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I. Supplementary notes 

NAguideR integrates up to 23 commonly used missing value imputation methods (described in Table 

S1) and provides two categories of evaluation criteria (four classic computational criteria and four 

empirical proteomics criteria) to assess the imputation performance of various methods. Here we 

present the detailed introduction and operation of NAguideR, by which users can follow to analyze 

their own data freely and conveniently. 

Users can visit this site: http://www.omicsolution.org/wukong/NAguideR. Then the website 

homepage can be shown like this: 

 

http://www.omicsolution.org/wukong/NAguideR


1. Data Preparation 

NAguideR supports four basic file formats (.csv, .txt, .xlsx, .xls). Before analysis, users should 

prepare two required data: (i) Proteomics expression table for quantification; (ii) Sample information. 

The data required here could be readily generated based on results of several popular tools such 

as MaxQuant (20), PEAKS (21), Spectronaut (22), DIA-NN (23), OpenSWATH (24), and so on. The 

users then can upload the two data into NAguideR with right formats respectively and start 

subsequent analysis. 

 

1.1 Expression data 

There are currently four types of proteomics expression data supported in NAguideR (i.e., 

'Peptides+Charges+Proteins', 'Peptides+Charges', 'Peptides+Proteins', 'Proteins'), among which 

the main differences are the first few columns. In addition, users may upload other kinds of omics 

data (e.g., genomics, metabolomics), for which they can just need to choose the fifth type ('Others'). 

Please note, the fifth type cannot generate the results based on the proteomic criteria. 

 

 

1.1.1 Expression data with peptide sequences, peptide charge states, and protein ids 

In this situation, peptide sequences, peptide charge states, and protein ids are sequentially provided 

in the first three columns of input file. Peptide sequences in the first column can be peptides with 

any post-translational modification (PTM, written in any routine format) or stripped peptides 

(sequences without PTM). The second column is peptide charge status. The protein ids in the third 

column should be UniProt ids. From the fourth column, peptides/proteins expression intensity or 

signal abundance in every sample should be listed. The data structure is shown as below: 



 

 

1.1.2 Expression data with peptide sequences and peptide charge states 

Similar to the above situation, peptide sequences and peptide charge status are sequentially 

provided in the first two columns of input file. Peptide sequences in the first column can be peptides 

with post-translational modification (PTM, written in any routine format) or stripped peptides (without 

PTM). The second column is peptide charge states. From the third column, peptides/proteins 

expression intensity or signal abundance in every sample should be listed. The data structure is 

shown as below: 

 



 

1.1.3 Expression data with peptide sequences, and protein ids 

Under this circumstance, peptide sequences, and protein ids are sequentially provided in the first 

two columns of input file. Peptide sequences in the first column can be peptides with post-

translational modification (PTM, written in any routine format) or stripped peptides (without PTM). 

The protein ids in the second column should be UniProt ids. From the third column, peptides/proteins 

expression intensity or signal abundance in every sample should be listed. The data structure is 

shown as below: 

 

 

1.1.4 Expression data with protein ids 

In this situation, protein ids are provided in the first two columns of input file. The protein ids here 

should be UniProt ids. From the second column, peptides/proteins expression intensity or signal 

abundance in every sample should be listed. The data structure is shown as below: 



 

 

1.1.5 Other kinds of omics data 

If users want to use NAguideR for other omics data (i.e. genomics, metabolomics), gene/metabolite 

ids/names should be provided in the first columns of input file. From the second column, 

genes/metabolites expression intensity or signal abundance in every sample should be listed. The 

data structure may be shown as below: 

 



1.2 Samples information data 

Sample information here means that users should provide sample group identity information. This 

information could e.g., enable filtration strategy for different group respectively in a later step (see 

below). The sample names are in the first column and their orders are same as those in the 

expression data. Group information is in the second column. The data structure is shown as below: 

 
 

1.3 Download example datasets 

If users want to download the example datasets to their own computer and check the data format 

locally, they can download them from here: 

 

 

First, select “Load example data” and the example data will be shown on the right panel interactively. 

Users can visually observe what the data looks like. 



Second, users can download the example data (expression data and sample information data) by 

clicking the corresponding button. The data are saved as .csv format and users can open them in 

other software, such as Excel. 

  



2. Import Data 

This is the first step, in which users should upload data here or load the example data with the above 

data formats. By default, we use the example data to show result of every step. 

2.1 Uploading data. When users prepare their data (expression and sample information data set), 

they can upload these data from here: 

 

 

There are two main panels: first, parameters panel, users can adjust parameters here; second, 

results panel, many results after users set the parameters will be shown here and users can also 

download these results. 

 

In the parameters panel of “Import Data”, there are two choices for users:  

a. Load experimental data. When users choose this option, they can upload their own data here. 

Users should select the right format based on their data and then click “Browse” button to import the 

data;  

First row as column names: this means whether the first row is column names. If true, you should 

choose this parameter. 

First column as row names: this means whether the first column is row names. If true, you should 

choose this parameter. 

 

b. Load example data. As described in part 1.3, users can choose this option and download the 

example data to check them locally. 

 

In the results panel of “Import Data”, if users don’t upload their data, here will show “NAguideR 

detects that you did not upload your data. Please upload the expression data (or sample information 

data), or load the example data to check first” to warn users. 

 

Before uploading expression data, users should also recognize which type their data belongs to and 

choose the right parameter by adjusting the “The first few column types”. The instruction of the 

column types can be found above (Data Preparation part). 



 

 

 

 

 

  



3. NA Overview 

Users can check the missing value situation of their own data and filter those data with a high 

proportion of missing value in this step. Note, “NA” is short for Not Available, which means missing 

value here (see below). 

 

 

3.1 Parameters 

 

 

1. Missing value type: what the missing values look like in the expression data, for example, 

Spectronaut (25,26) software usually export “Filtered” as missing values, so users should change 

this parameter to “Filtered” if their data contain “Filtered”. NAguideR will recognize these characters 

and replace them with NAs. Any other characters indicating a missing value can be similarly defined.  

2. Count NA by each group or not: if true, NAguideR will count the number of missing values in each 

group and calculate the NA ratio. Otherwise, it calculates the NA ratio across all groups, for example, 

as below: 

 



There are 2 groups (10 biological replicates in each group) here, if users select this parameter, 

NAguideR will calculate 2 NA ratios for this peptide (first group: 1/10=0.1, second group: 5/10=0.5), 

otherwise, only one NA ratio: 6/20=0.3.  

3. NA ratio: the threshold of NA ratio. Those peptides/proteins with NA ratio above this threshold will 

be removed. 

4. Median normalization or not: if true, NAguideR will process median normalization for original data. 

(Note, NAguideR was not designed to perform sophisticated normalization analysis. Any normalized 

datasets with NA can be accepted for analysis). 

5. Log or not: if true, the data will be transformed to the logarithmic scale with base 2. 

6. CV threshold (raw scale): the threshold of coefficient of variation. Those peptides/proteins with 

NA ratio above this threshold will be removed. “raw scale” here means the CV of each 

peptide/protein is calculate using the data before logarithm transformation. 

7. Height for figure: users can adjust the height of figures by changing this parameter. 

 

If users set these parameters well, then click “calculate” button, the results will appear on the right 

panel. 

 

 

3.2 results of NA overview 

a. NA Distribution. This part contains three sub-parts: 

a.1 NA data. Here shows the result where the “Missing value type” defined by “NA” will be shown 

with a blank cell and users can click “Download” button to download this result to their own computer: 

 



 

a.2 Plot by column. Here shows the result of the NA distribution of every sample. 

 

 

a.2 Plot by row. Here shows the result of the NA distribution of every peptide/protein. 

 

 

b. NA filter. This part will show the filtered result. That means, on the basis of the preset parameters 



(i.e. NA ratio, CV threshold), those objects (peptides/proteins/genes/metabolites) without meeting 

these requirements would be removed. 

 

 

c. Input data check. This part will show the checking information as a summary note for input data. 

By default, if there still remain more than half (>50%) objects in the filtered data, NAguideR would 

think that this is acceptable, and will give users a message like below: 

 

 

Otherwise, NAguideR will give some warnings to users, which means users should pay more 

attention to their own data and those preset parameters. It is recommended that the users should 

then make sure that there are no problems before they can proceed to the next step: 



 

 

  



4. Methods 

In this step, users can select any of 23 missing value imputation methods that are currently 

supported. All methods have been classified into three categories based on their algorithm (Single 

value approaches, global structure approaches and local similarity approaches). In order to control 

the running time, we set these fast methods (17 methods) chosen by default. If users choose those 

slow methods (6 methods), that means the running time will be longer. If users want to try these 

slow methods, they just need to select the corresponding methods. The detailed information about 

each method can be found in Table S1. In addition, we also provide the reference for every method 

just blow each option on the web: 

 

 

After selecting suitable methods, users need to click 'Calculate' button, and a popup window will be 

jumped out to show the selected methods, then click 'OK' button and continue: 



 

 

  



5. Results and Assessments 

This step will process missing value imputation and performance evaluation of every method that 

users select in “Methods” step. Click “Results and Assessments”, NAguideR will start to impute these 

missing value items, a process bar will appear in the bottom right corner to tell users where it goes: 

 

 

The result from every imputation method will be shown on the “Results” panel: 

 

 

a. Parameters for ‘Results’. Herein users can change the parameter “Select one method” on the left 

panel to check relative result, for example, if users select “zero”, it will show the result derived from 

zero method: 



 

 

b. Parameters for ‘Criteria’. Users can customize the criteria and relative weighting for specific 

experimental designs and aims. By default, these parameters are not selected and all criteria 

weights are equal. 

 

 

b.1 Customize the classic criteria or not? If true, users can set the classic criteria and relative weight 

they want, by default, four classic criteria (NRMSE, SOR, ACC_OI, PSS) are chosen and their 

weights are equal. Please note, the number of criteria and weights should be equal, for example, if 

users select ‘NRMS’, ‘SOR’, and ‘PSS’, the weights parameter should be type in ‘1;1;1’, which are 

separated by semicolons, and in this situation, the three criteria weights are all 0.333 (1/3). If users 

think ‘NRMS’ should has a higher weight and type in ‘3;1;1’, this means the weight of ‘NRMS’ is 0.6 

(3/5), ‘SOR’ and ‘PSS’ is 0.2 (1/5), respectively: 

 



b.2 Customize the proteomic criteria or not? If true, users can set the proteomic criteria and relative 

weight they want, by default, four proteomic criteria (Charge, PepProt, CORUM and PPI) are chosen 

and their weights are equal. Please also note, the number of criteria and weights should be equal 

and other descriptions are similar to those for classic criteria as above. Note, the b.1 and b.2 options 

enable users to customize the criteria and set relative weightings for those specific experimental 

designs (e.g., a mixture of protein standards being measured in which no in-vivo protein complex 

formation or interactions expected). 

 

 

Especially for type ‘Proteins’ dataset (see part 1 above), Charge and PepProt criteria cannot be used 

(As there are no information about charges and peptides in the data), so users should change the 

parameters like this if they decide to customize the proteomic criteria: 

 

 

Next, click “Classic criteria” and “Calculate” button. NAguideR will assess every method under the 

four classic criteria: 



 

 

The tables and figures are provided here under the four classic criteria.  

1. This table shows the comprehensive ranks of every imputation method. By default, all criteria 

weights are equal, if users change their weights, and the comprehensive ranks would also change 

correspondingly based on the new criteria and weights;  

2-5, the tables show the scores of every imputation method based on 'Normalized root mean 

squared Error (NRMSE)', 'NRMSE-based sum of ranks (SOR)', 'Procrustes sum of squared errors 

(PSS)', and 'Average correlation coefficient between original value and imputed value (ACC_OI)', 

respectively;  

6. Figures here show the normalized scores of every imputation method under the four classic 

criteria. 'Normalized Values' here means that every score is divided by the corresponding max value. 



 



Then click “Proteomic criteria” and “Calculate” button. NAguideR will assess every imputation 

method under the four proteomic criteria: 

 

The tables and figures are provided here under the four proteomic criteria.  

1. This table shows the comprehensive ranks of every imputation method. By default, all criteria 

weights are equal, if users change their weights, and the comprehensive ranks would also change 

correspondingly based on the new criteria and weights;  

2-5, the tables show the scores of every imputation method based on 'Average correlation coefficient 

between peptides with different charges (ACC_Charge)', 'Average correlation coefficient between 

peptides in a same protein (ACC_PepProt)', 'Average correlation coefficient between protein 

complexes (ACC_CORUM)', 'Average correlation coefficient between protein complexes 

(ACC_PPI)', respectively;  

6. Figures here show the correlation coefficient distribution of the original values and the imputed 

values from every imputation method under the four proteomic criteria. Figures will be instantly 

updated for a particular NA method that can be specified in “1.1 Select one method” parameter under 

Step 4 (left panel). The figure example below shows the results of method “zero”. 



 



Next, click ‘Final check’ for checking final imputation results as a summary note. NAguideR will re-

check those scores based on every criterion. If everything is acceptable (see below), NAguideR will 

show a message like: 

 

 

Here, NAguideR performs a simple check to report if there is any big difference among these 

imputation methods under more than half of the criteria (by default, NAguideR check the fold change 

between the maximum score and the minimum score for each criterion, if the fold change is below 

2, a fact suggesting that no big difference under the corresponding criterion, i.e., that NAguideR 

cannot provide a significantly discriminant guidance on NA method selection), NAguideR will give 

some warnings and possible solutions for users to review/re-calculate these imputation results: 

 

 

Last but not least, NaguideR implements one optional function, ‘Targeted check’, which is designed 

for many biologists with specific experimental aims. For example, this feature conveniently allows 

users to directly visualize the results of a particular peptide or protein item (i.e., spiked-in standard 

peptides, proteins, or known housekeeping proteins like beta-actin, etc.). Therefore, by following 

their experimental design, they can type in the peptide sequence or protein id in the text area and 

click the ‘Check’ button. 

Then, NAguideR will locate this peptide or protein id in the input and resultant matrix (if the 

peptide/protein is not listed in the user’s input data, it will give a message, “Target protein/peptide 

not found. Please make sure the item is included in the input table”, example 1 as below). If the 

peptide/protein is searched, NAguideR will show the results before and after imputation by using bar 

plots and provide a note “Target protein/peptide was missed in N=X samples among all N=Y samples” 

(example 2 as below). This plot should help the users to inspect results following their particular 

experimental design. If the target protein/peptide is quantified without the need of NA imputation, 



NAguideR will still display the bar plots and provide a note, “Target protein/peptide was not missed 

in any sample” (example 3 as below). 

Example 1 (Target protein/peptide not found. Please make sure the item is included in the input 

table): 

 

 

Example 2 (Target protein/peptide was missed in N=10 samples among all N=20 samples): 

 

 

Example 3 (Target protein/peptide was not missed in any sample): 



 

 

  



6. Help 

This part provides brief introductions and operation manual about NAguideR for users to quickly 

learn this tool and start to use this tool. 

 

 

 

 

  



7. How to run this tool locally? 

NAguideR is an open source software for non-commercial use and all codes can be obtained on 

our GitHub: https://github.com/wangshisheng/NAguideR. If users want to run NAguideR on their 

own computer, they should operate as below: 

As this tool was developed with R, you may:  

a) Install R. You can download R from here: https://www.r-project.org/.  

b) Install RStudio. (Recommendatory but not necessary). You can download RStudio from here: 

https://www.rstudio.com/.  

c) Check packages. After installing R and RStudio, you should check whether you have installed 

these packages (shiny, shinyBS, shinyjs, shinyWidgets, DT, gdata, ggplot2, ggsci, openxlsx, 

data.table, DT, raster, Metrics, vegan, tidyverse, ggExtra, cowplot, Amelia, e1071, impute, SeqKnn, 

pcaMethods, norm, imputeLCMD, VIM, rrcovNA, mice, missForest, GMSimpute, DreamAI). You 

may run the codes below to check them: 

if(!require(pacman)) install.packages("pacman") 

pacman::p_load(shiny, shinyBS, shinyjs, shinyWidgets, DT, gdata, ggplot2, ggsci, openxlsx, 

data.table, DT, raster, Metrics, vegan, tidyverse, ggExtra, cowplot, Amelia, e1071, impute, 

SeqKnn, pcaMethods, norm, imputeLCMD, VIM, rrcovNA, mice, missForest, GMSimpute, 

DreamAI) 

Please note, you may find the SeqKnn package (https://github.com/cran/SeqKnn) cannot be 

installed rightly as it has not been updated for a long time. If so, please download this package 

from here: https://github.com/wangshisheng/NAguideR/blob/master/SeqKnn_1.0.1.tar.gz. Then 

you can install this separate package locally: 

setwd('path') #path is where the two packages are. 

install.packages("SeqKnn_1.0.1.tar.gz", repos = NULL,type="source") 

d) Run this tool locally 

if(!require(NAguideR)) devtools::install_github("wangshisheng/NAguideR") 

library(NAguideR) 

NAguideR_app() 

Then NAguideR will be started as below, and the detailed operation about NAguideR can be found 

in the Supplementary Notes part 1-6: 

https://github.com/wangshisheng/NAguideRtool
https://github.com/wangshisheng/NAguideR/blob/master/SeqKnn_1.0.1.tar.gz.


 

  



II. Supplementary tables and figures 

Table S1. Description of 23 missing value imputation methods. 

Class Abbreviation 
Manipulation 

Method 
Algorithm Description  

Remarks & Suggestions 
Function Speed 

Package/R

eferences 

1. Single value methods 

(SV methods), which mean 

replacing missing values 

by a constant or a 

randomly selected value. 

zero zero Replaces the missing values by 0. These algorithms are relatively 

simple and fast. However, they 

may introduce severe bias in 

data. 

0 

Fast 

base (1) 

minimum minimum 
Replaces the missing values by the 

smallest non-missing value in the data. 
min base (2) 

colmedian 
Column 

median 

Replaces the missing values by the 

median of non-missing value in each 

column. 

impute e1071 (3) 

rowmedian Row median 
Replaces the missing values by the 

median of non-missing value in each row. 
impute e1071 (3) 

Mindet 

Deterministic 

minimum 

imputation 

Perform the imputation of left-censored 

missing data using a deterministic 

minimal value approach. Considering an 

expression data with n samples and p 

features, for each sample, the missing 

entries are replaced with a minimal value 

observed in that sample. The minimal 

value observed is estimated as being the 

q-th quantile of the observed values in 

that sample. 

impute.MinDet 
imputeLCM

D (4) 

 

 

 

 

 

 

Performs the imputation of left-censored 

missing data by random draws from a 

Gaussian distribution centred to a 

impute.MinPro

b 

imputeLCM

D (4) 



 

Minprob 

Probabilistic 

minimum 

imputation 

minimal value. Considering an 

expression data matrix with n samples 

and p features, for each sample, the 

mean value of the Gaussian distribution 

is set to a minimal observed value in that 

sample. The minimal value observed is 

estimated as being the q-th quantile of the 

observed values in that sample. The 

standard deviation is estimated as the 

median of the feature standard 

deviations. 

PI 
Perseus 

imputation 

Replace missing values from normal 

distribution 
rnorm base (5) 

 

 

 

 

 

 

2. Global structure 

methods (GS methods), 

which decompose the data 

matrix or minimize the 

determinant of the 

covariance and then 

iteratively reconstruct the 

SVD 

Singular value 

decomposition 

imputation 

Initializes all missing elements with zero 

then estimate them as a linear 

combination of the k most signifcant 

eigen-variables iteratively until reaches 

certain convergence threshold. 

These models assume the 

existence of a global covariance 

structure among all samples or 

objects (i.e., 

proteins/peptides/genes) in the 

expression matrix. When this 

assumption is not appropriate, 

for example, when the proteins 

exhibit dominant local similarity 

structures, their imputation may 

become less accurate. 

svdPca Fast 
pcaMethod

s (6) 

BPCA 

Bayesian PCA 

missing value 

estimation 

An iterative method using a Bayesian 

model to handle missing values. 
bpca Slow 

pcaMethod

s (7) 

MLE 

Imputation 

based on 

maximum 

likelihood 

estimation 

Maximum likelihood-based imputation 

method using the EM algorithm. 

prelim.norm, 

em.norm, 

imp.norm 

Fast norm (8) 



missing values. 

Impseq 

Sequential 

imputation of 

missing values 

Estimates sequentially the missing 

values in an incomplete observation by 

minimizing the determinant of the 

covariance of the augmented data matrix. 

Then the observation is added to the 

complete data matrix and the algorithm 

continues with the next observation with 

missing values. 

impSeq rrcovNA (9) 

Impseqrob 

Robust 

sequential 

imputation of 

missing values 

Similar to Impseq, but improved by 

plugging in robust estimators of location 

and scatter. 

impSeqRob 
rrcovNA 

(10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KNN 

K Nearest 

Neighbors 

imputation 

K-nearest neighbors in the space of 

peptides/proteins to impute missing 

expression values. 

In these models, only a subset 

of objects (i.e., 

proteins/peptides/genes) that 

exhibits high correlation with 

one object (i.e., 

protein/peptide/gene) containing 

the missing values is used to 

compute the missing values in 

the object. Therefore, their 

imputation can be more 

accurate when a strong local 

correlation exists between 

objects in the data, otherwise, 

they may not perform well. 

impute.knn 

Fast 

impute (6) 

Seq-KNN 

Sequential K-

nearest 

neighbor 

Imputes the missing values sequentially 

from the peptide/protein having least 

missing values based on KNN method, 

and uses the imputed values for the later 

imputation. 

SeqKNN 
SeqKnn 

(11) 

trKNN 

Truncation k-

nearest 

neighbors 

imputation 

Applies a Newton-Raphson (NR) 

optimization to estimate the truncated 

mean and standard deviation. Then, 

Pearson correlation was calculated 

based on standardized data followed by 

correlation-based kNN imputation. 

 

sim_trKNN_wr

apper 

 

Slow 

 

Imput_func

s.R (12) 



 

 

 

 

 

 

 

 

3. Local similarity methods 

(LS methods), which 

exploit local similarity 

structure based on the 

expression profiles of 

those objects (etc. 

peptides, proteins) in the 

data. 

LLS 

Local least 

squares 

imputation 

K variables (peptides/ proteins) are 

selected by Pearson, spearman or 

Kendall correlation coefficients. Then 

missing values are imputed by a linear 

combination of the k selected variables. 

The optimal combination is found by LLS 

regression. 

llsImpute 

Fast 

pcaMethod

s (13) 

QR 

Quantile 

regression 

imputation of 

left-censored 

data 

A missing data imputation method that 

performs the imputation of left-censored 

missing data using random draws from a 

truncated distribution with parameters 

estimated using quantile regression. 

impute.QRILC 
imputeLCM

D (14) 

IRM 

Iterative robust 

model-based 

imputation 

In each step of the iteration, one variable 

is used as a response variable and the 

remaining variables serve as the 

regressors. 

irmi 

Slow 

VIM (15) 

GRR 
Glmnet Ridge 

Regression 

A prediction model is employed for the 

prediction of missing values by setting a 

targeted missing variable as outcome 

and other variables as predictors. Here 

Glmnet Ridge Regression model is 

applied as a prediction model. 

impute.RegIm

pute 

DreamAI 

(16) 

GMS 

Generalized 

Mass 

Spectrum 

missing peaks 

Applies a Lasso model to select subsets 

of detected peaks to predict the missing 

values using a two-step procedure, two-

step Lasso (TS-Lasso). 

GMS.Lasso 
GMSimput

e (17) 



imputation with 

Two-Step 

Lasso 

Mice-norm 

Multivariate 

Imputation by 

Chained 

Equations- 

Bayesian linear 

regression 

Generates multiple imputations for 

incomplete multivariate data by Gibbs 

sampling. Missing data can occur 

anywhere in the data. The algorithm 

imputes an incomplete column (the target 

column) by generating 'plausible' 

synthetic values given other columns in 

the data. Each incomplete column must 

act as a target column, and has its own 

specific set of predictors. The default set 

of predictors for a given target consists of 

all other columns in the data. For 

predictors that are incomplete 

themselves, the most recently generated 

imputations are used to complete the 

predictors prior to imputation of the target 

column. The imputation method depends 

on Bayesian linear regression. 

mice 

(method=’nor

m’) 

Slow mice (18) 

Mice-cart 

Multivariate 

Imputation by 

Chained 

Equations- 

classification 

Generates multiple imputations for 

incomplete multivariate data by Gibbs 

sampling. Missing data can occur 

anywhere in the data. The algorithm 

imputes an incomplete column (the target 

mice 

(method=’cart’

) 

Slow mice (18) 



and regression 

trees 

column) by generating 'plausible' 

synthetic values given other columns in 

the data. Each incomplete column must 

act as a target column, and has its own 

specific set of predictors. The default set 

of predictors for a given target consists of 

all other columns in the data. For 

predictors that are incomplete 

themselves, the most recently generated 

imputations are used to complete the 

predictors prior to imputation of the target 

column. The imputation method depends 

on classification and regression trees. 

RF Random forest 

Imputes missing values particularly in the 

case of mixed-type data based on a 

random forest. It can be used to impute 

continuous and/or categorical data 

including complex interactions and 

nonlinear relations. It yields an out-of-bag 

(OOB) imputation error estimate. 

missForest 
missForest 

(19) 

 

  



Table S2. The summary of NAguideR tested on different operation systems and browsers. 

Operation 

System 

Version Chrome Firefox Safari 

Windows 7 68.0.3440.106 63.0.3 not tested 

Linux CentOS 7 not tested 52.8.0 not tested 

MacOS HighSierra 70.0.3538.110 not tested 12.0.1 

 

  



Table S3. The number of detected peptides/proteins and the proportion of missing values in each 

data set. 

Level Peptide level Protein level 

Dataset PhosDIA PepSWATH ProtSWATH 

Total number 54,076 57,687 4,797 

Missing value number 

(%) 
41,262 (76.3) 31,769 (55.1) 981 (20.4) 

Number after filtered 13,946 36,363 3,640 

Note: ‘Total number’ here means the identified peptides/proteins number in each dataset. ‘Missing 

value number’ means the number of quantified peptides/proteins with missing value in at least one 

sample, the number in parentheses is the rate of missing value corresponding to “Total number”. 

‘Number after filtered’ means the number of quantified peptides/proteins after removing those with 

high proportion of missing values and coefficient of variation (e.g., those peptides/proteins with 50% 

proportion of missing values or coefficient of variation above 30% will be removed). 

 

 

  



Figure S1. Distribution of the time consumption of each imputation method. Results were obtained 

from the ProtSWATH dataset, only for the demonstration of speed difference between methods. We 

repeated 100 times for every method Note, the time is just a reference for users because it is also 

related to data size and internet status (or whether computer hardware configuration if running 

NAguideR locally). Obviously, if the data size is smaller and internet speed is fast, the imputation 

time will be less. 

 

  



Figure S2. Illustration of major steps of the data analysis process in NAguideR. We take two groups 

of samples (five biological replicates in each group, labeled A1, A2, A3, A4, A5, B1, B2, B3, B4, B5 

in the original intensity data), just for the illustrative example. “Feature” here denotes the identified 

proteins/peptides. 

 

  



Figure S3. Distribution of missing values in all the three example datasets. (A-B) Missing value 

distribution of each sample and every feature in PhosDIA dataset. (C-D) Missing value distribution 

of each sample and every feature in PepSWATH dataset. (E-F) Missing value distribution of each 

sample and every feature in ProtSWATH dataset. ‘Feature’ here denotes a peptide or protein. 

 

 

  



Figure S4. Comparisons of original values and imputed values of every peptide from every 

imputation method on the extracted complete data matrix from PhosDIA. The adjusted R squared of 

each result was also obtained by ‘lm’ function and shown in for each method (except zero and 

minimum method). We first only extracted the complete data matrix and generated random missing 

values on it with a similar proportion of missing values existed in the original data matrix. Thus, every 

imputed data point will have a real reference (i.e., the original value) for correlation analysis. 

 



Figure S5. Systematic evaluation analysis of the pepSWATH dataset (Similar to Figure 2). (A) 

Pearson correlation analysis of the original intensities and imputed intensities based on 23 methods. 

Density plots illustrate the correlation in detail between the original values and imputed values from 

minimum, SVD, and Impseqrob respectively. NA here means ‘No Result’ because the standard 

deviations of imputed values from zero and minimum method are equal to 0 and hence the cor 

function returns NA. (B) Comparison of the distribution of the correlation coefficient among original 

values and 23 imputation methods under the four proteomic criteria. The comprehensive scores 

distribution of 23 imputation methods under the four classic criteria (C) and four proteomic criteria 

(D). ‘Normalized Values’ here means every score is divided by corresponding maximum value. 

 
  



Figure S6. Systematic evaluation analysis of the ProtSWATH dataset (Similar to Figure 2). (A) 

Pearson correlation analysis of the original intensities and imputed intensities based on 23 methods. 

Density plots illustrate the correlation in detail between the original values and imputed values from 

minimum, SVD, and Impseqrob respectively. NA here means ‘No Result’ because the standard 

deviations of imputed values from zero and minimum method are equal to 0 and hence the cor 

function returns NA. (B) Comparison of the distribution of the correlation coefficient among original 

values and 23 imputation methods under the four proteomic criteria. The comprehensive scores 

distribution of 23 imputation methods under the four classic criteria (C) and four proteomic criteria 

(D). ‘Normalized Values’ here means every score is divided by corresponding maximum value.

 

  



Figure S7. Comparisons of original values and imputed values of the correlation coefficients among 

peptides that are derived under ACC_Charge criterion across every imputation method that was 

directly applied on the full PhosDIA dataset. The adjusted R squared of each result was also 

obtained by ‘lm’ function and shown for each imputation method. 

  



Figure S8. Evaluation of every imputation method across different missing proportions on the three 

proteomics datasets under the proteomic criteria (A: PhosDIA, B: PepSWATH, C: ProtSWATH). The 

proportion of missing values is from 5% to 70% in step of 5%. The lower right part shows the 

imputation method names with relative marked colors and the grey arrow facilitates the reading of 

the relative rank of every method. 

 

  



Figure S9. The score distribution of every imputation methods based on the classic criteria in 

the three proteomics datasets with different biological replicates (Left: PhosDIA, middle: 

PepSWATH, right: ProtSWATH). ‘Normalized Values’ here means every score is divided by 

corresponding maximum value. ’10 VS 10’ means there are 10 replicates in each group (marked 

with darkblue color), and ‘3 VS 3’ means there are 3 replicates in each group (marked with red 

color). 

 
  



Figure S10. Comparison of the root mean square error (RMSE) of the average correlation 

coefficients across sample among each method on the pepSWATH data set. (A) The distribution of 

the across sample correlation coefficient RMSE among original, Requant and 23 imputation methods 

under the four proteomic criteria. (B) The normalized RMSE distribution of Requant and 23 

imputation methods under the four proteomic criteria. ‘Normalized Values’ here means every RMSE 

divides by corresponding max value. “Requant” means “Requantification” method in 

OpenSWATH. 

 

  



Figure S11. Volcano plots examples for differential expression analysis in PhosDIA (following Figure 

5). (A) From original full data (labelled as ‘Gold Standard’), imputed data of randomly selected 5 

biological replicates (labelled as Random 5) (B-D) and 3 biological replicates (labelled as Random 

3) (E-G) in each group from Imseq, Seq-KNN, minimum method, respectively. 

 

 

  



Figure S12. Motif analysis of the differentially expressed peptides in the PhosDIA dataset. (A) Venn 

diagram of the differential peptides identified in the first 3 biological replicates with Seq-KNN method 

(First 3.seqknn) and zero method (First 3.zero). (B) Venn diagram of identified motifs from the ‘Gold 

standard’ dataset (Gold.standard) and those peptides identified in First 3.seqknn dataset but not in 

First 3.zero dataset (First 3.seqknn.zero.diff). (C) Detailed motif illustrations. Note that the last motif 

seems to be newly identified from First 3.zero or First 3.seqknn.zero.diff, whereas it actually can be 

derived from the inspection of Gold.standard result. 

 



Figure S12C continued. 
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