Supplemental material

The heterotrophic bacterium *Cupriavidus pinatubonensis* JMP134 oxidizes sulfide to sulfate with thiosulfate as a key intermediate

Yufeng Xin^{1, 2}, Rui Gao¹, Feifei Cui¹, Chuanjuan Lü¹, Honglei Liu¹, Huaiwei Liu¹, Yongzhen Xia^{1#}, and Luying Xun^{1, 3, #}

¹ State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China.

²College of Life Sciences, Qufu Normal University, Qufu, 273165, P. R. China.

³ School of Molecular Biosciences, Washington State University, Pullman, WA 99164-

7520, USA.

[#] For correspondence.

Yongzhen Xia, E-mail: xiayongzhen2002@sdu.edu.cn,

Luying Xun, E-mail: luying_xun@vetmed.wsu.edu; Tel: +1 (509) 335-2787.

This supplemental document contains:

Figure S1: Sulfide oxidation by complemental strains of *C. pinatubonensis* JMP134 mutants.

Figure S2: The deletion of *sorA* does not affect sulfide oxidation to sulfate.

Figure S3: SorA is responsible for the oxidation of added sulfite.

Figure S4: Thiosulfate-induced $\triangle sorA$ cells also oxidized sulfite to sulfate.

 Table S1: Sulfur-oxidizing enzymes in C. pinatubonensis JMP134.

Table S2: Sulfur-oxidizing enzymes in GB17, OCh 114, and DSS-3.

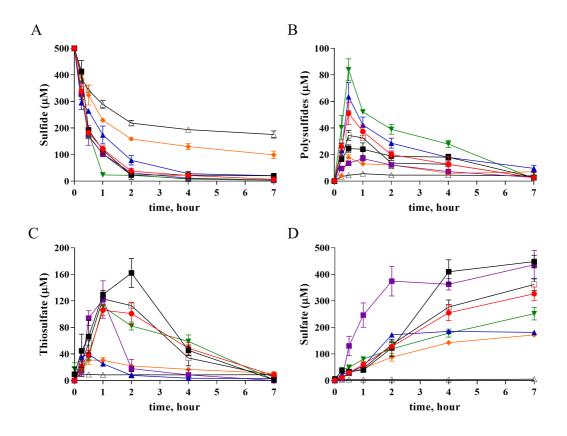


Fig. S1. Sulfide oxidation by complemented strains of *C. pinatubonensis* JMP134 mutants. Cells were harvested, washed, and re-suspended at OD_{600} of 2.0 in 100 mM HEPES buffer, pH 7.4. Sulfide was added to 500 μ M to initiate the reaction. Sulfide, polysulfides, thiosulfate, and sulfate were determined at different times. *C. pinatubonensis* JMP134 (\Box), $\Delta soxYZ::soxYZ$ (\bullet), $\Delta pdo1pdo2::pdo2$ (\bullet), $\Delta pdo1pdo2soxYZ::soxYZ$ (\bullet), $\Delta fccB::fccB$ (\bigtriangledown), $\Delta sqrpdo1pdo2soxYZ::soxYZ$ (\bullet), $\Delta sqrpdo1pdo2::sqrpdo2$ (\blacksquare), and HEPES buffer (Δ). All data are average of at least three samples with standard deviation (error bar).

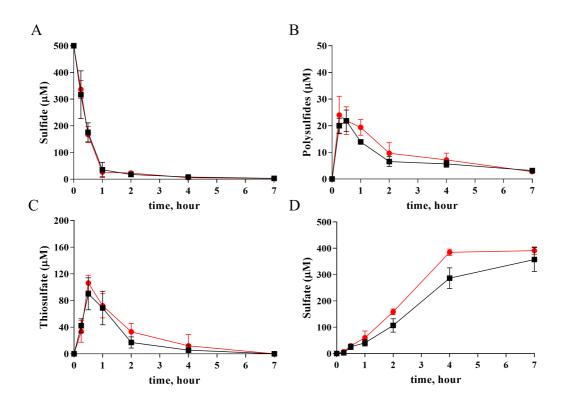


Fig. S2. The deletion of *sorA* does not affect sulfide oxidation to sulfate.

Cells were harvested, washed, and re-suspended at OD_{600} of 2.0 in 100 mM HEPES buffer, pH 7.4. Sulfide was added to 500 μ M to initiate the reaction. Sulfide (A), polysulfides (B), thiosulfate (C), and sulfate (D) in cell suspensions of $\Delta sorA$ (•) were determined at different times. All data are average of at least three samples with standard deviation (error bar).

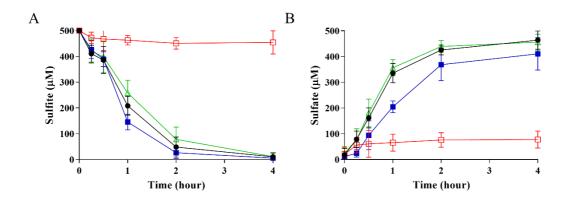


Fig. S3. SorA is responsible for the oxidation of added sulfite. Sulfite-induced cells were harvested, washed, and re-suspended at OD_{600} of 2.0 in 100 mM HEPES buffer, pH 7.4. Sulfite was added to 500 μ M to initiate the reaction. Sulfite (A) and sulfate (B) in cell suspensions of *C. pinatubonensis* JMP134 wild type (•), $\Delta sorA$ (□), $\Delta sorA$::sorA (•), and $\Delta sox YZ$ (Δ) were determined at different times. All data are average of at least three samples with standard deviation (error bar).

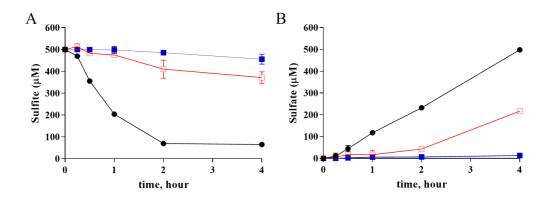


Fig. S4. Thiosulfate-induced $\Delta sorA$ cells slowly oxidized sulfite to sulfate. Cells were harvested, washed, and re-suspended at OD_{600} of 2.0 in 100 mM HEPES buffer, pH 7.4. Sulfite was added to 500 μ M to initiate the reaction. Sulfite (A) and sulfate (B) of in cell suspensions of *C. pinatubonensis* JMP134 wild type (•), $\Delta sorA$ (\Box), and $\Delta sorAsoxYZ$ (•) were determined at different times. All data are average of at least three samples with standard deviation (error bar).

Locus_tag	Accession Number	Protein	Size (aa)	Putative function	
Reut_B3588	AAZ62946	SQR	558	sulfide dehydrogenase	
Reut_B3589	AAZ62947	PDO2	298	persulfide dioxygenase	
Reut_B3590	AAZ62948	FisR	436	transcriptional regulator	
Reut_B3591	AAZ62949	TauE	273	sulfite exporter	
Reut_A3082	AAZ62442	SorB	208	sulfite:cytochrome <i>c</i> oxidoreductase subunit B	
Reut_A3083	AAZ62443	SorA	417	SO family, molybdopterin binding domain	
Reut_A3249	AAZ62608	SoxB	573	sulfate thio-hydrolase	
Reut_A3250	AAZ62609	TlpA_like	165	disulfide reductases in cytochrome maturation	
Reut_A3251	AAZ62610	SoxX	224	monoheme subunit cytochrome	
Reut_A3252	AAZ62611	SoxA	275	diheme subunit cytochrome	
Reut_A3253	AAZ62612	DsrE-like	152	Proposed thiosulfate transfer	
Reut_A3254	AAZ62613	SoxZ	103	sulfur compound chelating protein	
Reut_A3255	AAZ62614	SoxY	151	sulfur covalently binding protein	
Reut_A3256	AAZ62615	cyt c	108	cytochrome <i>c</i>	
Reut_A3257	AAZ62616	SoxD	344	diheme <i>c</i> -type cytochrome	
Reut_A3258	AAZ62617	SoxC	449	molybdenum cofactor-containing subunit	
Reut_A3259	AAZ62618	ArsR	138	transcriptional regulator	
Reut_A3260	AAZ62619	EamA-like	297	O-acetylserine/cysteine export protein	
Reut_A3261	AAZ62620	FccB	419	monomeric flavoprotein	
Reut_A3262	AAZ62621	Cyt c	108	cytochrome <i>c</i> ₅₅₃	
Reut_A3334	AAZ62692	PDO1	245	persulfide dioxygenase	

Table S1. Sulfur-oxidizing enzymes in C. pinatubonensis JMP134

Enzymes	GB17	OCh 114	DSS-3	
SQR	QFG36295/36% ^b	ABG30463/67%	AAV94899/39%	
PDO ^c	QFG35975/51%	ABG30464/57%	AAV94334/59%	
	QFG36611/51%	ABG30238/56%		
SoxX	QFG36009/31%	ABG31144/31%	AAV94297/52%	
SoxY	QFG35251/40%	ABG31145/37%	AAV94298/37%	
SoxZ	QFG35250/37%	ABG31146/33%	AAV94299/33%	
SoxA	QFG35249/27%	ABG31147/26%	AAV94300/26%	
SoxB	QFG35248/49%	ABG31148/48%	AAV94301/49%	
SoxC	QFG35247/51%	ABG31149/50%	AAV94302/50%	
SoxD	QFG35246/34%	ABG31150/31%	AAV94303/34%	
FccA (SoxE)	QFG35245/40%	ABG31151/36%	AAV94304/37%	
FccB (SoxF)	QFG35244/41%	ABG31152/38%	AAV94305/42%	

Table S2. Sulfur-oxidizing enzymes in GB17, OCh 114, and DSS-3^a

^a Use the enzymes in *C. pinatubonensis* JMP134 (Table S1) as the query sequences. ^b Percentage of identities with the query protein. ^c PDO2 (AAZ62947) of *C. pinatubonensis* JMP134. The strains are *P. pantotrophus* GB17, *Roseobacter denitrificans* OCh 114, and *Ruegeria pomeroyi* DSS-3.