Environ Health Perspect

DOI: 10.1289/EHP6652

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Developmental Neurotoxicity of the Harmful Algal Bloom Toxin Domoic Acid: Cellular and Molecular Mechanisms Underlying Altered Behavior in the Zebrafish Model

Jennifer M. Panlilio, Neelakanteswar Aluru, and Mark E. Hahn

Table of Contents

Supplemental Material: Reagents and Sources

Supplemental Material: Equipment, Sources, and Settings

Table S1. Study-specific metrics.

Table S2. Swim bladder analysis: percent of fish with inflated swim bladders by day injected and dose.

Table S3. Opaque brains in Tg(mbp:EGFP-CAAX) larvae exposed to domoic acid by intravenous injection.

Table S4. Mortality in *Tg(mbp:EGFP-CAAX)* larvae exposed to domoic acid by intravenous injection.

Table S5. Acute neurological phenotypes following developmental exposures to domoic acid at 1 dpf.

Table S6. Acute neurological phenotypes following developmental exposures to domoic acid at 2 dpf.

Table S7. Acute neurological phenotypes following developmental exposures to domoic acid at 4 dpf.

Table S8. Results from Generalized Estimating Equations (GEE) models assessing the effect of dose and day post-exposure on the prevalence of the lack of touch responses in fish exposed at 1 and 2 days post fertilization.

Table S9. Results from Generalized Estimating Equations (GEE) models assessing the effect of dose and day post-exposure on the prevalence of convulsions or pectoral fin flapping in fish exposed at 1 and 2 days post fertilization.

Table S10. Post-hoc pairwise Dunnett comparisons following binomial modeling of percent responsiveness in startle behavior.

Table S11. Nonparametric analysis of short latency c-bend startle kinematics following exposure to different doses of domoic acid at 2 days post fertilization.

Table S12. Nonparametric analysis of long latency c-bend startle kinematics following exposure to different doses of domoic acid at 2 days post fertilization.

Table S13. Median and Interquartile range for startle kinematic parameters of fish exposed to different doses of domoic acid at 2 dpf.

Table S14. Nonparametric analysis of short latency c-bend startle kinematics following exposure to different doses of domoic acid at 1 day post fertilization.

Table S15. Nonparametric analysis of long latency c-bend startle kinematics following exposure to different doses of domoic acid at 1 day post fertilization.

Table S16. Nonparametric analysis of short latency c-bends kinematics following exposure to different doses of domoic acid at 4 days post fertilization.

Table S17. Nonparametric analysis of long latency c-bends kinematics following exposure to different doses of domoic acid at 4 days post fertilization.

Table S18. Nonparametric analysis of long latency c-bends kinematics in DomA-exposed larvae with or without inflated swim bladders.

Table S19. Nonparametric analysis of long latency c-bends kinematics in DomA-exposed larvae without bent body axes or with bent body axes.

Table S20. Myelin phenotype classification by day injected using confocal microscopy.

Table S21. Trials included to assess myelin labeling, imaged using widefield epifluorescence microscopy at 5 days post fertilization (dpf).

Table S22. Myelin phenotype classification by dose and day injected after fish were imaged using widefield epifluorescence microscopy at 5 days post fertilization.

Table S23. Drop-in-deviance test for incorporating day of exposure into multinomial logistic regression model.

Table S24. Multinomial logistic regression model for distribution of myelin phenotypes in fish exposed to 0.14 ng of domoic acid at different periods in development (in days post fertilization).

Table S25. Trials included to assess myelin labeling, imaged using widefield epifluorescence microscopy at 6 days post fertilization.

Table S26. Myelin phenotype classification by dose and day injected after fish were imaged using widefield epifluorescence microscopy at 6 days post fertilization.

Table S27. Trials included to assess myelin labeling, imaged using widefield epifluorescence microscopy at 7 days post fertilization.

Table S28. Myelin phenotype classification by domoic acid dose and day injected after fish were imaged using widefield epifluorescence microscopy at 7 days post fertilization.

Table S29. Multinomial logistic regression model for distribution of myelin phenotypes in fish exposed to different doses of domoic acid at 2 days post fertilization (dpf) and imaged at 5, 6, and 7 dpf.

Table S30. Genes associated with the enriched GO term: biological processes.

Table S31. Human Phenotype Ontology associated with differentially expressed genes at 3 days post fertilization.

Video S1: Acoustic startle response.

Video S2: Time-lapse video of *Tg(sox10:RFP)* x *Tg(nkx2.2a:mEGFP)* control fish.

Video S3: Time-lapse video of *Tg(sox10:RFP)* x *Tg(nkx2.2a:mEGFP)* DomA exposed fish.

Figure S1. Startle behavioral classification.

Figure S2. Qualitative myelin phenotype scoring.

Figure S3. Acute neurotoxic and morphological phenotypes associated with developmental exposure to domoic acid.

Figure S4. Startle kinematics comparisons among zebrafish exposed at 1, 2 and 4 dpf.

Figure S5. Startle kinematics comparisons with zebrafish exposed at 2 dpf with differing morphological attributes.

Figure S6. Startle kinematics and myelin sheath imaging in fish used for RNASeq.

Additional File- Excel and Code Document

Additional File- Video Document