Supplementary Information
Drought and plant litter chemistry alter microbial gene expression and metabolite production

Malik et al.
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Figure S1: In situ wetting was performed on litter bags deployed at the Loma Ridge Global
Change Experiment that involved field scale precipitation manipulation (ambient and
reduced) for a decade under two vegetation types (grass and shrub). Litter bags (n=4) were
harvested before (Sampling 1), one day after (Sampling 2), and 12 days after (Sampling 3)
a discrete wetting event.
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Figure S2: Rate of respired CO: in control (day 0, Sampling 1), wet-up (day 1, Sampling 2)
and dry-down (day 12, Sampling 3) treatments. Best fitting regression line for the moisture-
rate of respired CO relationship: y = 1E-05x*%4. There was a large variation in moisture and
respiration rates among replicates within each treatment which meant that the in situ wet-up
experiment was not ideal to investigate wetting induced shifts in gene expression and
metabolite production.
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Figure S3: Gene expression patterns in response to in situ wetting: Volcano plots of control
(day 0) vs. wet-up (day 1) litter showing transcript level changes in (a) grass ambient, (b) grass
reduced, (c) shrub ambient and (d) shrub reduced precipitation treatments. Only genes with
significant shifts in expression on wet-up with fold change more than double or less than half
the control samples were labelled. Relevant upregulated genes- ompA: outer membrane
protein A; livG, livK/J: branched-chain amino acid ABC transporter; pstS: phosphate ABC
transporter; flaA, fla: flagellin protein; oppC: oligopeptide transport system. Relevant
downregulated genes- IscU: iron-sulfur cluster assembly enzyme; rad51: DNA repair protein;
hscA, hscB: chaperone protein. More details and discussion can be found in Malik et al. 2019,
BioRxiv 631077; doi: https://doi.org/10.1101/631077
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Figure S4: Two dimensional NMDS ordination of communities identified at the genus level
from metatranscriptomics based on taxonomic annotations of functional genes (Sampling 1:
control, Sampling 2: wet-up, Sampling 3: dry-down). Asterisks mark the significance of
treatments that cause clustering of similar samples based on Bray-Curtis dissimilarity index
analysed using permutational multivariate analysis of variance (PERMANOVA); *** p < 0.001,
**p<0.01,"p<0.05.
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Figure S5: The mean proportion of various phyla/sub-phyla in communities from the litter
types and precipitation treatments. Ascomycota was the most abundant phylum, it was
disproportionately higher than the rest of the phyla and therefore has been plotted on a
separate scale with its abundance labelled on the bar.
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Figure S6: Community fungal:bacterial (F:B) ratio estimated as (a) the ratio of mMRNA
sequences assigned to fungi and bacteria (b) the ratio of 18S and 16S rRNA abundances in
total RNA extracts; n=3-4 (Sampling 1: control, Sampling 2: wet-up, Sampling 3: dry-down).
Most of the mRNA (~ 97%) was annotated to fungi or bacteria, therefore we assumed that
majority of 16S belonged to bacteria and 18S to fungi. Asterisks mark the significance of
differences between groups as analysed by Tukey's multiple comparison test (*** p < 0.001,

** < 0.01,* p < 0.05).
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Figure S7: Heatmap of mean peak heights (n=3-4) of all identified metabolites across treatments.
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Figure S8: Correlations between metabolites significantly enriched in either ambient or
reduced precipitation treatments across the two vegetation types. Empty boxes signify that
the correlations are not significant.



