The temperature-regulation of *Pseudomonas aeruginosa cmaX-cfrX-cmpX* operon reveals an intriguing molecular network involving the sigma factors AlgU and SigX

Emeline Bouffartigues, Ishac Si Hadj Mohand, Olivier Maillot, Damien Tortuel, Jordane Omnes, Audrey David, Ali Tahrioui, Rachel Duchesne, Cecil Onyedikachi Azuama, Michael Nusser, Gerald Brenner-Weiss, Alexis Bazire, Nathalie Connil, Nicole Orange, Marc GJ Feuilloley, Olivier Lesouhaitier, Alain Dufour, Pierre Cornelis, Sylvie Chevalier

SUPPLEMENTARY DATA

Table of contents

	Pages
Table S1: Normalized expression of the studied genes under HS or CS	
in the indicated genetic background relative to <i>P. aeruginosa</i> H103 at 37°C	2
Table S2: Characteristics of proteins identified by Maldi-TOF analysis	3
Table S3: Bacterial strains and plasmids used in this study	4-5
Table S4: Primer sequences of the indicated genes used for quantitative	
RT-qPCR reactions, transcription start sites identification and transcriptional fusions construction	6-7
Fig. S1: Flow cytometry analysis of P. aeruginosa H103 viability	
exposed or not to CS or HS	8
Fig. S2: Effect of HS and CS on <i>algU</i> expression and activity	9
Fig. S3: RpoH is not involved in the cmaX, cfrX and cmpX regulation	
in response to HS in mPAO1.	10
Figure S4: 2-DE total protein profiles of P. aeruginosa exposed to CS	
from 37°C to 4°C or not (control)	11
Fig. S5: c-di-GMP level quantification by LC/MS/MS in H103 strain exposed (square) or not to a CS (pc	oint) 12
Fig. S6: Effect of a sublethal dose of valinomycin on membrane fluidity	
measured by fluorescence polarization in stationary growth phase	13

			Genetic background		
Target	Treatmont	U103		AgiaV	
genes	Treatment	11105	ΔaigU	ΔsigA	
cmaX	HS	5.9 ± 1	0.9 ± 0.2		
	CS	1 ± 0.4			
cfrX	HS	1.7 ± 0.3	1.3 ± 0.4		
•	CS	3.6 ± 0.08		1.3 ± 0.1	
стрХ	HS	2.1 ± 0.4	1.3 ± 0.4		
- 1	CS	3.1 ± 0.3		1. ± 0.3	
alaU	HS	2.9 ± 1.7			
- 3 -	CS	1.4 ± 0.7			
alqD	HS	19.4 ± 6.3	6 ± 0.5		
<u>9</u> _	CS	1.5 ± 0.3			
rроН	HS	4 ± 1.2	1.4 ± 0.3		
	CS	1.3 ± 0.4			
oprF	HS	1.6 ± 0.1	0.8 ± 0.2		
•	CS	1 ± 0.1			
amrZ	HS	0.4 ± 0.1	0.3 ± 0.03		
	CS	1± 0.3			
sigX	HS	0.8 ± 0.1	0.6 ± 0.1		
C C	CS	2 ± 0.6		0.9 ± 0.2	
accA	HS	1 ± 0.1			
	CS	1.8 ± 0.2		1.4 ± 0.1	
accB	HS				
	CS	2.7 ± 0.3		1.9 ± 0.8	
PA5174	HS				
	CS	2.5 ± 0.8		1.2 ± 0.5	
psrA	HS				
	CS	0.5 ± 0.1		0.2 ± 0.02	

Table S1: Normalized expression of the studied genes under HS or CS in the indicated genetic backgrounds relative to *P. aeruginosa* H103 at 37°C.

Table S2: Characteristics of proteins identified by Maldi-TOF analysis.

Spot number	RefSeq	PA number	Protein name	Theorical MW(kDa)/pl	method	Protein Score	Number of Matched peptides	Sequence coverage (%)
1	NP_251641.1	PA2951	EtfA	31.4/4.75	MS/MS	54	1	5
2	NP_259243.1	PA0552	Pgk	40.4/5.06	MS/MS	123	2	5
3	NP_251641.1	PA2953	EtfD	59.9/5.6	MS/MS	42	1	1
4	NP_253858.1	PA5171	ArcA	46.4/5.5	MS	167	12	32
5	NP_249556.1	PA0865	Hpd	39.9/4.89	MS	133	12	29
6	NP_252329.1	PA3639	AccA	34.9/5.15	MS	84	7	26
7	NP_252345	PA3655	Tsf	30.7/4.95	MS	135	9	25
8	NP_252955	PA4265	TufA	43.3/5.03	MS	133	9	29
9	NP_253428.1	PA4740	Pnp	75.4/4.81	MS	112	9	17

Table S3: Bacterial strains and plasmids used in this study.

Strains/plasmids	Relevant characteristic(s)	Sources
Strains		
E. coli		
JM109	Cloning host	Promega
S17.1	Conjugation strain	Simon et al., 1983
Pseudomonas aeruginosa		
H103	PAO1 derivative	Hancock, R. E. & Carey, 1979
mPAO1	PAO1 derivative	Jacobs, M. A. et al., 2003
<i>∆sigX</i> (PAOSX)	PAO1 H103 <i>∆sigX</i>	Bouffartigues et al., 2012
∆rpoH	Transposon mutant <i>rpoH</i> ::IS; <i>phoA</i> /hah-Tc ^r	Jacobs, M. A. et al., 2003
∆algU	PAO1 H103 ⊿algU	This study
Plasmids		
pAB133	Vector for transcriptional fusion analyzes. Gmr	Bazire et al., 2005
pAB <i>cmaX</i> L	pAB-P <i>cmaX-luxCDABE</i> . Gm ^r	This study
pAB <i>cfrX</i> L	pAB-P <i>cfrX-luxCDABE</i> . Gm ^r	This study
pAB <i>cmpX</i> L	pAB-P <i>cmpX-luxCDABE</i> . Gm ^r	This study
pEXUGL	pEXalgU with <i>lox-aacC1-lox</i> cassette. Apr, Gmr	Bazire et al., 2010
pCM157	<i>cre</i> expression vector, Tc ^r	Quenée et al., 2005

Cb^r, carbenicillin resistance ; Gm^r, gentamycin resistance ; Tc^r, tetracycline resistance.

References for Table S3

Bouffartigues, E. *et al.* Transcription of the oprF gene of Pseudomonas aeruginosa is dependent mainly on the SigX sigma factor and is sucrose induced. *J. Bacteriol.* **194**, 4301–4311 (2012).

Hancock, R. E. & Carey, A. M. Outer membrane of Pseudomonas aeruginosa: heat- 2-mercaptoethanol-modifiable proteins. *J. Bacteriol.* **140**, 902–910 (1979).

Jacobs, M. A. *et al.* Comprehensive transposon mutant library of Pseudomonas aeruginosa. *Proc. Natl. Acad. Sci. U. S. A.* **100**, 14339–14344 (2003).

Bazire, A. *et al.* Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa. *FEMS Microbiol. Lett.* **253**, 125–131 (2005).

Quénée, L., Lamotte, D. & Polack, B. Combined sacB-based negative selection and cre-lox antibiotic marker recycling for efficient gene deletion in pseudomonas aeruginosa. *BioTechniques* **38**, 63–67 (2005).

Bazire, A. *et al.* The sigma factor AlgU plays a key role in formation of robust biofilms by nonmucoid Pseudomonas aeruginosa. *J. Bacteriol.* **192**, 3001–3010 (2010).

Simon, R., Priefer, U. & Pühler, A. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. *Nat. Biotechnol.* **1**, 784–791 (1983).

PΔ	Gene		
number	name	Primer name	Sequence (5'- 3')
	inamo		
RT-qPCR			
PA1773	cmaX	PA1773	AAAGGGCCGAAGACAGCAT
		PA1773	CGCGATCGGTCAGGTAGTG
PA1774	ofr¥	PA1774	CTGCGGGACCTCGTCAAG
	0///	PA1774	GCCGACCTGGCGATTG
PA1775	omnY	FPA1775	GGCAGATCATTGCAGGAATCTAC
	Стрх	RPA1775	TCTCTTCAATAGTGCCTTCAACGT
PA1600	fahB	F1609	CCTCGGCAATGACAAAGACA
1 A1009	TADD	R1609	GTAGGACGGATTGAAGCGAATG
DA0760	olal I	FalgU	TACCTGGCTGTATCGGATCG
FA0702	aigu	RalgU	GAAGAACTCCGCATCCTCTG
	alaD	FPA3540	GGGCTATGTCGGTGCAGTATG
PA3540	aigD	RPA3540	GCGACTTGCCCTGGTTGAT
	rooll	FrpoH	CGCAAACCTGGAAGCCTA
PA	τροπ	RrpoH	GAACAACGAAGCGCAGGT
	oprF	FPA1777	GCGTACAGCTGGACATGAAG
PAI///		RPA1777	TTCATGAAGTCAGCCAGGTTCTT
DAGGOE	amrZ	FamrZ	CGTGAGCAGATCGCAGAA
PA3385		RamrZ	GCTCGTGCAGGCTGAGTT
DA1770	sigX	FPA1776	AATTGATGCGGCGTTACCA
PA1776		RPA1776	CCAGGTAGCGGGCACAGA
DA 0000	accA	FaccA	TCTTCGGCAATCTGACCAGTT
PA3639		RaccA	GTAGCCGATGTAGTCGAGGGTA
DA 40.47	accB	FaccB	AAGCCATGAAGATGATGAACC
PA4847		RaccB	CGTTCTCCACCAGGATCGA
	(-1-)(FPA5174	AGGGCGACCTGGAGATCAT
PA5174	fabY	RPA5174	GCGCGTCCTTCTTGTATACCA
PA3006		FpsrA	CGATTTCGGCGTGAACACTT
	psrA	RpsrA	CGAAGAACGGCACCATCAG
PA0668.1		F16SRNA	AACCTGGGAACTGCATCCAA
	IbSrKNA	R16SRNA	CTTCGCCACTGGTGTTCCTT
RACE-PCR			
		ASP1cmpX	CCTTCAACGTCACCCACTTT
PA1775	стрХ	ASP2cmpX	AACACCTTGGGCAGGTACAG

Table S4: Primer sequences of the indicated genes used for quantitative RT-qPCR reactions, transcription start sites identification and transcriptional fusions construction.

PA1774 <i>cfrX</i>	ofrV	AS1cfrX	GCAGAAGATGCGTTTTTCG	
	ASP2cfrX	GCGGAAATACGGGAAACC		
PA1773 cmaX	omaV	ASP1cmaX	CAGGTAGTGCGCGAGGTAGT	
	UndA	ASP2cmaX	CGGATTCAGGTTCACTCCAC	
Transcriptional fusions				
**PA1773	**000	FCmaX	*taataagagctcGTTCGTGTATGCCGACAACA	
	CITIAX	RCmaX	*taataactagttGCGCTTCCCTTGGTAAAAC	
**D \1 77 <i>1</i>	**ofrV	FCFRX	*taataagagctcGAGTTGATACGGGAGCGCAT	
FA1774	UIX	RCFRX	*taataactagttCATGTCTGTACGAGGGAGTG	
**PA1775	**cmnY	FCmpX	*taataagagctcCTGCGGGACCTGCTCAAG	
	ыпрл	RCmpX	*taataactagttCACTCAGCCTTGTCAGC	

* Nucleotides not in the chromosomal sequence are indicated in lower case.

** Gene localized downstream the PCR-amplified DNA fragment

Fig. S1: Flow cytometry analysis of *P. aeruginosa* H103 viability exposed or not to CS or HS.

Fig. S2: Effect of HS and CS on *algU* expression and activity.

Fig. S3: RpoH is not involved in the *cmaX, cfrX and cmpX* regulation in response to HS in PAO1.

Fig. S4: 2-DE total protein profiles of *P. aeruginosa* exposed to CS from 37°C to 4°C or not (control).

Fig. S5: c-di-GMP level quantification by LC-MS/MS in H103 strain exposed (square) or not to a CS (point).

References for Supplementary Fig. S5

Strehmel, J. *et al.* Sensor kinase PA4398 modulates swarming motility and biofilm formation in Pseudomonas aeruginosa PA14. *Appl Environ Microbiol.* 81(4):1274-85. (2015).

Bouffartigues, E. *et al.* The absence of the *Pseudomonas aeruginosa* OprF protein leads to increased biofilm formation through variation in c-di-GMP level. *Front Microbiol.*; 6: 630. (2015).

Fig. S6: Effect of a sublethal dose of valinomycin on membrane fluidity measured by fluorescence polarization in stationary growth phase.