
60	503	

Post-disaster accessibility modelling can increase our understanding of spatial differences in health care needs in the direct aftermath of a disaster and can help target limited resources efficiently. Currently, there is no standardized approach in the humanitarian program cycle to assess post-disaster accessibility losses against baseline accessibility¹⁷. The lack of a standardized methodology to spatially assess disaster impacts on accessibility can result in uncoordinated decision making for temporary health facility locations, introducing duplication probability, and complicates prioritization in recovery efforts. The results in this paper not only reflect the importance of incorporating accessibility modelling in early disaster response, but also provide a platform for discussing health system recovery, mitigation and preparedness.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 ว		
2 3 4	514	ACKNOWLEDGEMENTS
5 6 7	515	We thank Michelle Schmitz and Peter Macharia for useful comments on an earlier version of
, 8 9	516	the manuscript.
10 11	517	
12 13 14	518	DECLARATION OF COMPETING INTEREST
15 16	519	The authors declare that they have no known competing financial interests or personal
17 18 19	520	relationships that could have appeared to influence the work reported in this paper.
20 21	521	
22 23 24	522	FUNDING STATEMENT
25 26	523	This study was partly funded by UNICEF.
27 28 29	524	
30 31	525	
32 33 24	526	Fleur Hierink: conceptualization, methodology, formal analysis, writing, editing,
34 35 36	527	visualization, supervision. Nelson Rodrigues: data sharing, methodology, writing, editing,
37 38	528	validation. Maria Muñiz: writing, editing. Rocco Panciera: methodology, writing, editing.
39 40 41	529	Nicolas Ray: conceptualization, methodology, writing, editing, validation, supervision.
42 43	530	
44 45 46	531	DATA SHARING STATEMENT
47 48	532	Data available upon reasonable request. Most data used in this study are openly accessible
49 50 51 52 53	533	through the indicated data sources in Table 1. Other data are available upon request.
54 55 56		
57 58		
59 60		

 Delamater PL, Messina JP, Shortridge AM, et al. Measuring geographic access to health care: raster and network-based methods. <i>International journal of health geographics</i> 2012;11(1):15. Davis JR, Wilson S, Brock-Martin A, et al. The impact of disasters on populations with health and health care disparities. <i>Disaster medicine and public health preparedness</i> 2010;4(1):30-38. Abbas HB, Routray JK. A semi-quantitative risk assessment model of primary health care service interruption during flood: Case study of Aroma locality, Kassala State of Sudan. <i>International Journal of Disoster Risk Reduction</i> 2013;6:118-28. Makanga PT, Schuurman N, Sacoor C, et al. Seasonal variation in geographical access to maternal health services in regions of southern Mozambique. <i>International journal of health geographics</i> 2017;16(1):1. United Nations Office of Coordinated Humanitarian Affairs. Humanitarian Reponse Plan (2018-2019): revised following Cyclones Idia and Kenneth. May 2019. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idia. <i>The American journal of tropical medicine and hygiene</i> 2019; 2019. [Available from]: https://www.afrow.hoi.nl/sites/default/files/2019. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Período abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afrow.hoi.nl/sites/default/files/2019. Scambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. <i>International journal of environmental research and public health</i> 2019.[Jo19.2019. Willcock G. After Cyclones Idia and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019 [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idia-and-kenneth-recovery- mozambique: Tenslational Challenges and Opportunities, <i>Prehospital and disaster medicine</i> 2019;34(5):557-62.	3 4	534	REFERENCES
 536 care: raster and network-based methods. <i>International journal of health geographics</i> 2012;11(1):15. 537 2012;11(1):15. 538 2. Davis JR, Wilson S, Brock-Martin A, et al. The impact of disasters on populations with health and health care disparities. <i>Disaster medicine and public health preparedness</i> 2010;4(1):30-38. 541 3. Abbas HB, Routray JK. A semi-quantitative risk assessment model of primary health care service interruption during flood: Case study of Aroma locality, Kassala State of Sudan. <i>International Journal of Disaster Risk Reduction</i> 2013;6:118-28. 543 4. Makanga PT, Schuurman N, Sacoor C, et al. Seasonal variation in geographical access to maternal health services in regions of southern Mozambique. <i>International Journal of health geographics</i> 2017;16(1):1. 544 5. United Nations Office of Coordinated Humanitarian Alfairs. Humanitarian Reponse Plan (2018-2019): revised following Cyclones Idai and Kenneth. May 2019. 545 6. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. <i>The American journal of tropical medicine and hygiene</i> 2019;tpmd190285. 7. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Periodo abrangido 9 a 22 de Settembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019- 555 8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. <i>International Journal of environmental research and public health</i> 2019;10(1):215. 556 8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. <i>International Journal of environmental research and public health</i> 2019;10(10):225. 557 9. Willcock G. After Cyclones Idai and Kenneth, Pecovery in Mozambique Continues: Reliefweb; 2019 lupdated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/atter	5	535	1. Delamater PL, Messina JP, Shortridge AM, et al. Measuring geographic access to health
 2012;11(1):15. 2. Davis JR, Wilson S, Brock-Martin A, et al. The impact of disasters on populations with health and health care disparities. <i>Disaster medicine and public health preparedness</i> 2010;4(1):30-38. 3. Abbas HB, Routray JK. A semi-quantitative risk assessment model of primary health care service interruption during flood: Case study of Aroma locality, Kassala State of Sudan. <i>International Journal of Disaster Risk Reduction</i> 2013;6:118-28. 4. Makanga PT, Schuurman N, Sacoor C, et al. Seasonal variation in geographical access to maternal health services in regions of southern Mozambique. <i>International journal of health geographics</i> 2017;16(1):1. 5. United Nations Office of Coordinated Humanitarian Affairs. Humanitarian Reponse Plan (2018-2019): revises in regions of southern Mozambique. <i>International journal of health geographics</i> 2017;16(1):1. 6. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. <i>The American journal of tropical medicine and hygiene</i> 2019:tpmd190288. 7. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Periodo abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afrow.ho.int/sites/default/files/2019. 556 8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. International Journal of <i>environmental research and public health</i> 2019;16(16):2925. 559 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 561 1. Devi S. Cyclone Idai: 1 month later, devastation persists. <i>The Lancet</i> 2019;343(10181):1585. 563 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translat	6	536	care: raster and network-based methods. International journal of health geographics
 2. Davis JR, Wilson S, Brock-Martin A, et al. The impact of disasters on populations with health and health care disparities. <i>Disoster medicine and public health preparedness</i> 2010;4(1):30-38. 3. Abbas HB, Routray JK. A semi-quantitative risk assessment model of primary health care service interruption during flood: Case study of Aroma locality, Kassala State of Sudan. <i>International Journal of Disaster Risk Reduction</i> 2013;6:118-28. 4. Makanga PT, Schuurman N, Sacoor C, et al. Seasonal variation in geographical access to maternal health services in regions of southern Mozambique. <i>International journal of health geographics</i> 2017;16(1):1. 5. United Nations Office of Coordinated Humanitarian Affairs. Humanitarian Reponse Plan (2018-2019): revised following Cyclones Idai and Kenneth. May 2019. 6. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. <i>The American journal of tropical medicine and hygiene</i> 2019;tpmd190285. 7. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Periodo abrangido 9 a 22 de Steambro de 2019. 2019. [Available from]: https://www.afro.who.int/Sites/default/files/2019. 558. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. <i>International of environmental research and public health</i> 2019;16(16):2925. 9. Willcock G. After Cyclones Idai and Kenneth. Jevalex0et Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 559. JUNICock G. After Cyclones response mid-year strep #12: March-July 2019. 2019. 551. Devis C. Cyclone ldai: 1 month later, devastation persists. <i>The Lancet</i> 2019;343(10181):1585. 556. Stanos E, Konzambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May	/ 0	537	2012;11(1):15.
 health and health care disparities. <i>Disaster medicine and public health preparedness</i> 2010;4(1):30-38. Abbas HB, Routray JK. A semi-quantitative risk assessment model of primary health care service interruption during flood: Case study of Aroma locality, Kassala State of Sudan. <i>International Journal of Disaster Risk Reduction</i> 2013;6:118-28. Makanga PT, Schuurman N, Sacoor C, et al. Seasonal variation in geographical access to maternal health services in regions of southern Mozambique. <i>International Journal of Phath geographics</i> 2017;16(1):1. United Nations Office of Coordinated Humanitarian Affairs. Humanitarian Reponse Plan (2018-2019): revised following Cyclones Idai and Kenneth. May 2019. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. <i>The American journal of tropical medicine and hygiene</i> 2019:tpmd190285. World Health Organization. Relatorio da Situação Nacional 11: 04 de Outubro de 2019, Período abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019_ Mutaional_SitRep%2011_MOZ_9%202%202%20de%20Setembro%202019_PORT. pdf Gambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. International Journal of environmental research and public health 2019;16(16):2925. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/After-cyclones-idai-and-kenneth-recovery-mozambique-continues accessed 16 Oct 2019. UNICCK F. Cyclone response mid-year sitrep #12: March-July 2019. 2019. Devi S. Cyclone Idai: Th moth later, devastation persists. <i>The Lancet</i> 2019;393(10181):1585. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities, <i>Prehospital</i>	o Q	538	2. Davis JR. Wilson S. Brock-Martin A. et al. The impact of disasters on populations with
 2010;4(1):30-38. 2010;4(1):30-38. 3. Abbas HB, Routray JK. A semi-quantitative risk assessment model of primary health care service interruption during flood: Case study of Aroma locality, Kassala State of Sudan. International Journal of Disaster Risk Reduction 2013;6:118-28. 4. Makanga PT, Schuurman N, Sacoor C, et al. Seasonal variation in geographical access to maternal health services in regions of southern Mozambique. International Journal of health geographics 2017;16(1):1. 5. United Nations Office of Coordinated Humanitarian Affairs. Humanitarian Reponse Plan (2018-2019): revised following Cyclones Idai and Kenneth. May 2019. 6. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. The American journal of tropical medicine and hygiene 2019:tpmd190285. 7. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Período abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019. 10/National SitRep%2011 MOZ 9%2020%2022%20de%20Setembro%202019 PORT. pdf 8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. [Available from]: https://reliefweb.id1(616):2925. 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.id1/sites/sitep #12: March-July 2019. 2019. 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 11. Devi S. Cyclone Idai: 1 month later, devastation persists. The Lancet 2019; 393(10181):1585. 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities, but health needs remain [Report]. 3 May 2019 [Ivvailable from]: https://reliefweb.int/report/mozambique/mozambique/colone-idai-continue	10	539	health and health care disparities. <i>Disaster medicine and public health preparedness</i>
 Shaba, Ha, Routray JK. A semi-quantitative risk assessment model of primary health care service interruption during flood: Case study of Aroma locality, Kassala State of Sudan. International Journal of Disaster Risk Reduction 2013;6:118-28. Makanga PT, Schuurman N, Sacoor C, et al. Seasonal variation in geographical access to maternal health services in regions of southern Mozambique. International journal of health geographics 2017;16(1):1. United Nations Office of Coordinated Humanitarian Affairs. Humanitarian Reponse Plan (2018-2019): revised following Cyclones Idai and Kenneth. May 2019. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. The American journal of tropical medicine and hygiene 2019;tpmd190285. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Periodo abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/Sites/default/files/2019. 10/National_SitRep%2011_MOZ_9%20a%2022%200e%20Setembro%202019_PORT. pdf Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. International journal of environmental research and public health 2019;16(16):2925. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. Levi S. Cyclone Idai: 1 month later, devastation persists. The Lancet 2019;394(1):155:57-62. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. World Health Organ	11	540	2010.4(1).30-38
 School für, international Journal of Disaster Risk Reduction 2013;6:118-28. Sudan. International Journal of Disaster Risk Reduction 2013;6:118-28. Makanga PT, Schuurman N, Sacoor C, et al. Seasonal variation in geographical access to maternal health services in regions of southern Mozambique. International Journal of health geographics 2017;16(1):1. United Nations Office of Coordinated Humanitarian Affairs. Humanitarian Reponse Plan (2018-2019): revised following Cyclones Idai and Kenneth. May 2019. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. The American journal of tropical medicine and hygine 2019;tpmd190285. World Health Organization. Relatorio da Situação Nacional 11: 04 de Outubro de 2019, Periodo abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019. Mordenal SitRep%2011 MOZ 9%20a%2022%20de%20Setembro%202019 PORT. pdf Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. [International journal of environmental research and public health 2019;16(16):2925. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique.dfter-cyclones-idai-and-kenneth-recovery-mozambique-continues accessed 16 Oct 2019. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. Devi S. Cyclone Idai: 1 month later, devastation persists. The Lancet 2019;393(10181):1585. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique/cyclone-idai/events-ass-thee/halpen accessed 16 October 2019. Lowi S. Cyclone Idai: The recovery from Cyclone Idai continues, but health needs remain [Report]	12	541	3 Abbas HB Routray IK A semi-quantitative risk assessment model of primary health care
 Schreichtepider der Steller Stell	13	541 542	service interruption during flood: Case study of Aroma locality. Kassala State of
 Sudain information of production for the second variation in geographical access to maternal health services in regions of southern Mozambique. International journal of health geographics 2017;16(1):1. United Nations Office of Coordinated Humanitarian Affairs. Humanitarian Reponse Plan (2018-2019): revised following Cyclones Idai and Kenneth. May 2019. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. The American journal of tropical medicine and hygiene 2019:tpmd190285. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Período abrangido 9 a 22 de Setembro de 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019_ 10//National_SitRep%2011_MOZ_9%20a%2022%20de%20Setembro%202019_PORT. pdf Cambaza E, Mongo F, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. International of environmental research and public health 2019;16(16):2925. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. UNICEF. Cyclone Idai: 1 month later, devastation persists. The Lancet 2019;393(10181):1585. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. Prehospital and disaster medicine 2019;34(5):557-62. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019; [Available from]: https://reliefweb.int/report/mozambique/mozambique-rincoladi/events-as- they	14 15	5/2	Sudan International Journal of Disaster Risk Reduction 2013;6:118-28
 Sine T., Johd Manga T., Jacob R. et al. Season Ventice in regions of southern Mozambique. International Journal of health geographics 2017;16(1):1. United Nations Office of Coordinated Humanitarian Affairs. Humanitarian Reponse Plan (2018-2019): revised following Cyclones Idai and Kenneth. May 2019. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. The American journal of tropical medicine and hygiene 2019:tpmd190285. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Periodo abrangido 9 a 22 de Setembro de 2019. Journal of tropical medicine and hygiene 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019. Mutros J. (2019): Periodo abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. International journal of environmental research and public health 2019;16(16):2925. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery-mozambique-continues accessed 16 Oct 2019. UNICEF: Cyclone Idai: 1 month later, devastation persists. The Lancet 2019;334(5):557-62. Santos E. Mozambique: Translational Challenges and Opportunities. Prehospital and disaster medicine 2019;34(5):557-62. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai-continues-health-needs-remain. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclon	16	545	A Makanga DT Schuurman N Sacoor C et al Seasonal variation in geographical access to
and return aneator set integration of solutient Mozantingue. International journal of health geographics 2017;16(1):1. 547 5. United Nations Office of Coordinated Humanitarian Affairs. Humanitarian Reponse Plan (2018-2019): revised following Cyclones Idai and Kenneth. May 2019. 548 6. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. The American journal of tropical medicine and hygiene 2019:tpmd190285. 551 7. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Período abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019. 553 https://www.afro.who.int/sites/default/files/2019. 554 10/National SitRep%2011 MOZ 9%20a%2022%20de%20Setembro%202019 PORT. pdf 555 gdf 556 8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. International journal of environmental research and public health 2019;16(16):2925. 559 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 lupdated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 561 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 563 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 564 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019.	17	544	4. Makanga FT, Schulman N, Sacoor C, et al. Seasonal Variation in geographical access to
19 546 547 19 546 5. United Nations Office of Coordinated Humanitarian Affairs. Humanitarian Reponse Plan (2018-2019): revised following Cyclones Idai and Kenneth. May 2019. 25 549 6. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. The American journal of tropical medicine and hygiene 2019:tpmd190285. 2551 7. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Período abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019. 2553 10/National SitRep%2011 MOZ 9%20a%2022%20de%20Setembro%202019 PORT. pdf 2554 10/National SitRep%2011 MOZ 9%20a%2022%20de%20Setembro%202019 PORT. pdf 2555 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019:16(16):2925. 256 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 256 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 257 11. Devi S. Cyclone Idai: 1 month later, devastation persists. The Lancet 2019;393(10181):1585. 258 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities, Prehospital and disaster medic	18	545	of health apparenties 2017:16(1):1
 S. Onlide Nations Onlice of Coordinated Humanitarian Analis. Humanitarian Analis Mananitarian Reports Prant (2018-2019): revised following Cyclones Idai and Kenneth. May 2019. C. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. <i>The American</i> <i>journal of tropical medicine and hygiene</i> 2019:tpmd190285. V. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Periodo abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019: 10/National_SitRep%2011_MOZ_9%20a%2022%20de%20Setembro%202019_PORT. pdf Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. <i>International journal of environmental research and</i> <i>public health</i> 2019;16(16):2925. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. Devi S. Cyclone Idai: 1 month later, devastation persists. <i>The Lancet</i> 2019;393(10181):1585. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities, <i>Prehospital and disaster</i> <i>medicine</i> 2019;34(5):557-62. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. International Federation of the Red Cross. Moz	19	540	Of neurin geographics 2017;16(1):1.
 S43 [2018-2019]: revised following Cyclones faal and Renneth, May 2019. S49 6. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. <i>The American</i> <i>journal of tropical medicine and hygiene</i> 2019:tpmd190285. 7. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Período abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019- S51 10/National_SitRep%2011_MOZ_9%20a%2022%20de%20Setembro%202019_PORT. 10/National_SitRep%2011_MOZ_9%20a%2022%20de%20Setembro%202019_PORT. S56 8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. <i>International journal of environmental research and</i> <i>public health</i> 2019;16(16):2925. 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 11. Devi S. Cyclone Idai: 1 month later, devastation persists. <i>The Lancet</i> 2019;393(10181):1585. 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. <i>Prehospital and disaster</i> <i>medicine</i> 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. 15. International Federation of th	20	547	5. United Nations Office of Coordinated Humanitarian Affairs. Humanitarian Reportse Plan
 549 6. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. <i>Ine American</i> <i>journal of tropical medicine and hygiene</i> 2019:tpmd190285. 7. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Período abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019. 551 https://www.afro.who.int/sites/default/files/2019. 552 pdf 8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. <i>International journal of environmental research and</i> <i>public health</i> 2019;16(16):2925. 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 10. UNICEF. Cyclone Idai: 1 month later, devastation persists. <i>The Lancet</i> 2019;393(10181):1585. 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. <i>Prehospital and disaster</i> <i>medicine</i> 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai- 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen acc	21 22	548	(2018-2019): revised following Cyclones Idal and Kenneth. May 2019.
 550 <i>journal of tropical medicine and hygiene</i> 2019;tpm1190285. 7. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019, Período abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019- 553 https://www.afro.who.int/sites/default/files/2019- 554 10/National_SitRep%2011_MOZ_9%20a%2022%20de%20Setembro%202019_PORT. pdf sc Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. <i>International journal of environmental research and public health</i> 2019;16(16):2925. 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 11. Devi S. Cyclone Idai: 1 month later, devastation persists. <i>The Lancet</i> 2019;393(10181):1585. 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. <i>Prehospital and disaster</i> <i>medicine</i> 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-d	22	549	6. Chen WH, Azman AS. Mitigating Cholera in the Aftermath of Cyclone Idai. <i>The American</i>
 551 7. World Health Organization. Relatorio da Situação Nacional 11: 04 de Outubro de 2019, Período abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019- 553 https://www.afro.who.int/sites/default/files/2019- 554 10/National_SitRep%2011_MOZ_9%20a%2022%20de%20Setembro%202019_PORT. pdf 8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. International journal of environmental research and public health 2019;16(16):2925. 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 11. Devi S. Cyclone Idai: 1 month later, devastation persists. The Lancet 2019;393(10181):1585. 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. Prehospital and disaster medicine 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. Operations Research for Usatté C	24	550	journal of tropical medicine and hygiene 2019:tpmd190285.
 Periodo abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]: https://www.afro.who.int/sites/default/files/2019- 553 https://www.afro.who.int/sites/default/files/2019- 554 10/National_SitRep%2011_MOZ_9%20a%2022%20de%20Setembro%202019_PORT. pdf 8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. International journal of environmental research and public health 2019;16(16):2925. 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 11. Devi S. Cyclone Idai: 1 month later, devastation persists. The Lancet 2019;393(10181):1585. 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. Prehospital and disaster medicine 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the i	25	551	7. World Health Organization. Relatório da Situação Nacional 11: 04 de Outubro de 2019,
 https://www.afro.who.int/sites/default/files/2019- 10/National_SitRep%2011_MOZ_9%20a%2022%20de%20Setembro%202019_PORT. pdf S56 8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. International journal of environmental research and public health 2019;16(16):2925. 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 10. UNICEF. Cyclone Idai: 1 month later, devastation persists. The Lancet 2019;393(10181):1585. 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. Prehospital and disaster medicine 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://reliefweb.int/report/mozambique: Tropical Cyclones Idai and Kenneth 2019. 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. Operations Research for unarth Grave 2017/14/24 Fin 	26	552	Período abrangido 9 a 22 de Setembro de 2019. 2019. [Available from]:
 10/National_SitRep%2011_MOZ_9%20a%2022%20de%20Setembro%202019_PORT. pdf Scambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. International journal of environmental research and public health 2019;16(16):2925. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. Lou UNICEF. Cyclone Idai: 1 month later, devastation persists. <i>The Lancet</i> 2019;393(10181):1585. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. <i>Prehospital and disaster</i> <i>medicine</i> 2019;34(5):557-62. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health cree facility location decisions. <i>Operations Research for</i> 	27 20	553	https://www.afro.who.int/sites/default/files/2019-
 555 pdf 556 8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. International journal of environmental research and public health 2019;16(16):2925. 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 563 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 564 11. Devi S. Cyclone Idai: 1 month later, devastation persists. <i>The Lancet</i> 2019;393(10181):1585. 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. <i>Prehospital and disaster</i> <i>medicine</i> 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. 14. World Health Organization. Cyclone Idai events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. 576 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 578 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. <i>Operations Research for</i> 	20 29	554	<u>10/National_SitRep%2011_MOZ_9%20a%2022%20de%20Setembro%202019_PORT.</u>
 S56 8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in Northern Mozambique, 2019. International journal of environmental research and public health 2019;16(16):2925. 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 11. Devi S. Cyclone Idai: 1 month later, devastation persists. The Lancet 2019;393(10181):1585. 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. Prehospital and disaster medicine 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. 576 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 578 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. Operations Research for 	30	555	pdf
 557 Northern Mozambique, 2019. International journal of environmental research and public health 2019;16(16):2925. 559 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: S60 Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 561 UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 563 10. UNICEF. Cyclone Idai: 1 month later, devastation persists. The Lancet 2019;393(10181):1585. 566 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. Prehospital and disaster medicine 2019;34(5):557-62. 569 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. 571 https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. 576 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 578 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. Operations Research for 	31	556	8. Cambaza E, Mongo E, Anapakala E, et al. Outbreak of Cholera Due to Cyclone Kenneth in
 558 public health 2019;16(16):2925. 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 11. Devi S. Cyclone Idai: 1 month later, devastation persists. <i>The Lancet</i> 2019;393(10181):1585. 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. <i>Prehospital and disaster</i> <i>medicine</i> 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. <i>Operations Research for</i> <i>Userth</i> (care 2017;21:21:21.20 	32	557	Northern Mozambique, 2019. International journal of environmental research and
 9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues: Reliefweb; 2019 [updated 17 May 2019. [Available from]: https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019. 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 11. Devi S. Cyclone Idai: 1 month later, devastation persists. <i>The Lancet</i> 2019;393(10181):1585. 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. <i>Prehospital and disaster</i> <i>medicine</i> 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. 576 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 578 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. <i>Operations Research for</i> 	33	558	public health 2019;16(16):2925.
36560Reliefweb; 2019 [updated 17 May 2019. [Available from]:37561https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery-38562mozambique-continues accessed 16 Oct 2019.3956310. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019.4056411. Devi S. Cyclone Idai: 1 month later, devastation persists. The Lancet425652019;393(10181):1585.4356612. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in44567Mozambique: Translational Challenges and Opportunities. Prehospital and disaster45568medicine 2019;34(5):557-62.4756913. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs48570remain [Report]. 3 May 2019 [[Available from]:49571https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai-572continues-health-needs-remain.57314. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June5742019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as-575they-happen accessed 16 October 2019.57615. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019.57816. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. Operations Research for579useth Care 2019.112121215 20	34 35	559	9. Willcock G. After Cyclones Idai and Kenneth, Recovery in Mozambique Continues:
37561https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery- mozambique-continues accessed 16 Oct 2019.3956310. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019.4056411. Devi S. Cyclone Idai: 1 month later, devastation persists. The Lancet 2019;393(10181):1585.4356612. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. Prehospital and disaster medicine 2019;34(5):557-62.4556913. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain.57114. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019.57557615. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019.57816. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. Operations Research for Ulacith Care 2017, 212, 243 Epo	36	560	Reliefweb; 2019 [updated 17 May 2019. [Available from]:
38562mozambique-continues accessed 16 Oct 2019.3956310. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019.4056411. Devi S. Cyclone Idai: 1 month later, devastation persists. The Lancet425652019;393(10181):1585.4356612. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in44567Mozambique: Translational Challenges and Opportunities. Prehospital and disaster45568medicine 2019;34(5):557-62.46570remain [Report]. 3 May 2019 [[Available from]:4756913. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs48570remain [Report]. 3 May 2019 [[Available from]:49571https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai-57314. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June5742019. [Available from]:57515. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and57757657816. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization579in post-disaster health care facility location decisions. Operations Research for579 <i>Userkth Care</i> 2017:12:12:20	37	561	https://reliefweb.int/report/mozambique/after-cyclones-idai-and-kenneth-recovery-
 563 10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019. 564 11. Devi S. Cyclone Idai: 1 month later, devastation persists. <i>The Lancet</i> 565 2019;393(10181):1585. 566 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in 567 Mozambique: Translational Challenges and Opportunities. <i>Prehospital and disaster</i> 568 <i>medicine</i> 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs 570 remain [Report]. 3 May 2019 [[Available from]: 571 https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai-continues-health-needs-remain. 573 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as-they-happen accessed 16 October 2019. 576 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 578 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. <i>Operations Research for</i> 579 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. <i>Operations Research for</i> 	38	562	mozambique-continues accessed 16 Oct 2019.
 for the second second	39	563	10. UNICEF. Cyclone response mid-year sitrep #12: March-July 2019. 2019.
 565 2019;393(10181):1585. 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. <i>Prehospital and disaster</i> <i>medicine</i> 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: <u>https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai-</u> <u>continues-health-needs-remain.</u> 573 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: <u>https://www.who.int/emergencies/cyclone-idai/events-as-</u> <u>they-happen</u> accessed 16 October 2019. 576 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. <i>Operations Research for</i> <i>Usatth Care</i> 201713:42-20 	40 41	564	11. Devi S. Cyclone Idai: 1 month later, devastation persists. The Lancet
 43 566 12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in Mozambique: Translational Challenges and Opportunities. <i>Prehospital and disaster</i> <i>medicine</i> 2019;34(5):557-62. 47 569 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: <u>https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain.</u> 57 57 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: <u>https://www.who.int/emergencies/cyclone-idai/events-as- they-happen</u> accessed 16 October 2019. 57 576 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 578 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. <i>Operations Research for</i> <i>Usatth Care</i> 2017:12:42-50 	42	565	2019;393(10181):1585.
 Mozambique: Translational Challenges and Opportunities. <i>Prehospital and disaster</i> <i>medicine</i> 2019;34(5):557-62. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. Korld Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. <i>Operations Research for</i> 	43	566	12. Kahn R, Mahmud AS, Schroeder A, et al. Rapid Forecasting of Cholera Risk in
 <i>medicine</i> 2019;34(5):557-62. 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: <u>https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain.</u> 572 <u>continues-health-needs-remain.</u> 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: <u>https://www.who.int/emergencies/cyclone-idai/events-as- they-happen</u> accessed 16 October 2019. 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. <i>Operations Research for</i> 	44	567	Mozambique: Translational Challenges and Opportunities. Prehospital and disaster
 13. Santos E. Mozambique: The recovery from Cyclone Idai continues, but health needs remain [Report]. 3 May 2019 [[Available from]: <u>https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai-</u> <u>continues-health-needs-remain</u>. 573 573 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: <u>https://www.who.int/emergencies/cyclone-idai/events-as-</u> <u>they-happen</u> accessed 16 October 2019. 576 576 576 577 578 578 578 579 579 570 574 575 576 578 578 579 570 570 571 572 573 574 575 576 576 577 578 578 579 579 570 570 571 572 572 573 574 574 575 576 576 576 577 578 578 578 579 579 570 570 570 571 572 572 572 573 574 575 576 576 576 577 578 578 578 578 579 579 570 570 570 571 572 572 572 573 574 575 576 576 576 577 578 578 578 579 579 570 570 570 571 572 572 572 572 574 575 575 576 576 576 577 578 578 578 579 579 570 570 570 571 572 572 572 572 572 574 575 575<td>45</td><td>568</td><td>medicine 2019;34(5):557-62.</td>	45	568	medicine 2019;34(5):557-62.
 remain [Report]. 3 May 2019 [[Available from]: https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai- continues-health-needs-remain. 573 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- they-happen accessed 16 October 2019. 576 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 578 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. <i>Operations Research for</i> 	46 47	569	13. Santos E. Mozambigue: The recovery from Cyclone Idai continues, but health needs
 ⁴⁹ 571 <u>https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai-</u> ⁵⁰ 572 <u>continues-health-needs-remain.</u> ⁵¹ 573 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June ⁵³ 574 2019. [Available from]: <u>https://www.who.int/emergencies/cyclone-idai/events-as-</u> ⁵⁴ 575 <u>they-happen</u> accessed 16 October 2019. ⁵⁵ 576 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and ⁵⁶ 577 Kenneth 2019. ⁵⁷ 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization ⁵⁹ 579 in post-disaster health care facility location decisions. <i>Operations Research for</i> 	48	570	remain [Report]. 3 May 2019 [[Available from]:
 50 572 continues-health-needs-remain. 51 573 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 53 574 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- 54 575 they-happen accessed 16 October 2019. 55 576 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and 56 577 Kenneth 2019. 578 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization 59 579 in post-disaster health care facility location decisions. Operations Research for 	49	571	https://reliefweb.int/report/mozambique/mozambique-recovery-cyclone-idai-
 573 14. World Health Organization. Cyclone Idai - events as they happen 2019 [updated 18 June 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- 574 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- 575 they-happen accessed 16 October 2019. 576 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 577 Kenneth 2019. 578 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. Operations Research for 580 Ling/th Care 2017;12:12:50 	50	572	continues-health-needs-remain.
 574 2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as- 575 they-happen accessed 16 October 2019. 576 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and 577 Kenneth 2019. 578 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization 59 579 in post-disaster health care facility location decisions. <i>Operations Research for</i> 	51	573	14. World Health Organization, Cyclone Idai - events as they happen 2019 [updated 18 June
 57 they-happen accessed 16 October 2019. 57 they-happen accessed 16 October 2019. 57 15. International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and Kenneth 2019. 57 Kenneth 2019. 57 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. <i>Operations Research for</i> 	52 52	574	2019. [Available from]: https://www.who.int/emergencies/cyclone-idai/events-as-
 576 International Federation of the Red Cross. Mozambique: Tropical Cyclones Idai and 577 Kenneth 2019. 578 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization 59 579 in post-disaster health care facility location decisions. <i>Operations Research for</i> 	54	575	they-happen accessed 16 October 2019.
 57 Kenneth 2019. 57 S78 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization 59 579 in post-disaster health care facility location decisions. <i>Operations Research for</i> 58 580 Log/th Care 2017;12:42-50 	55	576	15 International Federation of the Red Cross Mozambique: Tropical Cyclones Idai and
 57 578 16. Muggy L, Stamm JLH. Dynamic, robust models to quantify the impact of decentralization 59 579 in post-disaster health care facility location decisions. <i>Operations Research for</i> 60 580 Health Care 2017:12:12:12:50 	56	577	Kenneth 2019
58 575 10 maggy L, Stammy L, Synamic, robust models to quantify the impact of decentralization 59 579 in post-disaster health care facility location decisions. <i>Operations Research for</i>	57	578	16 Muggy I Stamm II H Dynamic robust models to quantify the impact of decentralization
60 EQ0 Health Care 2017:12:42 EQ	58 50	579	in nost-disaster health care facility location decisions. <i>Operations Research</i> for
\sim 580 Health Lare 2017.12.43-59.	60	580	Health Care 2017:12:43-59.

1		
2 3		
4	581	17. World Health Organization. Post-Disaster Needs Assessments Guidelines. 2014.
5	582	18. Humanitarian Data Exchange. Mozambique 2019 [[Available from]:
6	583	https://data.humdata.org/event/idai accessed 25 April 2019.
7	584	19. Tapia AH, Maldonado E, Tchouakeu LMN, et al. Coordinating humanitarian information.
8	585	Information Technology & People 2012
9 10	586	20. Thévenaz C, Resodihardjo SL. All the best laid plans conditions impeding proper
11	587	emergency response. International Journal of Production Economics 2010;126(1):7-
12	588	21.
13	589	21. Ray N, Ebener S. AccessMod 3.0: computing geographic coverage and accessibility to
14	590	health care services using anisotropic movement of patients. International journal of
16	591	health geographics 2008;7(1):63.
17	592	22. Instituto Nacional de Estatistica; United Nations Office for Coordination of Humanitarian
18	593	Affairs Regional Office for Southern and Eastern Africa. Mozambique administrative
19	594	level shapefiles. 2019. [Data set]. [Available from]:
20	595	https://data.humdata.org/dataset/mozambique-administrative-levels-0-3. Accessed:
21	596	Jul 07, 2019
23	597	23. Global Disaster Alert and Coordination System. Overall Red alert Tropical Cyclone for
24	598	IDAI-19. 2019. [Data set]. [Available from]:
25	599	https://www.gdacs.org/resources.aspx?eventid=1000552&episodeid=24&eventtype
26	600	=TC. Accessed: March 2020
27	601	24. Global Disaster Alert and Coordination System. Overall Red alert Tropical Cyclone for
29	602	KENNETH-19. 2019. [Data set]. [Available from]:
30	603	https://www.gdacs.org/report.aspx?eventtype=TC&eventid=1000559&episodeid=12
31	604	Accessed: March 2020
32	605	25. Buchhorn M. Smets B. Bertels L. et al. Copernicus Global Land Service: Land Cover 100m.
33 34	606	epoch "2015". Globe, 2019. Version V2.0.2. [Data set]. [Available from]:
35	607	https://leviewer.vito.be/download.doi: 10.5281/zenodo.3243509. Accessed: 31. Jul
36	608	2019
37	609	26.11 S. Geological Survey (LISGS) Shuttle Radar Tonography Mission 1 Arc-Second Global:
38	610	SRTM1N22W/016V3_2000 [Data set] [Available from].
39 40	611	https://search.earthdata.pasa.gov/search.doi:
41	612	10 5067/MEASURES/NASADEM/NASADEM_SIM 001_Accessed: 20 Sept_2019
42	612	27 LIN Operational Satellite Applications Programme (LINOSAT) LINOSAT Geospatial Data
43	614	on Elonds in Mozambique, March 2019, 2019, [Data sot] [Available from]:
44	615	https://data.humdata.org/dataset/uposat.apalysis.on.floods.in.mozambiguo.
45 46	616	march 2010. Accorded: 21 Jul 2010
47	617	<u>Indici-2019</u> . Accessed. 51 Jul, 2019 28. Constraints EMSD2E4. TC Kenneth Constraints EMSD2E4 Flood Extent 20100E02, 2010
48	017	28. Copernicus Elvisk354. TC Kenneth Copernicus Elvisk354 Flood Extent 20190502. 2019.
49	618	[Data set]. [Available from]:
50	619	nttps://geonode.ingc.gov.mz/layers/geonode:emsr354_observedeventmerged_2019
51	620	0502. Accessed: 31Jul, 2019
52 53	621	29. OpenStreetMap. Osm Roads (Daily extract). 2018. [Data set]. [Available from]:
54	622	https://geonode.ingc.gov.mz/layers/geonode:osm_roads. Accessed: 07 Aug, 2019
55	623	30. World Food Program. Mozambique: Access Constraints as of 19 March 2019.
56	624	www.logcluster.org, 2019. [Map]. [Available from]:
57 59	625	https://logcluster.org/sites/default/files/maps/moz_op_accessconstraints_a3p_201
50 59	626	<u>90319.pdf</u> . Accessed: 23 Sept, 2019
60		

1		
2		
5 4	627	31. World Food Program. Mozambique - Cabo Delgado - Access Constraints Map, 3 May
5	628	2019. <u>www.logcluster.org</u> , 2019. [Map]. [Available from]:
6	629	https://logcluster.org/map/mozambique-cabo-delgado-access-constraints-map-3-
7	630	may-2019. Accessed: 23 Sept, 2019
8	631	32. SIS-MA MMoH. Mozambique - Health facilities. 2019. [Data set]. [Available from]:
9 10	632	https://data.humdata.org/dataset/mozambique-health-facilities. Accessed: 17 Sept,
11	633	2019
12	634	33. Facebook Connectivity Lab and Center for International Earth Science Information
13	635	Network - CIESIN - Columbia University. High Resolution Settlement Layer (HRSL).
14	636	https://data.humdata.org/dataset/highresolutionpopulationdensitymaps-moz 2019
15	637	[accessed 6 August 2019.
17	638	34. QGIS geographic information system [program], 2019.
18	639	35. R: A Language and Environment for Statistical Computing [program]. 5 version. Vienna,
19	640	Austria: R Foundation for Statistical Computing, 2018.
20	641	36. Jarvis A. Reuter H. Nelson A. et al. Hole-field seamless SRTM data. International Centre
21	642	for Tropical Agriculture (CIAT), http://srtmcsicaigrorg 2008
22	643	37 LOG-WEP Mozambique: Access Constraints as of 19 March 2019 2019 [Man]
24	644	[Available from]: https://logcluster.org/man/mozambique-access-constraints-man-
25	645	19-march-2019
26	646	38 LOG-WEP Mozambique - Cabo Delgado: Access constraints man 3 May 2019, 2019
27	647	[Man] [Available from]: https://legeluctor.org/man/mazambigue.cabe.delgade
28	047 C40	[Iviap]. [Available from]. <u>https://logcluster.org/map/mozambique-cabo-delgado-</u>
29 30	040 640	access-constraints-inap-5-inay-2019
31	649	39. UNICEF. Strategy for health (2010–2030). New York: United Nations Children's Fund 2015
32	650	40. Golding N, Burstein R, Longbottom J, et al. Mapping under-5 and neonatal mortality in
33	651	Africa, 2000–15: a baseline analysis for the Sustainable Development Goals. The
34	652	Lancet 2017;390(10108):2171-82.
35 36	653	41. Thematic Research Network on Data and Statistics (TRENDS). Leaving no one of the map:
37	654	A guide for gridded population data for sustainable development. 2020. [Available
38	655	from]:
39	656	https://static1.squarespace.com/static/5b4f63e14eddec374f416232/t/5eb2b65ec57
40	657	5060f0adb1feb/1588770424043/Leaving+no+one+off+the+map-4.pdf
41 42	658	42. Tatem AJ. WorldPop, open data for spatial demography. <i>Scientific data</i> 2017;4(1):1-4.
42 43	659	43. dos Anjos Luis A, Cabral P. Geographic accessibility to primary healthcare centers in
44	660	Mozambique. International journal for equity in health 2016;15(1):173.
45	661	44. World Health Organization. Health economics: GeoAccess 2019 [[Available from]:
46	662	https://www.who.int/choice/geoaccess/en/ accessed 15 March 2019.
47	663	45. Ebener S, Stenberg K, Brun M, et al. Proposing standardised geographical indicators of
48 70	664	physical access to emergency obstetric and newborn care in low-income and middle-
50	665	income countries. BMJ global health 2019;4(Suppl 5)
51	666	46. Munoz UH, Källestål C. Geographical accessibility and spatial coverage modeling of the
52	667	primary health care network in the Western Province of Rwanda. International
53	668	journal of health geographics 2012;11(1):40.
54 55	669	47. Ouma PO, Maina J, Thuranira PN, et al. Access to emergency hospital care provided by
55 56	670	the public sector in sub-Saharan Africa in 2015: a geocoded inventory and spatial
57	671	analysis. The Lancet Global Health 2018:6(3):e342-e50.
58		
59		
60		

1		
2 3	C 72	40. Cohusita MANA Coulous and E. Augett CE. et al. Defended transit times het us an einduct and
4	672	48. Schmitz Mill, Serbanescu F, Arnott GE, et al. Referral transit time between sending and
5	6/3	first-line receiving health facilities: a geographical analysis in Tanzania. <i>Bivij global</i>
6	674	<i>nealth</i> 2019;4(Suppl 5):e001568.
/	675	49. Alegana VA, Wright JA, Pentrina U, et al. Spatial modelling of healthcare utilisation for
0 9	676	treatment of fever in Namibia. International journal of health geographics
10	677	2012;11(1):6.
11	678	50. Moitinho de Almeida M, Guha-Sapir D. Why Mozambique's cyclones tell us disaster
12	679	preparedness needs health at its core: The BMJ opinion 2019 [[Available from]:
13	680	https://blogs.bmj.com/bmj/2019/05/10/mozambiques-cyclones-disaster-
14	681	preparedness-needs-health-
16	682	<pre>core/?utm_source=twitter&utm_medium=hootsuite&utm_term=&utm_content=&u</pre>
17	683	tm_campaign=editors accessed 17 December 2019.
18	684	51. Khan H, Vasilescu LG, Khan A. Disaster management cycle-a theoretical approach.
19 20	685	Journal of Management and Marketing 2008;6(1):43-50.
20	686	52. Liu A, Sullivan S, Khan M, et al. Community health workers in global health: scale and
22	687	scalability. Mount Sinai Journal of Medicine: A Journal of Translational and
23	688	Personalized Medicine 2011;78(3):419-35.
24	689	53. World Health Organization. As post-cyclone resettlement, 200 000 people lack access to
25 26	690	health services in Mozam <mark>biqu</mark> e. Reliefweb, 2019.
20 27	691	54. World Health Organization. Hospitals safe from disasters: Reduce risk, protect health
28	692	facilities, save lives. 2007.
29	693	55. World Health Organization. Natural disasters: protecting the public's health. Natural
30	694	disasters: protecting the public's health2000.
31	695	56. UNICEF. One year after Cyclone Idai, 2.5 million people in Mozambique remain in need
32 33	696	of humanitarian assistance: UNICEF prepares for more frequent and ferocious
34	697	disasters as a result of the climate crisis 2020 [[Available from]:
35	698	https://www.unicef.org/mozambique/en/press-releases/one-year-after-cyclone-
36	699	idai-25-million-people-mozambique-remain-need-humanitarian accessed 16 March
3/ 38	700	2020.
39	701	57. Altay N, Labonte M. Challenges in humanitarian information management and
40	702	exchange: evidence from Haiti. <i>Disasters</i> 2014;38(s1):S50-S72.
41	703	58. Nelson T, Wulder M, Niemann K. Spatial resolution implications of digitizing aerial
42	704	photography for environmental applications. The Imaging Science Journal
43 11	705	2001;49(4):223-32.
45	706	59. Yao J, Agadjanian V. Bypassing health facilities in rural Mozambique: spatial,
46	707	institutional, and individual determinants. BMC health services research
47	708	2018;18(1):1006.
48	709	60. Keyes EB, Parker C, Zissette S, et al. Geographic access to emergency obstetric services:
49 50	710	a model incorporating patient bypassing using data from Mozambigue. BMJ Global
50	711	Health 2019;4(Suppl 5):e000772.
52	712	
53		
54	713	
55 56		
57		
58		
59		
60		

1 2		
2	714	Figure legends:
4	715	
6	716	Figure 1 - Cyclone affected districts, cyclone trajectory, and road damages, (A) Idaj affected
7	717	districts. (B) Kenneth affected districts. (C) Idai cyclone trajectory [*] . (D) Kenneth cyclone
8 9	718	trajectory [*] . (E) Road damages in Idai-affected districts. (F) Road damages in Kenneth-
10	719	affected districts. *Cyclone paths as reported on Global Disaster Alert and Coordination System
11 12	720	(GDACS) ^{25,26} .
12	721	
14	722	Figure 2- Absolute and relative reduction in population coverage pre- and post-cyclone
15 16	723	Idai (A) and Kenneth (B). Labels on top of bars indicate absolute reduction in population
17	724	coverage of children under 5. Labels under districts indicate relative reduction in population
18	725	coverage. Maximum limits of the bars indicate the absolute pre-cyclone coverage within 2
19 20	726	hours travel time. Limits of the blue filled bar indicate the absolute post-cyclone coverage.
21	727	The x-axis is ordered according to relative reduction in population coverage.
22 23	728	
23 24	729	Figure 3 – Accessibility modelling results for Idai districts. Pre-cyclone travel time raster
25	730	(A) Post-cyclone travel time raster (B) Difference ratio raster between pre- and post-
26 27	731	(x) rost cyclone travel time (C). Uncertainty raster as a result of the difference between -20% and
28	732	+20% travel speed accessibility (D)
29	732	
30 31	734	Figure 4 – Accessibility modelling results in Kenneth districts. Pre-cyclone travel time raster
32	735	(A). Post-cyclone travel time raster (B). Difference ratio raster between pre- and post-
33 34	736	cyclone travel time (C). Uncertainty raster, as a result of the difference between -20% and
35	737	+20% travel speed accessibility (D)
36	738	
37 38	, 50	
39		
40 41		
42		
43		
44 45		
46		
47 49		
40 49		
50		
51 52		
52		
54		
55 56		
57		
58 50		
60		

Figure 1 - Cyclone affected districts, cyclone trajectory, and road damages. (A) Idai affected districts. (B) Kenneth affected districts. (C) Idai cyclone trajectory*. (D) Kenneth cyclone trajectory*. (E) Road damages in Idai-affected districts. (F) Road damages in Kenneth-affected districts. *Cyclone paths as reported on Global Disaster Alert and Coordination System (GDACS)25,26.

236x292mm (300 x 300 DPI)

Figure 2- Absolute and relative reduction in population coverage pre- and post-cyclone Idai (A) and Kenneth (B). Labels on top of bars indicate absolute reduction in population coverage of children under 5. Labels under districts indicate relative reduction in population coverage. Maximum limits of the bars indicate the absolute pre-cyclone coverage within 2 hours travel time. Limits of the blue filled bar indicate the absolute post-cyclone coverage. The x-axis is ordered according to relative reduction in population coverage.

2777x1736mm (72 x 72 DPI)

Figure 4 – Accessibility modelling results in Kenneth districts. Pre-cyclone travel time raster (A). Postcyclone travel time raster (B). Difference ratio raster between pre- and post-cyclone travel time (C). Uncertainty raster, as a result of the difference between -20% and +20% travel speed accessibility (D).

209x296mm (300 x 300 DPI)

SUPLEMENTAL MATERIAL

Supplement 1-Data preparation for use in AccessMod

All data preparation was carried out in Quantum Geographical Information System (QGIS) (version 3.4)²⁴ in limited combination with R (version 3.5.2)²⁵. As indicated in Table 1, most data layers were retrieved from open data platforms. All raster- and shapefiles were saved in the projection system of Mozambique, i.e. UTM-37S [EPSG:32737]. All raster files were aligned using the digital elevation model (DEM) as reference. The data preparation process is fully described below for each data set.

Elevation

Anisotropic accessibility analyses, in other words analyses accounting for travel speeds on slopes, were carried out for this study. Elevation data were obtained from the Shuttle Radar Topography Mission (SRTM) in tiles at a resolution of 30 meters and mosaiced to cover the whole country³⁸. Slopes were derived from it and accounted for when modelling walking movements.

Land cover

The land cover data set of the African continent²⁷ was clipped to the extent of Mozambique, leaving a small buffer around the country to prevent loss of data cells at the border. The data set was resampled at a resolution of 30 meters using nearest neighbor interpolation.

Road network

The pre-cyclone road network dataset was retrieved from Open Street Map (OSM) through the Geonode Platform of the National Institute for Disaster Management Mozambique (INGC), as this dataset was perceived to represent the most recent information on the roads and could be linked to the damaged roads, as indicated by the Logistics Cluster of the World Food Program (LOG-WFP). Road classes that were not indicated as official classification by OSM, were removed from the data⁴⁸.

LOG-WFP provided the most up to date data on road network damages. However, the road constraint shapefile was updated frequently by overwriting previous versions, without

storing data historically. Therefore, historical post-cyclone status of roads and road segments was manually digitized from PDF maps provided by LOG-WFP^{28,29}. The PDF maps were manually cross-referenced with the OSM road network layer, to include post-cyclone status, i.e. 1) open 2) restricted 3) closed.

Roads were then reclassified based on the unique combination of road type and postcyclone status, resulting in 34 unique road classes (e.g. primary road, primary road restricted, secondary road closed). All roads were given a specific travel speed, accounting for the different scenarios. In the pre-cyclone scenario for instance, all primary road classes (i.e. primary road, primary road restricted, primary road closed) had the same travel speed. Whereas in the post cyclone scenario, the restricted and closed road types had a travel speed and travel mode accounted for their damages, as can be seen from Suplement 2.

Barriers to movement

Rivers and lake shapefiles were obtained as lines and polygons from the National Directorate for Water Resource Management (DNGRH) and accuracy was checked using satellite imagery as a reference, using Microsoft Bing Imagery as a background through the QGIS QuickMapServices Plugin. Only primary rivers and lakes were taken for the analyses, under the assumption that smaller rivers and streams were passable by the population. Water bodies were perceived as being impassable at all scales.

Flood extent caused by Cyclone Idai was taken from 19 March 2019 and flood extent for Cyclone Kenneth was taken from 2 May 2019, because extents were visually inspected and found to be largest on those dates and thus represent the biggest constraints for health care access. All flooded areas were treated as impassable at those dates, considering the depth and extent of the floods.

Population data

High resolution population density estimates for children under five were downloaded at 30 meter resolution from the Facebook Connectivity Lab and Center for International Earth Science Information network³⁰. The raster was projected in Mozambique's projection system, UTM-37S [EPSG:32737], by using nearest neighbor interpolation. Loss of population

BMJ Open

caused by reprojection and clipping to country borders, was corrected for by smoothing the lost population equally over the raster cells. This was done by using a multiplication factor of the difference between the total sum of population before and after data processing using the raster calculator.

Health facilities

The geographic coordinates of all health facilities were obtained through the Humanitarian Data Exchange platform (HDX) and were originally sourced from the Ministry of Health in Mozambique (SIS-MA)³⁴. The data was cleaned to exclude coordinates far outside of the country borders. Coordinates that fell just outside Mozambique were relocated within the country extents. Five health facilities were cross-referenced with other data sources (e.g. Neonatal Inventory Survey UNICEF, OpenStreetMap, Google Maps) because they were located on barriers, such as open sea, rivers or lakes.

Information on damaged health facilities was provided by the World Health Organization (WHO). This data did not include GPS coordinates, thus names of the damaged health facilities were cross referenced with the original health facility shapefile to include post-cyclone status of each facility, i.e. functional or non-functional. For damaged health facilities that were not included in the original health facility shapefile, coordinates were retrieved from a neonatal inventory performed by United Nations Children Fund (UNICEF) and also added as facility to the original health facility data, representing the pre-cyclone situation. Non-functional health facilities were filtered-out for geographical accessibility analyses reflecting the post-cyclone scenarios.

Travel scenario

Both our travel scenarios were developed in close collaboration with country representatives from UNICEF and were adapted to our target population, namely children under five accompanied by a parent (Suplement 2). Flood waters were assumed to be a full barrier to movement to the target population, thus health facilities located in flooded zones were completely inaccessible and flood waters were impassable.
Supplement 2- Travel scenarios pre-cyclone and post-cyclone

Label	Pre	-cyclone	Post-cyclone	
	Travel speed (km/h)	Travel mode	Travel speed (km/h)	Travel mode
Shrubs	3	Walking	1.5	Walking
Herbaceous Vegetation	3	Walking	1.5	Walking
Cultivated and Managed Vegetation Agriculture Cropland	3	Walking	1.5	Walking
Urban Built Up	3	Walking	1.5	Walking
Bare Sparse Vegetation	3	Walking	1.5	Walking
Permanent Water Bodies	3	Walking	1.5	Walking
Temporary Water Bodies	3	Walking	1.5	Walking
Herbaceous Wetland	3	Walking	1.5	Walking
Closed Forest Evergreen Broad Leaf	3	Walking	1.5	Walking
Closed Forest Deciduous Broad Leaf	3	Walking	1.5	Walking
Open Forest Evergreen Broad Leaf	3	Walking	1.5	Walking
Open Forest Deciduous Broad Leaf	3	Walking	1.5	Walking
Open Sea	3	Walking	1.5	Walking
Trunk	80	Motorized	50	Motorized
Trunk Restricted	80	Motorized	1.5	Walking
Trunk Closed	80	Motorized	1.5	Walking
Primary	80	Motorized	50	Motorized
Primary Restricted	80	Motorized	1.5	Walking
Primary Closed	80	Motorized	1.5	Walking
Secondary	50	Motorized	40	Motorized
Secondary Restricted	50	Motorized	1.5	Walking
Secondary Closed	50	Motorized	1.5	Walking
Tertiary	30	Motorized	15	Motorized
Tertiary Closed	30	Motorized	1.5	Walking
Tertiary Restricted	30	Motorized	1.5	Walking
Road	20	Motorized	10	Motorized
Raceway	3	Walking	3	Walking
Residential	20	Motorized	10	Motorized
Residential Closed	20	Motorized	1.5	Walking
Living Street	20	Motorized	10	Motorized
Service	3	Walking	1.5	Walking
Track	15	Motorized	10	Motorized
Pedestrian	3	Walking	1.5	Walking
Pier	3	Walking	1.5	Walking
Path Closed	3	Walking	1.5	Walking
Path	3	Walking	1.5	Walking
Footway	3	Walking	1.5	Walking
Bridleway	3	Walking	1.5	Walking
Cycleway	3	Walking	1.5	Walking
Steps	3	Walking	1.5	Walking
Unclassified	3	Walking	1.5	Walking
	-	3		0

Supplement 3- Relative population coverage pre- and post-cyclone Idai. Ordered on relative difference. Difference indicated between parentheses. Error bars indicate the coverage uncertainty, considering -20% and +20% travel speeds.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Supplement 4- Relative population coverage pre- and post-cyclone Kenneth. Ordered on relative difference. Difference indicated between parentheses. Error bars indicate the coverage uncertainty, considering -20% and +20% travel speeds.

Supplement 5- Travel time per community in Idai affected districts. Fifty most affected

communities by means of accessibility loss. Ordered on absolute travel time difference.

Community	District	Pre-cyclone	Post-cyclone	Difference pre- and
		travel time (h)	travel time (h)	post-cyclone (h)
Mucinemo	Buzi	1.3	63.6	62.3
Bupira	Buzi	1.1	62.3	61.3
Massuinda	Buzi	1.2	60.1	58.9
Njanga	Buzi	4.3	59.1	54.7
Guenie-Sede	Buzi	2.9	57.3	54.4
Mbereaizique	Buzi	2.9	57.3	54.4
Shiniziya Chinhale	Muanza	24.0	77.8	53.8
Chipota	Muanza	24.4	78.0	53.6
Wiriquizi	Muanza	22.2	74.1	51.9
Chingamuzi	Muanza	22.2	74 5	51.8
Mussacazwidie	Buzi	3.5	55.3	51.8
Mussacazwidje	Buzi	3.5	55.3	51.8
Magua	Buzi	3.5	56.6	51.0
Nkolono Droio	Buzi Muanza	4.0		51.0 E1 7
	Muanza	20.7	71.0	51./
	Nucrea	20.4	/1.8	51.4
IVIUKUIUMDa CIdade	iviuanza	20.2	/1.4	51.2
Nhanganga	Muanza	19.9	/0.8	50.9
Mutanda	Buzi	5.4	55.3	49.9
Macova-Mutanda	Buzi	6.3	55.1	48.9
Puanda	Buzi	2.9	51.6	48.7
Luanda 1	Muanza	18.8	67.4	48.6
Nhamacalango	Muanza	17.4	65.8	48.4
Sengo	Dondo	5.3	53.5	48.2
Luanda 2	Muanza	18.0	65.8	47.8
Praia Nova	Dondo	3.9	51.5	47.6
Praia Farol	Dondo	3.8	51.4	47.6
Bingue Sede	Muanza	16.4	63.8	47.4
Nkonde 2	Muanza	16.4	63.8	47.4
Massitche	Dondo	7.1	54.5	47.4
Goonda Majaca	Chibabava	6.5	53.3	46.8
Ngomole	Muanza	10.1	56.7	46.6
Ngalazi	Dondo	6.0	52.3	46.3
Nhacudjica	Buzi	6.3	52.4	46.1
Chitundo	Dondo	2.0	47.7	45.7
Macarate	Chibabava	5.3	51.0	45.7
Nhamissassa	Muanza	15.9	61.5	45.6
Docue	Buzi	5.7	51.3	45.6
Khome 1	Dondo	1.4	46.8	45.4
Nherere 2	Muanza	14.0	59.0	45.0
Parange	Buzi	3.6	48.6	45.0
Niocho	Buzi	5.9	50.9	45.0
Binda	Machanga	0.7	45.2	44.6
Khome 2	Dondo	0.5	<u>45</u> 2	44.6
Veruca	Chihahava			<u> </u>
Mamungo	Buzi	<u>+.1</u> Ę 1	40.0	44.J ЛЛ 1
Ririrano	Muanza		43.2	44.1
		E 2	27.2	44.1
Vaid-Vaid	Coronana	J.Z	49.2	44.1
iviucne	Gorongosa	1.5	45.5	44.0
iviacniquire	BUZI	2.6	46.1	43.5
Nhazwicasse	Gorongosa	1.0	44.5	43.5

Supplement 6- Travel time per community in Idai-affected districts. Point locations of

communities in Idai-affected districts.

