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Supplementary Video Captions  

Supplementary Video 1, Deconvolution comparison on simulated object. Two parallel lines in 3D space 
are blurred by the iSIM point spread function (1st column) and deconvolved using traditional (‘Trad’, 2nd 
column) and Wiener-Butterworth (‘WB’, 3rd column) back projectors. For clarity, only a transverse XY 
plane through the object is shown. Corresponding line profiles through the middle of the image  (4th 
column) are also shown, updated after each iteration count. See also Fig. 1e.  

Supplementary Video 2, Deconvolution comparison on fixed U2OS cells,  immunolabeled with Tomm20 
Alexa-488. Fixed U2OS cells were immunolabeled with Tomm 20 Alexa-488 and imaged with iSIM. Single 
planes (top) and higher magnification views (bottom, corresponding to the yellow rectangular region) are 
shown, derived from image volumes deconvolved using traditional (left) and Wiener-Butterworth (right) 
back projectors, with iteration number (it) indicated. See also Fig. 1f, g.  

Supplementary Video 3, Time-lapse images of U2OS cells expressing ERmoxGFP. Image volumes were 
acquired with iSIM every 2 s, over 150 time points, and deconvolved (1 iteration) using the Wiener-
Butterworth back projector. The deconvolved maximum intensity projection is shown here.  

Supplementary Video 4, Angular maximum intensity projections, comparing raw and deconvolved C. 
elegans embryos showing histone and neuronal markers. C. elegans embryos expressing neuronal 
(green, GFP-membrane) and pan-nuclear (magenta, mCherry-histone) markers were acquired with diSPIM 
(top, raw views) and deconvolved using traditional ('Trad’, bottom left) and Wiener-Butterworth (‘WB’, 
bottom right) back projectors. Isotropic reconstructions are obtained with both back projectors. See also 
Fig. 2a-d.  

Supplementary Video 5, Two-color time-lapse images of C. elegans embryos expressing histone and 
neuronal markers. C. elegans embryos expressing neuronal (green, GFP-membrane) and pan-nuclear 
(magenta, mCherry-histone) markers were acquired with diSPIM every 1.5 min, over 50 time points, and 
deconvolved using traditional and Wiener-Butterworth back projectors. Maximum intensity projections 
of raw data (View A, left column) and deconvolved data using traditional (‘Trad’, middle column) and 
Wiener-Butterworth (‘WB’, right) back projectors are shown for lateral (top) and axial (bottom) views. 
Time is referenced as minutes post fertilization. See also Fig. 2a-d.  

Supplementary Video 6, Time-lapse images of Jurkat T cells expressing GFP-actin. Jurkat T cells 
expressing GFP-actin were acquired with a quadruple-view light-sheet microscope every 15 s, over 30 
time points, and deconvolved using traditional and Wiener-Butterworth back projectors. Left: Perspective 
3D view of Wiener-Butterworth deconvolution result . Right: Maximum intensity projections of raw (top 
row) and deconvolved results using traditional (‘Trad’, middle row) and Wiener-Butterworth (‘WB’, 
bottom row) back projectors are shown for lateral (left) and axial (right) views.  See also Fig. 2e-g.  

Supplementary Video 7, Time-lapse images of zebrafish embryo expressing Lyn-eGFP. Volumetric 
images of 32-hour zebrafish embryo expressing Lyn-eGFP under the control of the ClaudinB were acquired 
with diSPIM every 30 s, over 900 time points (a total acquisition period of 7.5 h), and deconvolved using 
the Wiener-Butterworth back projector. Maximum intensity projections of deconvolutions are shown 
for lateral (top) and axial (bottom) views. Labels that indicate anterior and posterior directions, the 
direction of the coverslip; and the skin cell layer are also indicated.  Images were binned 2×2 relative 
to the data for display and memory purposes.  See also Fig. 2j.  

Supplementary Video 8, Higher magnification view of subregion in Supplementary Video 7, highlighting 
the immune cell migration.  See also Fig. 2m, n. 
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Supplementary Video 9, Automated segmentation of cell membranes in zebrafish embryo lateral line.  
Slices indicated by z-distance from skin surface shows the automated segmentation result based on the 
raw data (‘Raw’, View A image (top)), deconvolved image with Wiener-Butterworth back projector (‘WB’, 
middle) and the overlay of the segmentations (bottom). See also Fig. 2o, p. 

Supplementary Video 10, Wiener-Butterworth deconvolution compares favorably to Huygens 
deconvolution on single-view data acquired on Zeiss Z.1 light-sheet microscope.  Z stacks are shown 
comparing the raw image (left), Huygens deconvolution (middle) and Wiener-Butterworth deconvolution 
(right). See also Supplementary Fig. 13. 

Supplementary Video 11, Cleared tissue: mouse brain slice. A 4 x 2 x 0.5 mm3 slab of brain tissue derived 
from a V1b transgenic mouse was immunolabeled and cleared using iDISCO+, imaged in the cleared tissue 
diSPIM, and reconstructed by registering the two views and deconvolving them. An Alexa Fluor 555 
secondary antibody against tdTomato primary antibody sparsely labels neurons and neurites across the 
entire volume. See also Fig. 3a.  

Supplementary Video 12, Cleared tissue: 4-color embryonic mouse intestine. A 2.1 x 2.5 x 1.5 mm3 
intestinal volume from an E18.5 mouse was immunolabeled and cleared using iDISCO, imaged in the 
cleared tissue diSPIM, and reconstructed by registering the two views and deconvolving them. Orange: 
Alexa Fluor 647 secondary antibody against Tomm20 primary antibody; purple: Alexa Fluor 568 secondary 

antibody against -Tubulin primary antibody; yellow: Alexa Fluor 488 secondary antibody against PECAM-
1 primary antibody; blue: DAPI, highlighting nuclei. See also Fig. 3d.  

Supplementary Video 13, Cleared tissue: 2-color adult mouse intestine. A 2.3 x 0.7 x 0.5 mm3 intestinal 
volume from an adult C57BL/6 mouse was immunolabeled and cleared using iDISCO, imaged in the 
cleared tissue diSPIM, and reconstructed by registering the two views and deconvolving them. Red: Alexa 
Fluor 488 secondary antibody against PECAM-1 primary antibody; Cyan: autofluorescence of tissue. 

Supplementary Video 14, Cleared tissue: 2-color embryonic mouse stomach. A 2.4 x 2.7 x 1.0 
mm3 volume of stomach from an E18.5 mouse was immunolabeled and cleared using iDISCO, imaged in 
the cleared tissue diSPIM, and reconstructed by registering the two views and deconvolving them. Red: 
Alexa Fluor 647 secondary antibody against PECAM-1 primary antibody; Green: Alexa Fluor 568 secondary 

antibody against -Tubulin primary antibody. 

Supplementary Video 15, Cleared tissue: 2-color adult mouse ovary. A 2.6 x 1.9 x 0.5 mm3 volume ovary 
from an adult C57BL/6 mouse was immunolabeled and cleared using iDISCO, imaged in the cleared tissue 
diSPIM, and reconstructed by registering the two views and deconvolving them. Green: Alexa Fluor 488 
secondary antibody against CD11c primary antibody; Red: CF-568 secondary antibody against CD11b 
primary antibody. 

Supplementary Video 16, Three-fold C. elegans embryos expressing GCaMP3 from a myo-3 promoter 
were imaged in the reflective diSPIM on mirrored coverslips (155 volumes, each acquired every 350 
ms). Maximum intensity projections of raw data (left column), traditional (Trad) joint deconvolution 
(second column), Wiener-Butterworth deconvolution (third column), and deep learning reconstruction 
(right column, 100 time points are used for training, and the other 55 time points are used for 
validation) are shown for lateral (top) and axial (bottom) views. See also Fig. 4c.  
 

Supplementary Video 17, U2OS cells expressing mEmerald--Actinin were imaged in the reflective LLS 
microscope on mirrored coverslips (100 volumes, each acquired every 2.5 s). Maximum intensity 
projections of raw data (left column), Wiener-Butterworth deconvolution (middle column), and deep 
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learning reconstruction (right column, 80 time points are used for training, and the other 20 time 
points are used for validation) are shown for lateral (top) and axial (bottom) views. See also Fig. 4f.  

Supplementary Video 18, C. elegans embryos with GFP-histone label were imaged with a free-space 
coupled diSPIM on a glass coverslip. Maximum intensity projections of raw view A (first column), raw 
view B (second column), traditional (Trad) joint deconvolution of view A and view B (third column), 
deep learning reconstruction (fourth column) based on single-view input (i.e., view A) and deep 
learning reconstruction (rightmost column)  based on dual-view inputs (i.e., both view A and view B) 
are shown for lateral (top) and axial (bottom) views. In the deep learning reconstructions, 180 time 
points are used for training, and the other 110 time points are used for validation. hpf: hours post 
fertilization. See also Fig. S4.4 in Supplementary Note 4.  
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Supplementary Fig. 1, Comparing different back projectors when deconvolving 100 nm beads captured 
with the iSIM. a) 100 nm yellow green beads were imaged on the iSIM. Raw data are shown (single planes 
from imaging volumes). b) Deconvolved, higher magnification views of the white rectangle in a) with 
indicated back projector. c) Full width at half maximum (FWHM) values derived from n = 10 beads as 
shown in Fig. 1, standard deviations as well as mean values are shown. Note the considerably more rapid 
descent to the resolution-limited result of the Wiener-Butterworth back projector compared to other back 
projectors. The resolution limit of iSIM is indicated with the horizontal dotted line. d) Line profiles through 
the example bead highlighted by the dotted white rectangle in b), showing that all back projectors yield 

an equivalent estimate of the bead. Scale bars: 2 m in a) and 500 nm in b).  
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Supplementary Fig. 2, Simulated resolution vs. input data SNR curves for different back projectors. a) 
Ten synthetic point sources form the object. b) Blurring the object with the iSIM PSF generates a noise-
free image. c) Gaussian and Poisson noise are added to the noise-free image to generate input images of 
variable SNR. See Methods for further detail on this procedure. d) Images in c) after 1 iteration 
deconvolution with Wiener-Butterworth filter. e) Average bead FWHM values vs. input data SNR are 
plotted for different back projectors. The Wiener-Butterworth filter provides more accurate (i.e. closer to 
the resolution-limit) resolution enhancement than do other choices over a wide range of SNRs.  
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Supplementary Fig. 3, Resolution vs. background noise amplification for different back projectors. a) 
Raw bead data in Supplementary Fig. 1 were deconvolved with different back projectors b) and the 
FHWM of n = 10 beads plotted as a function of the standard deviation of the background (corresponding 
to the dotted rectangular region in a) to assess noise-resolution tradeoffs achievable by the various 
deconvolution methods (central value represents mean and error bars indicate standard deviation). For 
the RLD methods, different noise-resolution combinations were generated by increasing the number of 
iterations, which both amplifies noise and improves resolution. For the classic Wiener filter, different 
noise-resolution combinations were generated by changing the filter parameter. Curves closer to the 
lower left origin of the plot are better as they indicate the ability to achieve a specified resolution with 
lower noise amplification. Deconvolution with the Wiener-Butterworth (WB) back projector offers 
consistently comparable or lower noise amplification at any given resolution than other approaches, i.e., 
despite its fast descent to the resolution limit, WB noise amplification is no worse than with other 
methods. The horizontal dotted line indicates the resolution limit. Scale bar in a) 2 µm.  
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Supplementary Fig. 4, Comparing the Wiener Filter to Richardson Lucy Deconvolution. a) Fixed U2OS 
cells immunolabeled against Tomm20 and imaged with iSIM. Dataset is the same as in Fig. 1f.  b-d) Data 
deconvolved using Wiener filter with k value as indicated. e, f) Richardson Lucy Deconvolution with 
conventional (e) and Wiener-Butterworth (f) back projectors with indicated iteration (it) numbers. g) 
Wiener deconvolution using the Wiener-Butterworth back projector instead of the typical kernel. Blue 
and orange rectangular insets in a-g) show higher magnification views. Line profiles across the 
mitochondrial structure marked with the arrowheads in b, c, e-g are shown in h). At k = 0.1 (b), the Wiener 
filter fails to resolve the boundaries of the mitochondria. Smaller values of k better resolve the 
mitochondria (h) but lead to progressively greater ringing artifacts (red arrows in c-d). Such artifacts are 
also present when using the Wiener-Butterworth filter in Wiener deconvolution, which also fails to fully 
resolve the mitochondrial boundaries. Richardson Lucy Deconvolution (e, f) resolve the mitochondria 

without introducing ringing. Scale bars: 5 m in lower magnification view and 1 m in inset. Experiments 
were repeated on similar datasets at least 2 times, with similar results obtained each time; representative 
data from a single experiment are shown. 
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Supplementary Fig. 5, Negative value analysis. a) Different back projectors in real space (top row) and 
Fourier space (bottom row). See also Fig. 1b. b) Line profiles through regions demarcated by arrowheads 
in a). Butterworth and Wiener-Butterworth back projectors exhibit negative values, highlighted by black 
arrows. c) Alexa Fluor 488 Phalloidin-labeled actin in fixed U2OS cell, as in Supplementary Fig. 3. Raw data 
(top) and Richardson Lucy deconvolution with Wiener-Butterworth back projector prior to negative value 
removal, 1 iteration (bottom) are shown. Negative values are highlighted with arrows and with yellow 
colormap. d) Higher magnification of blue rectangular region in c), showing raw data (left) and 
deconvolved result prior to negative value removal (right). Note that negative values mostly arise in 
background pixels, or in very low intensity pixels adjacent to regions of higher intensity. e) Line profile 
through region demarcated by arrowheads in d, comparing the effect of setting negative valued pixels to 
zero (positivity constraint, blue dotted line) to the deconvolved data without constraint (orange solid line). 
Profiles overlay except for very slight differences near zero on right-hand portion of curve (arrow). Scale 

bars: 1 m (top) and 1/100 nm-1 (bottom) in a), 5 m in c), and 2 m in d). Experiments were repeated on 
similar datasets at least 2 times, with similar results obtained each time; representative data from a single 
experiment are shown. 
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Supplementary Fig. 6, Unmatched back projectors accelerate deconvolution of spherical phantoms. a) 
The ground truth phantom, corresponding blurred and noisy image, and corresponding deconvolved 
reconstructions for traditional, Gaussian, Butterworth, and Wiener-Butterworth (WB) approaches are 
shown (columns) for the middle plane through the phantom. The phantom was blurred with the iSIM PSF 
used in Fig. 1. The signal-to-noise ratio (SNR) in the blurred, noisy image was set at 24, and the number of 
iterations (it) needed for the resolution-limited reconstruction is indicated at the top of each column. 
Middle and third rows show higher magnification views of red dotted rectangle (XY, lateral view) and 
along blue dotted line (XZ, axial view) in top left subimage. b) As in a), except more noise was added to 
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achieve an SNR of 3.2. c, d) Normalized cross-correlation (NCC) of the reconstruction compared to the 
ground truth as a function of iteration number for the different back projectors, and for the different SNR 

levels. Note the faster rise in NCC and subsequent decay for the WB back projector. All scale bars: 1 m. 
See Methods for further details on how phantoms were generated, SNR was determined, and how NCC 
is computed. 
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Supplementary Fig. 7, Unmatched back projectors speed iterative deconvolution convergence in 
confocal, light-sheet, and widefield microscopy. Confocal (a, immunolabeled microtubules), inverted 
selective plane illumination (iSPIM, b, GFP-labeled histones) and widefield (c, phalloidin-labeled actin) 
microscopy images are shown. Note higher magnification insets at lower right corner of each image. Single 
planes from imaging stacks are shown, with iteration number and back projector as indicated. The effect 
of different back projectors is illustrated, with experimental resolution vs. iteration number curves derived 
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by plotting the mean FWHM of 10 microtubule filaments (d) or beads (e and f) vs. iteration number as 
shown in graphs at bottom. Iteration numbers (vertical dotted lines) corresponding to the resolution limit 

(horizontal dotted lines) were used in generating the images, as in Fig. 1d, f. Scale bar: 5 m in main figures 

and 5 m in subsets. Experiments were repeated on similar datasets 2 times for a), c), and at least 3 times 
for b), with similar results obtained each time; representative data from a single experiment are shown.  
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Supplementary Fig. 8, Unmatched back projectors reduce the number of iterations required when 
deconvolving dual-view light-sheet microscopy (diSPIM) data. Nematode embryos expressing GFP-
labeled histones were imaged in diSPIM. Lateral (a) and axial (b) views are shown for raw and deconvolved 
data, with iteration (‘it’) numbers and back projectors as indicated. Higher magnification views c, d) 

correspond to yellow and red rectangular regions in a, b). Scale bars: 10 m in a, b; 2 m in c, d. 
Experiments were repeated on similar datasets at least 3 times, with similar results obtained each time; 
representative data from a single experiment are shown. 
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Supplementary Fig. 9, Schematic of the quad-view SPIM system for acquiring up to 4 volumetric views. 
Dual views (View A and View B) are sequentially acquired by diSPIM using the top two objectives (OBJ A 
and OBJ B). Four views (View A, B, C and D) are acquired with the additional third objective (OBJ C). (a) 
Views A/C are simultaneously acquired when the excitation is introduced from OBJ B; (b) Views B/D are 
simultaneously acquired when the excitation is introduced from OBJ A. Here, x, y, z coordinates are 
defined from the perspective of the coverslip. 
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Supplementary Fig. 10, Quad-view Wiener-Butterworth (WB) deconvolution resolves more detail than 
raw views. Colored arrow pairs highlight fine, GFP-labeled actin structures expressed in Jurkat T cell for 
comparison. View A and View B are collected by the upper 0.8 NA collection lenses; View C and View D 

are collected by the lower 1.2 NA collection lens. Scale bar: 5 m. See also Fig. 2f. Experiments were 
repeated on similar datasets 2 times, with similar results obtained each time; representative data from a 
single experiment are shown. 
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Supplementary Fig. 11, |FT(f) x FT(b)| comparison for traditional, Efficient Bayesian and Wiener-
Butterworth back projectors in Quadruple-view light-sheet microscopy.  |FT(f) x FT(b)|for the bottom 
objective, with traditional (a), Efficient Bayesian (b) and Wiener-Butterworth (c) back projectors. (d) line 
profiles through the images in a, b and c. Scale bars: 1/1000 nm-1. The data that accompany these back 
projectors are shown in Fig. 2f and Supplementary Fig. 10.  
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Supplementary Fig. 12, Schematic of GPU-based 3D registration. a) The inputs to the registration are 
usually two 3D images, referred as the source (S, image to be registered) and target image (T, fixed image). 
The XY and ZY maximum intensity projections  of the input 3D images are used for preliminary alignment  
(only adjusting translation and rotation) and to generate an initial transformation matrix (M0). 
Alternatively, a transformation matrix from a prior time point is used as M0.  A 3D registration loop 
iteratively performs affine transfomations on S (which is kept in GPU texture memory for fast trilinear 
interpolation) based on the transformation matrix M. The correlation ratio between the transformed 
source (S’) and T is used as the cost function. This cost function is minimized with Powell’s method, 
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updating the transformation matrix by optimizing its four affine tranformation components: translation, 
rotation, scale and shear. The optimization is performed serially, optimizing translation; translation and 
rotation (i.e. rigid body registration with 6 degrees of freedom);translation, rotation and scale (9 degrees 
of freedom) ; and finally translation, rotation, scale and shear (12 degrees of freedom). b) Example images 
of zebrafish embryo expressing Lyn-eGFP (see also Fig. 2j) show the iteration optimization scheme and 
corresponding improvements in registration quality (white arrows). Target images are shown in red, 
source images in green, and the overlay in yellow. Images in top two rows are maximum intensity 
projections of lateral (left) and axial (right) views, while images in other rows are single planes from 
3D stacks. See Methods for further details on this process. Scale bars: 20 µm for all images. 
Experiments were repeated on similar datasets at least 3 times for b), with similar results obtained 
each time; representative data from a single experiment are shown. 
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Supplementary Fig. 13, Wiener-Butterworth (WB) deconvolution improves raw single-view data 
acquired on Zeiss Z.1 light-sheet microscope and performs favorably against Huygens deconvolution 
software. 18 hpf zebrafish embryos were mounted (anterior to bottom right, hindbrain in center of the 
field of view), imaged, and the images deconvolved with 1 iteration WB deconvolution (a). Nuclear (GFP, 
green), cranial efferent marker (mRFP, red) and merged low magnification views are shown in (a). Higher 
magnification views (b, c), corresponding to rectangular regions in (a) are also shown, comparing raw 
(left), Huygens (middle), and WB deconvolution (right). Arrows highlight regions of low signal-to-noise 
ratio that are better revealed with WB deconvolution than Huygens. Scale bars: 50 µm in (a); 10 µm in (b, 
c). See also Methods, Supplementary Table 3, Supplementary Video 10. Experiments were repeated on 
similar datasets at least 3 times, with similar results obtained each time; representative data from a single 
experiment are shown. 
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Supplementary Fig 14, Multiview registration and Wiener-Butterworth deconvolution improves 
contrast and resolution isotropy of raw data acquired on Zeiss Z.1 microscope. 18 hpf zebrafish embryos 
were mounted and imaged, acquiring two views of the sample ~30 degrees apart (a). (b) Schematic view 
of imaged region of embryo. (c, d) Lateral and axial planes indicated by the blue dashed rectangle and red 
dashed line in (b) comparing raw views and deconvolved result. Nuclear (green, GFP) and neural crest cell 
(red, mRFP) morphologies are evident. (e, f) Higher magnification views of rectangular regions in (c, d), 
emphasizing improved resolution and contrast in deconvolved result (blue arrows). Scale bars: 50 µm in 
(c, d); 10 µm in (e, f). See also Supplementary Table 3. Experiments were repeated on similar datasets at 
least 3 times, with similar results obtained each time; representative data from a single experiment are 
shown.
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Supplementary Fig. 15, DiSPIM for cleared tissue imaging. Perspective, front, and rear drawings are 
shown. A substantive change from our previous diSPIM includes a movable 3D sample stage (FTP-2000, 
indicated with red asterisk), that allows the illumination and detection systems to remain fixed in space, 
improving imaging of large specimens. Additional changes include post systems (green stars) that support 
the fixed diSPIM head. The objectives can be easily switched between 40x, 0.8 NA water immersion lenses 
(shown here) for imaging live, aqueous samples and 17.9x, 0.4 NA multi-immersion lenses for cleared 
tissue imaging. See Methods for further details.   
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Supplementary Fig. 16, Estimating spatial resolution in the cleared tissue diSPIM. 100 nm yellow-green 
fluorescent beads were deposited on a coverslip, immersed in dibenzyl ether, and imaged in the cleared-
tissue diSPIM. a) xy maximum intensity projections corresponding to raw single views and Wiener-
Butterworth (1 iteration) deconvolution of registered views. Note that data have been rotated so that x, 
y are parallel to the plane of the coverslip and z is normal to the coverslip. b) Axial plane corresponding 
to dotted blue line in a). c) Higher magnification images of single beads. Primed coordinates are from 
perspective of light-sheet collection objective. d) Lateral and axial profiles as indicated in c). Scale bars: 

a), b) 5 m, c) 2 m. Experiments were repeated on similar datasets at least 2 times, with similar results 
obtained each time; representative data from a single experiment are shown. 
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Supplementary Fig. 17, Post-processing pipeline for large, cleared tissue data imaged with diSPIM. Raw 
data acquired by the cleared-tissue diSPIM are saved as multiple 16-bit TIFF files (each less than or equal 
to 4 GB, step 1).  These files contain mixed information, i.e. colors, views, and spatial locations are saved 
as they are recorded in the acquisition sequence. The XY slices are re-organized and re-saved as TIFF stacks 
(each usually a few hundred GB), each corresponding to a distinct spatial tile/color/view (step 2). Tiles for 
each color/view are then combined (with Imaris Stitcher, BigStitcher or custom stitching software written 
in MATLAB) to reassemble blurred, images of the sample (View A and View B, step 3), rotated 45 degrees 
relative to the coverslip. These TIFF stacks at each color and each view are deskewed (transforming from 
stage-scanning mode to light-sheet scanning mode), interpolated (obtaining isotropic pixel resolution), 
rotated (transformed from the objective view to the perspective of coverslip), cropped (saving memory), 
and resaved as TIFF files (e.g.  ~ 2 TB for 4 colors/2 views for the dataset shown in Fig. 3d, step 4). By 
down-sampling View A and View B (typically by a factor of 5) to View A’ and View B’ and registering them, 
a coarse, global transformation matrix MG that maps view B to view A can be calculated based on the 
registration matrix MD that maps view B’ to view A’ (step 5). The coarsely registered View A and View B 
are then split into multiple subvolumes (e.g., ~1000 subvolumes, each 640 x 640 x 640 pixels, step 6). 
Coordinates that define the cropping locations in View B (i.e., PB

k) can be roughly estimated from the 
position in the cropped View A (i.e., PA

k) and the transpose of the coarse, global transformation matrix MG 

(i.e., MG
T). The index k denotes the index of the subvolume and runs from 1 to the total number of 

subvolumes. Each of the cropped tiles in  View B can be coarsely registered to the corresponding cropped 
tile in view A with a new matrix MS

k, derived from the cropping positions (MA
k, MB

k) and global 
transformation matrix MG. Fine registration and joint Wiener-Butterworth deconvolution are then 
performed on the paired subvolumes of View A and View B (step 7). Finally, stitching all deconvolved 
subvolumes results in the final reconstruction (step 8). See Methods for further information. 
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Supplementary Fig. 18, Stitching image tiles with our custom software. (a-b) An example with two 
adjacent tiles (XY slices are shown) with overlap along the vertical Y dimension. Green and red shading 
indicate the regions of overlap. (c) The shift image obtained by computing the Fourier-based phase 
correlation between the two tiles. The location of the peak indicated by the arrow provides information 
on possible shifts between the two tiles. Possible shifts are given by the location of the peak relative to 
the center of the image (located at the intersection of the two dashed lines) denoted  (dx, dy), and 
locations in the other three quadrants (dx, dy - ny), (dx - nx, dy), (dx - nx, dy - ny), where nx and ny are the 
maximum pixel values along the x and y dimensions, respectively. Note that for 3D stacks there are 23 = 8 
possibilities. (d) The two tiles are shifted according to each candidate shift, the overlapping regions 
cropped, and the normalized cross-correlation (NCC) for the cropped regions computed. The shift with 
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the highest NCC is the correct candidate. In this example, (dx, dy - ny) leads to the highest NCC of 0.83, 
which is applied to yield the coarsely overlapped region in yellow. Note that the top tile (a) is pseudo-
colored in red, and the bottom tile (b) is pseudo-colored in green. (e) The cropped tiles are further finely 
registered with our GPU-based registration method for computing sub-pixel shifts, resulting in an NCC of 
0.95. (f) Overlap of the two tiles after sub-pixel shifting is applied. (g) Weight images for the corresponding 
tiles. The intensity is one except in the overlap region, in which the weight of the top tile is linearly 
decreased from 1 to 0, and the weight of the bottom tile is linearly increased from 0 to 1. (h) Merged 
image after linear blending the two tiles by multiplying them with the weight images and then summing 
the resulted weighed images together. Scale bars: 50 µm in (a-c), 30 µm in (d-e), and 100 µm in (f-h). 
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Supplementary Fig. 19, Dual-view Wiener-Butterworth (WB) deconvolution reveals more detail than 
single-view imaging. The single plane shown in Fig. 3d is reproduced, comparing raw single-view data 
versus WB deconvolution, at progressively higher levels of magnification. The increased detail evident in 
the deconvolved results are especially evident at the highest level of magnification, where nuclei (blue, 
yellow arrows) and the hollow interior of blood vessels (white arrows) are revealed in the WB 

deconvolution but not in raw data. Scale bars are at progressive levels of magnification: 300 m, 100 m, 

and 30 m. Experiments were repeated on similar datasets at least 3 times, with similar results obtained 
each time; representative data from a single experiment are shown. 

 

  

Raw WB Decon
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Raw Raw Raw

WB Decon WB Decon WB Decon
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Supplementary Figure 20, Reflective lattice light-sheet (LLS) imaging improves axial resolution. Lateral 
maximum intensity projections (axial depth from coverslip indicated with color bar) derived from 3D LLS 
microscopy of Alexa Fluor 488 immunolabeled microtubules in fixed U2OS cells on (a) conventional glass 
and (b) reflective coverslip. Reconstructions were performed using traditional deconvolution with a 
spatially varying PSF. Axial slices (right columns) correspond to the yellow dotted lines in each panel. (c-
d) Lateral and axial optical transfer functions (OTFs) of the images shown in a) and b), respectively. Note 
that the displayed OTFs were computed by averaging the 2D OTFs over all slices in the stack. Coordinates 
are defined from the perspective of coverslip (i.e. z is normal to the coverslip surface, xy are parallel to 
the coverslip surface). (e) The axial profiles derived from n = 10 microtubule filaments. Means and 
standard deviations (bars) in the plots are shown. Experiments were repeated on similar datasets at least 
2 times for a)-d), with similar results obtained each time; representative data from a single experiment 
are shown. 
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Supplementary Table 1, MSE and SSIM analysis for deconvolution with Traditional, Gaussian, 
Butterworth and Wiener-Butterworth back projectors, on spherical phantoms presented in 
Supplementary Figure 6. 

SNR 3.2 24 

MSE 

Traditional 0.0045 0.0014 

Gaussian 0.0047 0.0015 

Butterworth 0.0044 0.0016 

Wiener-
Butterworth 

0.0038 0.0012 

SSIM 

Traditional 0.7829 0.9147 

Gaussian 0.7719 0.9128 

Butterworth 0.7943 0.9054 

Wiener-
Butterworth 

0.8364 0.9363 

 

SNR: signal-to-noise ratio; MSE: mean squared error; SSIM: structural similarity index; See Supplementary 
Note 4 for detailed definitions of these quantities. All calculations are based on ground truth spherical 
phantoms. All back projectors produce similar results, although the Wiener-Butterworth back projector 
produces the best results as indicated by the smallest MSE value and largest SSIM value.  
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Supplementary Table 2, MSE and SSIM evaluation for deconvolution results of experimental datasets 
based on Gaussian, Butterworth and Wiener-Butterworth back projectors. 

Samples 
U2OS cells 

Mitochondria 
U2OS cells 

Microtubule 
C. elegans 

embryo nuclei 
U2OS cells  

actin 
C. elegans 

embryo nuclei 

Figures/Videos Fig. 1 f  Sup. Fig. 7a Sup. Fig. 7b Sup. Fig. 7c Sup. Fig. 8 

Microscope iSIM Confocal iSPIM Widefield diSPIM 

MSE 

Gaussian 5.71e-6 4.80e-5 4.67e-6 2.23e-4 2.40e-6 

Butterworth 3.21e-5 8.73e-5 1.30e-5 2.38e-4 1.61e-5 

Wiener-
Butterworth 

1.11e-4 7.81e-4 3.99e-5 7.68e-5 1.04e-4 

SSIM 

Gaussian 0.9978 0.9979 0.998 0.8418 0.999 

Butterworth 0.9883 0.9964 0.996 0.8342 0.9932 

Wiener-
Butterworth 

0.9629 0.9594 0.9889 0.9447 0.9612 

 

MSE: mean squared error; SSIM: structural similarity index; See Supplementary Note 4 for detailed 
definitions of these quantities. All calculations are based on using the deconvolution results from the 
traditional RL back projector as ground truth. Note the close correspondence between ground truth and 
deconvolution using other back projectors, indicated by the small values of MSE and high values of SSIM.  
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Supplementary Table 3, Data acquisition and processing details for data shown in Figs. 1, 2, and associated Supplementary Figures 

Samples 
Fixed U2OS 

mitochondria 
Live U2OS 

ER 
Fixed U2OS 
microtubule 

Fixed U2OS 
actin 

C. elegans embryo 
nuclei 

C. elegans embryo 
neuron/nuclei 

Jurkat T cell 
actin 

Zebrafish 
embryo 

Zebrafish embryo 

Figures/Videos 
Fig. 1 e,f 

Sup. Fig. 4 
Sup. Video 3 Sup. Fig. 7a 

Sup. Fig. 5c, 
 7c 

Sup. Fig. 7b Sup. Fig. 8 
Fig. 2 a, b, c, d 
Sup. Video 4, 5 

Fig. 2 e, f, g 
Sup. Video 6 

Fig. 2 j-p 
Sup. Video 7-9 

Sup. Fig. 13 
Sup. Video 10 

Sup. Fig. 14 

Fluorescence Label Alexa-488 ERmoxGFP 
Microtubule-

561 
Alexa-488 GFP-histone 

GFP-membrane, 
mCherry-histone 

GFP-Actin Lyn-eGFP 
GFP-histone, mRFP-cranial  

efferent/neural crest 

Microscope iSIM iSIM Confocal Widefield diSPIM (iSPIM) diSPIM 
quad-view  
light-sheet 

diSPIM Zeiss Lightsheet Z.1 

View number 1 1 1 1 1 2 2 4 2 1 2 

Color number 1 1 1 1 1 2 1 1 2 

Acquisition 

Excitation 488 488 561 XT 640-W 488  488, 561  488 488 488, 561 

Step size x Slices per 
view per color 

0.1 µm x 95 
slices 

0.5 µm x 6 
slices 

0.5 µm x 6 
slices 

0.15 µm x 77 
slices 

1 µm x 40 slices  1 µm x 50 slices  
1 µm x 60  

slices 
1 µm x 80  

slices 
0.427 µm x 600 

slices 
0.430 µm x  
415 slices 

Acquisition time / tp 5 s 0.3 s 332 s 1.8 s 0.5 s 1 s 3.2 s 3.5 s 12 s 24 

Time interval -- 2 s -- -- 60 s 100 s 15 s 30 s 120 s 300 s 

Total time points 1 150 1 1 780  50 30 902 36 35 

Total acquisition time 5 s 300 s 332 s 1.8 s 780 min 83 min 450 s 7.5 h 72 min 175 min 

Image size (each volume after 
interpolation) 

1920 x 1550  
x 95 

1920 x 1550 
x 6 

1024 x 1024 
x 22 

512 x 512 
 x 77 

240 x 360 x 246 280 x 380 x 308 
360 x 338 x 

181 
640 x 2048 x 

496 
1280 x 1280 x 600 1280 x 1280 x 415 

Total data size 
270 M voxels,  
539 MB, 16 bit 

2.5 G voxels, 
5.1 GB, 16 bit 

22 M voxels, 
44 MB, 16 bit 

19 M voxels, 
39 MB, 16 bit 

20M voxels, 
41MB,16 bit 

16.1G voxels, 
31.2GB,16 bit 

6.1 G voxels,  
12.2 GB, 16 bit 

2.5 G voxels,  
5 GB, 16 bit 

1.05 T voxels, 
2.1 TB, 16 bit 

65 G voxels, 
121 GB, 16 bit 

88 G voxels, 
177 GB, 16 bit 

Data 
processing 

Registration time / tp -- -- -- -- -- 1.9 s 6.26 s 16 s 13.4 s -- 36 s 

Deconvolution time  
/ tp 

2.9 s 0.21 s 0.29 s 0.27 s 0.29 s 0.11 s 0.16 s 8.4 s 0.6 s 
14.5 s * 

(128 s for Huygens) 
26 s 

File IO / tp 10.6 s 1.2 s 1.2 s 1.0 s 1.0 s 0.52 s 1.38 s 6.4 s 0.82 s 17 s 32 s 

Total time / tp 13.5 s 1.4 s 1.5 s 1.3 s 1.3 s 2.5 s 7.8 s 30. 8 s 14.8 s 31.5 s 94 s 

Total processing time  13.5 s 211 s 1.5 s 1.3 s 1.3 s 33 min 390 s 7.7 h 445 s 19 min 1.8 h 

The registration and deconvolution for all datasets use our new methods (faster registration, Wiener-Butterworth deconvolution) with GPU implementation on an NVIDIA Quadro M6000 card 
except for the single view Zebrafish embryo dataset acquired with the Zeiss Z.1 light-sheet microscope. For this dataset, Wiener-Butterworth (indicated by *) and Huygens deconvolution methods 
were compared using an NVIDIA Quadro RTX6000. tp: time point.
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Supplementary Table 4, Comparing the performance of different registration methods on time-lapse 
diSPIM datasets. 

Samples 
C. elegans 

embryo nuclei Zebrafish embryo 

Figures Sup. Fig. 8 Fig. 2 j-p 

Image Size 240 x 360 x 246, 41 MB, 16 bit 640 x 2048 x 496, 1.2 GB, 16 bit 

Total Time Point 780 902 

Total Data Size 31.2 GB, 16 bit 2.1 TB, 16 bit 

Time 
Cost 

 
Single Time 

point 
Time series 

Single Time 
point 

Time series 

MIPAV CPU 380 s/tp 366 s/tp 2.1 hr/tp 2.0 hr/tp * 

Niftyreg CPU 405 s/tp 324 s/tp * 2.8 hr/tp 2.6 hr/tp * 

Elastix CPU 53 s/tp 58 s/tp 219 s/tp 201 s/tp 

Elastix GPU 52 s/tp 55 s/tp 211 s/tp 186 s/tp 

Our method GPU 6.1 s/tp 1.9 s/tp 55 s/tp 16 s/tp 

MSE 

Niftyreg CPU 2.7e-04 9.5e-05 

Elastix CPU 3.8e-05 1.2e-05 

Elastix GPU 3.8e-05 1.2e-05 

Our method GPU 2.0e-04 3.1e-05 

SSIM 

Niftyreg CPU 0.9588 0.7272 

Elastix CPU 0.9932 0.9842 

Elastix GPU 0.9932 0.9842 

Our method GPU 0.9711 0.9617 

 

MSE: mean squared error; SSIM: structural similarity index; See Supplementary Note 4 for detailed 
definitions of these quantities; s/tp: second per time point; hr/tp: hour per time point; *: estimated by 10 
time points. MSE and SSIM are calculated based on assuming the registration results from MIPAV are 
ground truth. All registrations were performed on the same computer, equipped with an NVIDIA Quadro 
M6000 card. The NiftyReg provides both CPU and GPU implementations, but we found the GPU 
implementation failed to correctly register the two datasets (i.e., generated unacceptable artifacts for the 
C. elegans embryo nuclei dataset and encountered CUDA errors for the zebrafish embryo dataset, 
probably due to the large data size), so only the results obtained via the CPU implementation are reported.  
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Supplementary Table 5, Sample preparation, data acquisition and processing details for all cleared tissue datasets 

 

Samples 
Adult mouse 

brain 
Embryonic mouse 

intestine 
Adult mouse 

intestine 
Embryonic mouse 

stomach 
Adult mouse ovary 

Figures/Videos in paper 
Fig. 3 a, b, c 

Sup. Video 11 

Fig. 3 d 
Sup. Fig. 19, Sup. 

Video 12 
Sup. Video 13 Sup. Video 14 Sup. Video 15 

Size 

Physical Size 4 x 2 x 0.5 mm3  2.1 x 2.5 x 1.5 mm3  2.3 x 0.7 x 0.5 mm3  2.4 x 2.7 x 1.0 mm3  2.6 x 1.9 x 0.5 mm3  

Number of colors 1 4 2 2 2 

Digital Size, voxels  
(X x Y x Z x color) 

10280 x 5160 x 
1400 x 1 

5586 x 6500 x 
3930 x 4 

6221 x 2008 x 1516 
x 2 

6370 x 7226 x 2850 
x 2  

6820 x 6100 x 1460 
x 2  

Sample 
Preparation 

Primary antibody Rabbit anti-RFP 

Mouse anti-α-
Tubulin, 

Rabbit anti-
Tomm20, 

Goat anti-PECAM-
1 

 
Goat anti-PECAM-1 

Mouse anti 
αTubulin, 

Goat anti-PECAM-1 

Mouse anti-CD11c 
(Integrin aX), 

Rat anti CD11b 

Secondary antibody 
Goat anti-Rabbit 
IgG(H+L) Alexa-

555 

Donkey anti-Goat 
Alexa-488, 

Donkey anti-
Mouse Alexa-568, 

Donkey anti-
Rabbit Alexa-647, 

DAPI (dye) 

Donkey anti-Goat 
Alexa-488 

Donkey anti-Mouse 
Alexa-568, 

Donkey anti-Goat 
Alexa-647 

Goat anti-Mouse 
IgG1 Alexa-488, 
Donkey anti-Rat 

CF-568 

Chemical Reagent 
TritonX, Dichloromethane (DCM), Dibenzyl Ether (DBE), Tetrahydrofuran (THF), Methanol, Hydrogen 
Peroxide, Krazy Glue, Glass slide 

Acquisition 

Views 2 2 2 2 2 

Excitation Lasers 488 405, 488, 561,637 405, 488 561, 637 488, 561 

Camera ROI (slice size) 2048 x 2048  2048 x 2048 2048 x 2048 2048 x 2048  2048 x 2048 

Tile number (y x z) 3 x 1 3 x 3 1 x 1 4 x 2 3 x 1 

step size x Slices (view/color/tile) 2 µm x 1600 slices 2 µm x 1300 slices 1 µm x 2200 slices 2 µm x 1200 slices 2 µm x 1300 slices 
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exposure time / slice 5 ms 10 ms 5 ms 10 ms 10 ms 

acquisition time / tile 51 s 239 s 220 s 104 s 109 s 

Total acquisition Time (Step 1)  154 s 36 min 220 s 832 s 327 s 

Post 
processing 
and time 

cost 

Step 2 File I/O, splitting  0.5 h 2.5 h 0.3 h 1.2 h 0.8 h 

Step 3 
(Imaris 

Stitcher) 

File converting  1.6 h 4.8 h NA 2.4 h 2 h 

Stitching 0.2 h 0.8 h NA 0.4 h 0.4 h 

File I/O and converting 2.5 h 30 h NA 14 h 8.1 h 

Step 3 
(ImageJ 

BigStitcher) 
Stitching and File I/O 0.8 h 7.0 h NA 3.4 h 1.2 h 

Step 3 
(MATLAB 
Stitcher) 

Stitching and File I/O 0.6 h 2.7 h NA 2.7 h 1.0 h 

Step 4 
File I/O, deskew, 

interpolation, rotation  
4 h 24 h 2.2 h 11 h 6.6 h 

Step 5 Coarse reg 0.1 h 0.2 h 0.1 h 0.2 h 0.2 h 

Step 6 Cropping subvolumes 3.5 h 24 h 1.4 h 12 h 5.4 h 

Step 7 Fine Reg / Decon  3.4 h 24 h 1.4 h 12 h 5.3 h 

Step 8 Stitching 5 h 30 h 2.8 h 12 h 10 h 

Total time (with Imaris Stitcher)* 21 h 140 h 8.2 h 65 h 39 h 

 

Overlap was in the 10-20% range in y and z for all tiling experiments, where y is defined as the lateral direction that points towards the front of 
the microscope and z is defined perpendicular to the coverslip. The total acquisition time is computed by multiplying the acquisition time cost for 
each tile by the number of tiles. This omits the time cost for moving between tiles. Since moving between tiles was done manually, we estimate 
an additional time cost of ~30 s per tile. This timing is negligible compared to the total acquisition time we report, and we note that it could be 
significantly reduced by using the microscope control software (µManager) to perform multi-tile acquisition, a capability that exists within the 
software. *'Total time' values are based on the Imaris Stitcher values; during the revision process of the manuscript we investigated the use of our 
own MATLAB-based Stitcher and BigStitcher which are both substantially faster than Imaris Stitcher. Please also see accompanying schematic, 
Supplementary Fig. 17. 
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Supplementary Table 6, Antibodies and reagents for cleared tissue preparation 

Primary antibody  

Name Vendor Catalog Related Samples 

Rabbit anti-RFP Rockland 600-401-379 adult mouse brain 

Mouse anti-α-Tubulin 
Thermo Fisher 

Scientific 
322500 

embryonic mouse stomach, 
embryonic mouse intestine 

Rabbit anti-Tomm20 Abcam ab78547 adult mouse intestine 

Goat anti-PECAM-1 R&D Systems AF3628 
embryonic mouse stomach, 
embryonic mouse intestine, 

adult mouse intestine 

Mouse anti-CD11c (Integrin 
αX) 

Santa Cruz sc-398708 adult mouse ovary 

Rat anti-CD11b R&D Systems MAB1124 adult mouse ovary 

Secondary antibody/counter stain 

Name Vendor Catalog Related Samples 

Goat anti-Rabbit IgG (H+L) 
Alexa-555 

Invitrogen A27039 adult mouse brain 

Donkey anti-Goat IgG (H+L) 
AffiniPure F(ab')₂ Fragment  

Alexa-488 

Jackson 
ImmunoResearch 

705-546-147 
embryonic mouse intestine, 

adult mouse intestine 

Goat anti-Mouse IgG1 Alexa-
488 

Thermo Fisher 
Scientific 

A21121 adult mouse ovary 

Donkey anti-Rat IgG (H+L) CF-
568 

Sigma 
SAB-

4600077 
adult mouse ovary 

Donkey anti-Mouse IgG (H+L) 
Alexa-568 

Thermo Fisher 
Scientific 

A10037 
embryonic mouse stomach, 
embryonic mouse intestine 

Donkey anti Rabbit IgG (H+L) 
AffiniPure F(ab')₂ 

Alexa-647 

Jackson 
ImmunoResearch 

711-606-152 embryonic mouse intestine 

Donkey anti-Goat IgG(H+L) 
Alexa-Plus-647 

Thermo Fisher 
Scientific 

A32849 embryonic mouse stomach 

DAPI 
Thermo Fisher 

Scientific 
D1306 embryonic mouse intestine 

Chemical Reagent 

Name Vendor Catalog Purpose 

TritonX Sigma T9284 stain/wash buffer 

Dichloromethane (DCM) Sigma 270997 Delipidation 

Dibenzyl Ether (DBE) Sigma 108014 Clearing 

Tetrahydrofuran (THF) Sigma 186562 Dehydration 

Methanol Sigma 179957 Pre-treatment 

Hydrogen Peroxide Sigma H1009 Bleaching 

Krazy Glue 
krazyglue.com 

(Elmer's Products) 
KG385 Sample mounting 

Glass slide Globe Scientific Inc. 1380-20 Sample mounting 
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Supplementary Table 7, Data acquisition and processing details for data imaged with reflective diSPIM 
and reflective LLS presented in Fig. 4 

Samples 
C. elegans embryos 
expressing GCaMP3 

U2OS cells expressing 
mEmerald-α-Actinin 

Figures/Videos 
Fig. 4 c 

Sup. Video 16 
Fig. 4f 

Sup. Video 17 

Microscope Reflective diSPIM Reflective LLS 

View number 
2 normal views 
 2 mirror view 

1 normal view 
 1 mirror view 

Color number 1 1 

Acquisition 

Slices per view 60 300 

Exposure per slice 5 ms 8 ms 

Axial step size 1 µm 0.4 µm 

acquisition time  
(each time point, all 
views) 

0.3 s 2.4 s 

time interval 0.35 s 2.5 s 

total time points 155 100 

total acquisition 
time 

~54 s ~250 s 

Image size (after interpolation) 360 x 310 x 360 x 2 425 x 540 x 256 x 2 

Total data size 
12.5 G voxels, 
25 GB, 16 bit 

12 G voxels, 
24 GB, 16 bit 

Data processing 
(registration 

/deconvolution) 

Registration time 
(each time point) 

10.6 min @ CPU 
6.8 s @ GPU  

16 min @ CPU 
12 s @ GPU 

Deconvolution time 
(each time point) 

14 min @ Trad Decon 
1.4 min @ WB Decon 

2 h @ Trad Decon 
 8 min @ WB Decon 

total deconvolution 
time (all time points) 

36 h @ Trad Decon 
3.6 h @ WB Decon 

8.3 day @ Trad Decon 
13.3 h @ WB Decon 

Deep learning 
training volumes 

100 80 

Data processing 
(deep learning) 

Deep learning 
training time  

10.8 h 8.2 h 

Deep learning 
validation time  

1.68 s 2 s 

Total processing 
time for (all time 
points)  

260 s 200 s 
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Supplementary Note 1, Using an unmatched projector/back projector 

We can represent a general, linear shift-invariant imaging model by a linear system of equations  

  𝒊 = 𝐹𝒆,     (1) 

where the vector 𝒊 represents the measured image data, the vector 𝒆 represents the desired deconvolved 
estimate image, and the matrix 𝐹 represents convolution with a point spread function 𝑓. If the 1D image 
vectors are formed by concatenating the rows of the images into single column vectors, then the matrix 
𝐹 is very structured: it is block circulant with circulant blocks (BCCB). 

The modified Richardson-Lucy algorithm 

𝑒𝑘+1 = 𝑒𝑘 {[
𝑖

𝑒𝑘∗𝑓
] ∗ 𝑏}    (2)  

iteratively updates the estimate of the deconvolved image by comparing the convolution of that estimate 
with the measured image i and convolving their ratio with a “back projection” kernel b to determine a 
multiplicative correction factor.  

Equation (2) can be recast in this matrix-vector notation using 

𝑒𝑘+1 = 𝑒𝑘 {𝐵 [
𝑖

𝐹𝑒𝑘
]},     (3)  

where the division operation in square brackets is performed elementwise and the backprojection matrix 
𝐵 implements convolution with a backprojection kernel 𝑏. The matrix 𝐵 is also BCCB. Note that this form 
of the R-L equation without normalizing prefactors assumes the PSF 𝑓 and backprojection kernel 𝑏 are 
both normalized to sum to one, which preserves counts across iterations. The standard R-L equation 
would set 𝐵 = 𝐹𝑇, where 𝑇 denotes transpose, which corresponds to convolution with a flipped version 
of the PSF 𝑓 (or equivalently to convolution with the PSF 𝑓itself if 𝑓 is symmetric). 

In the context of image reconstruction in medical imaging, where the R-L algorithm is widely used 
under the name Maximum Likelihood Expectation Maximization (MLEM), Zeng and Gullberg showed that 
the R-L algorithm can be accelerated through careful choice of the backprojection matrix 𝐵1. Specifically, 
the R-L algorithm was shown to move more rapidly toward desirable reconstructed images when the 
eigenvalue spectrum of the matrix product 𝐵𝐹 is flatter (i.e., the eigenvalues cluster closely together). 
Zeng and Gullberg discuss additional constraints on the back projector 𝐵 that guarantee convergence to 
the same solution as when using the traditional matched back projector 𝐵 = 𝐹𝑇 . However, these 
constraints are mainly important for the additional class of Landweber iterations they study. R-L 
algorithms are rarely run to convergence since that yields unacceptably noisy solutions. Moreover, as in 
Zeng and Gullberg, we truncate any negatives that arise in the modified R-L iteration at each iteration, a 
step that invalidates any analysis based on these convergence constraints.  

Thus, the key result from Zeng and Gullberg that we invoke (and validate) in this paper is that 
deconvolution can be accelerated by choosing the backprojection matrix 𝐵  such that the eigenvalue 
spectrum of the matrix product 𝐵𝐹 is as flat as possible. 

It is straightforward to determine the eigenvalue spectrum of 𝐵𝐹. Both 𝐵 and 𝐹 are BCCB and 
circulant matrices can be diagonalized by the discrete Fourier transform (DFT) matrix:  

𝐵 = 𝑄𝐷𝐵𝑄
†,     (4)  
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where 𝑄  is a matrix representing application of the DFT and 𝑄†  is its conjugate transpose2. 𝐷𝐵  is a 
diagonal matrix whose diagonal elements are given by the Fourier transform of the backprojection kernel 
𝑏. These diagonal elements are also the eigenvalues of 𝐵. Thus 

𝐷𝐵 = Diag[DFT(𝑏)],      (5)  

where the elements of DFT(b) are appropriately organized into a 1D vector. This is a formal way of 
expressing the well-known fact that convolution in the spatial domain is equivalent to multiplication in 
the Fourier domain. 

Likewise, for the forward projection matrix 𝐹 we have 

𝐹 = 𝑄𝐷𝐹𝑄
†,      (6)  

where 

𝐷𝐹 = Diag[DFT(𝑓)].            (7)  

Note that the DFT of the system PSF is the system optical transfer function (OTF). I.e, 

𝑂𝑇𝐹𝑓 ≡ DFT(𝑓).     (8)  

The product 𝐵𝐹 is thus given by  

𝐵𝐹 = 𝑄𝐷𝐵𝑄
†𝑄𝐷𝐹𝑄

†.     (9)  

 
Invoking the fact that the DFT matrix is unitary, i.e., 𝑄𝑄† = 𝑄†𝑄 = 𝐼, we have  

𝐵𝐹 = 𝑄𝐷𝐵𝐷𝐹𝑄
†.     (10)  

We see that 𝐵𝐹  is also a circulant matrix since it is diagonalized by the DFT and that its eigenvalue 
spectrum is given by the product of the diagonal matrices 𝐷𝐵𝐷𝐹. Thus, the eigenvalue spectrum of 𝐵𝐹 is 
given by the product DFT(𝑏)DFT(𝑓) , the elementwise product of the DFTs of the kernels used in the 
forward and back projector steps of the algorithm. 

Let’s consider a few cases: 

1. In the usual case with a symmetric PSF and matched back projector, we have 𝐵 = 𝐹𝑇 = 𝐹 and so 

the eigenvalues of 𝐵𝐹 will be given by [DFT(𝑓)]2 = 𝑂𝑇𝐹𝑓
2, the squared OTF of the system. This is 

not especially flat.  
2. In previous efforts to accelerate R-L based deconvolution3, the kernel 𝑏 has been constructed in such 

a way that it is narrower than the kernel 𝑓. For Gaussian-like kernels, this makes DFT(𝑏) broader 
and higher than DFT(𝑓)  and thus DFT(𝑏)DFT(𝑓) > [DFT(𝑓)]2 . This gives a flatter eigenvalue 
spectrum than in case 1, consistent with the finding of faster production of the resolution-limited 
result.  

3. The flattest possible eigenvalue spectrum for 𝐵𝐹 would be obtained if DFT(𝑏) ∼
1

DFT(𝑓)
=

1

OTFf
. This 

implies we should construct the backprojection kernel 𝑏  such that the inverse of its DFT 
approximates the system OTF. Obviously 𝑂𝑇𝐹𝑓  goes to zero or falls below the noise floor at some 

point for most PSFs 𝑓, but this suggests using a kernel corresponding to an inverse OTF filter with 
appropriate apodization. This is the basis for the Wiener-Butterworth kernel studied in this paper.  
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Supplementary Note 2, Generating unmatched back projectors 

Supplementary Note 1 discusses how acceleration of the R-L algorithm can be achieved by using an 
unmatched back projector that provides a flatter product of the Fourier transforms of forward and 
backwards projectors, |𝐷𝐹𝑇(𝑏)𝐷𝐹𝑇(𝑓)|. This section describes how we create such unmatched back 
projectors, including the Gaussian back projector, Butterworth back projector and Wiener-Butterworth 
back projector. We also provide the parameters that we use in implementing these filters in our 
manuscript. Consider a fixed coordinate system (𝑥, 𝑦, 𝑧)  in 3-dimensional (3D) space and the 
corresponding spatial frequency coordinate system (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧) in the 3D Fourier domain. For simplicity, 

we will also assume the long axis of the forward projector aligns along the axial direction, i.e. along the 𝑧-
axis.  

Given a forward projector 𝑓(𝑥, 𝑦, 𝑧), the traditional R-L algorithm defines the back projector as: 

𝑏(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧),      (11)  

where 𝑓 is the transpose of 𝑓.  

If we transition to discrete notation, the transpose can be expressed as  

𝑏(𝑖, 𝑗, 𝑘) = 𝑓(𝑖, 𝑗, 𝑘) = 𝑓(𝑀 − 𝑖 + 1,𝑁 − 𝑗 + 1, 𝐿 − 𝑘 + 1), 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑀,𝑁, 𝐿   (12)   

where the 𝑀,𝑁 and 𝐿 denote the dimensions of the 3D image and 𝑖, 𝑗 and 𝑘 are the voxel indices. 

In the Fourier domain, the discrete Fourier transform of the back projector is the conjugate of the discrete 
Fourier transform of the forward projector: 

𝐵𝑇𝑟𝑎𝑑(𝑘𝑥, 𝑘𝑦 , 𝑘𝑧) = 𝐷𝐹𝑇(𝑏) = 𝑐𝑜𝑛𝑗[𝐷𝐹𝑇(𝑓)].   (13)  

1. Gaussian back projector 

The Gaussian back projector uses a 3D Gaussian function with full width at half maximum (FWHM) 
matching the FWHM of the forward projector (i.e. the microscope PSF). The 3D normal Gaussian 
distribution is defined as 

ℎ(𝑥, 𝑦, 𝑧) = 𝑎 exp (−
𝑥2

2𝜎𝑥
2 −

𝑦2

2𝜎𝑦
2 −

𝑧2

2𝜎𝑧
2),    (14)  

with 𝑎 =
1

(2𝜋)3/2𝜎𝑥𝜎𝑦𝜎𝑧
, and 𝜎𝑥, 𝜎𝑦 , 𝜎𝑧 are the standard deviations in 3 dimensions, respectively. 

The coefficient 𝑎 can be omitted since the back projector is normalized before deconvolution, and the 
relationship between the standard deviation and FWHM for a Gaussian distribution is: 

𝜎𝑥 = 𝐹𝑊𝐻𝑀𝑥/(2√2 ln 2)     (15)  

𝜎𝑦 = 𝐹𝑊𝐻𝑀𝑦/(2√2 ln 2)      (16)  

𝜎𝑧 = 𝐹𝑊𝐻𝑀𝑧/(2√2 ln 2) .    (17)  

Then the Gaussian back projector is derived as: 
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 𝑏𝐺𝑎𝑢𝑠𝑠(𝑥, 𝑦, 𝑧) = exp( −
4 ln 2 ∙ 𝑥2

𝐹𝑊𝐻𝑀𝑥
2 −

4 ln2 ∙ 𝑦2

𝐹𝑊𝐻𝑀𝑦
2 −

4 ln 2 ∙ 𝑧2

𝐹𝑊𝐻𝑀𝑧
2
), (18) 

 

where 𝐹𝑊𝐻𝑀𝑥 , 𝐹𝑊𝐻𝑀𝑦 , 𝐹𝑊𝐻𝑀𝑧  are the FWHMs of the Gaussian back projector in x, y, and z, 

respectively, and are equivalent to the FWHMs of 𝑓 and  𝑓. 

Using the same sized FWHMs as 𝑓  in the spatial domain implies that the Gaussian back projector 
possesses a greater spatial frequency extent i than the traditional back projector in the Fourier domain, 
and as such results in a slightly flatter spectral product |𝐷𝐹𝑇(𝑏)𝐷𝐹𝑇(𝑓)| as shown in Figure S2.1. This 
explains why we observe an acceleration with a Gaussian back projector compared to the traditional R-L 
back projector.  
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Figure S2.1, Comparison of traditional and Gaussian back projectors with equivalent FWHM a), b) Lateral 
and axial slices through the traditional (a) and Gaussian (b) back projectors for iSIM, shown in real space 
(left, b), Fourier space (middle, |FT(b)|) and the spectral product of forward and back projectors (right, 
|FT(b) FT(f)|). c) Lateral (x, kx) line profiles through the center of the slices showing in a, b (green dashed 
lines), comparing back projectors in real space (left), Fourier space (middle), and the spectral product 
(right). d) Lateral (y, ky) line profiles through the center of the slices shown in a, b (cyan dashed lines), 
comparing back projectors in real space (left), Fourier space (middle), and the spectral product in Fourier 
space (right). e) Axial (z or kz) profiles of the slices shown in a, b, comparing back projectors in real space 
(left), Fourier space (middle), and the spectral product (right). Note the left profiles correspond to line 
profiles through the center of the corresponding images in a, b (red dashed lines),  while the middle and 
right profiles are maximum intensity projections in the kx direction as indicated by the red arrows (‘Proj’) 
in a, b, to capture the full extent of the spatial frequencies  in the axial direction. Scale bars: a, b) 1 µm in 
left column, 1/100 nm-1 in middle, right columns. 

2. Butterworth back projector 

To make the spectral product |𝐷𝐹𝑇(𝑏)𝐷𝐹𝑇(𝑓)| flatter, one possibility is to  make the discrete Fourier 
transform of the back projector 𝐷𝐹𝑇(𝑏)  broader (which is equivalent to making the back projector 
narrower in the spatial domain). An extreme example is the Dirac delta function, i.e.  the narrowest 
positive distribution in the spatial domain, which produces a uniform distribution in the Fourier domain. 
However, all microscopes function as low-pass filters, allowing only frequencies lower than the resolution 
limit to be transferred to the image. If the delta function is used as a back projector, higher spatial 
frequencies would be introduced into the image, thus boosting the noise during the R-L iteration as shown 
in Figure S2.2. To suppress this noise, we employ a Butterworth low-pass filter to ensure that the 
frequency contribution of the back projector remains within the resolution limit of the microscope. The 
one- dimensional Butterworth filter is defined as: 

 
𝐻(𝑘) =

1

√1 + 𝜀2𝑘2𝑛
 

 
(19) 

where 𝑘 is the spatial frequency in the Fourier domain, 𝑛 is the order of the filter and 𝜀 is the maximum 
passband gain. 

To obtain a 3D Butterworth filter, we decompose 𝑘 into 3 components, accounting for the microscope’s 
resolution limit in each dimension: 

 𝑘 =  √(
𝑘𝑥
𝑘𝑐𝑥
)
2

+ (
𝑘𝑦

𝑘𝑐𝑦
)

2

+ (
𝑘𝑧
𝑘𝑐𝑧
)
2

, 

 

(20) 

where the  𝑘𝑐𝑥, 𝑘𝑐𝑦 , 𝑘𝑐𝑧  are the cutoff frequencies corresponding the the resolution limit in the xyz 

dimensions, respectively. We then define the the Butterworth back projector in the Fourier domain, 
𝐹𝑇(𝑏),as: 

 

𝐵𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ(𝑘𝑥, 𝑘𝑦 , 𝑘𝑧) =
1

√1 + 𝜀2 [(
𝑘𝑥
𝑘𝑐𝑥
)
2

+ (
𝑘𝑦
𝑘𝑐𝑦

)
2

+ (
𝑘𝑧
𝑘𝑐𝑧
)
2

]

𝑛
 

 

(21) 
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In the spatial domain, the Butterworth back projector can be obtained by an inverse Fourier 
transformation: 

𝑏𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ(𝑥, 𝑦, 𝑧) = 𝐹𝑇
−1[𝐵𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ(𝑘𝑥, 𝑘𝑦 , 𝑘𝑧)].   (22)  

The spectral intensity at the cutoff frequency is  

 

𝛽 = 𝐵𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ( 𝑘𝑐𝑥 , 0, 0) = 𝐵𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ(0, 𝑘𝑐𝑦 , 0)

= 𝐵𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ(0, 0, 𝑘𝑐𝑧)      =
1

√1 + 𝜀2
. 

(23) 
𝛽  is also referred to as the cutoff gain, i.e. it represents the spectral amplitude that is passed at the 
microscope’s resolution limit.  

The Butterworth back projector 𝐵𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ(𝑘𝑥, 𝑘𝑦 , 𝑘𝑧) (or 𝑏𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ(𝑥, 𝑦, 𝑧) in the spatial domain) 

can thus be characterized  by the cutoff gain 𝛽 and the filter order . 𝛽 is often set as a small value that 
suppresses high frequencies beyond the resolution limit, thus reducing the noise in the deconvolution 
(Figure S2.2). The filter order 𝑛 is related to the transition slope at the cutoff. Ideally the transition slope 
would be as steep as a “brick wall”; a higher filter order brings the filter closer to an ideal “brick wall”. In 
practice however, this ideal transition slope is undesirable as it produces excessive ringing in the spatial 
domain.  
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Figure S2.2, Delta and Butterworth back projectors and corresponding R-L deconvolution. a) Lateral 
slices through the Dirac delta (left) and Butterworth (right) back projectors for iSIM, shown in real space 
(top, b), Fourier space (middle, |FT(b)|) and the spectral product of forward and back projectors (bottom, 
|FT(b) FT(f)|). b) Lateral (kx) line profiles through the center of the image in a, middle row, comparing 
back projectors in Fourier space. The cutoff frequency 𝑘𝑐𝑥  is indicated by a dotted line. c) Lateral (kx) line 
profiles through the center of the image in a bottom row, comparing the spectral product using the two 
different back projectors. d) R-L deconvolution of images of U2OS cells immunolabeled by Tomm20 Alexa-
Fluor 488 and imaged with iSIM. Single planes from imaging stacks are shown, with iteration number (it) 
and back projector as indicated. e) Higher magnification views, corresponding to the red rectangular 
region in d, highlighting the additional noise that results when using the delta function back projector. 
Note this noise is suppressed when using the Butterworth back projector. Here we used 𝛽 = 0.001 and 
𝑛 = 8 for the Butterworth back projector. Scale bars: a) 1 µm in top row, 1/100 nm-1 in middle and bottom 
rows; d) 10 µm; e) 1 µm. Experiments were repeated on similar datasets at least 2 times for d) and e), 
with similar results obtained each time; representative data from a single experiment are shown. 

3. Wiener-Butterworth back projector 

Finally, the choice that maximally flattens the spectral product |𝐷𝐹𝑇(𝑏)𝐷𝐹𝑇(𝑓)|  , sets the discrete 
Fourier transform of the back projector equal to the inverse of the discrete Fourier transform of the 
forward projector, i.e. 𝐷𝐹𝑇(𝑏) ≈ 1/ 𝐷𝐹𝑇(𝑓). Obviously 𝐷𝐹𝑇(𝑓) goes to zero at some point, but one 
could consider 

 
𝐵𝑊𝑖𝑒𝑛𝑒𝑟(𝑘𝑥, 𝑘𝑦 , 𝑘𝑧) =

𝐶𝑜𝑛𝑗[𝐷𝐹𝑇(𝑓)]

[𝐷𝐹𝑇(𝑓)]2 + 𝛼
 , 

 

(24) 

where  𝛼 is a small value that prevents the denominator from becoming zero. This is like a classic Wiener 
filter that seeks to invert the forward projector 𝐷𝐹𝑇(𝑓) out to some point and then rolls off gently. 
However, when using such a filter, the results are highly sensitive to the choice of 𝛼. The Wiener filter 
either fails to recover the best resolution possible with the microscope (if 𝛼  is too large) or amplifies the 
noise and introduces more ringing artifacts (if 𝛼 is too small, see also Supplementary Fig. 4). We would 
ideally circumvent these issues by combining the Wiener and Butterworth filters, obtaining a back 
projector that enables a flat spectral product but also suppresses spatial frequencies beyond the 
resolution limit. This is the Wiener-Butterworth back projector we use in our paper:  

 𝐵𝑊𝐵(𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧) = 𝐵𝑊𝑖𝑒𝑛𝑒𝑟(𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧)  𝐵𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ(𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧)

=
𝐶𝑜𝑛𝑗[𝐷𝐹𝑇(𝑓)]

[𝐷𝐹𝑇(𝑓)]2 + 𝛼
 

1

√1 + 𝜀2 [(
𝑘𝑥
𝑘𝑐𝑥
)
2

+ (
𝑘𝑦
𝑘𝑐𝑦

)
2

+ (
𝑘𝑧
𝑘𝑐𝑧
)
2

]

𝑛
. 

(25) 
The spatial analog of this filter can be derived by taking an inverse Fourier transform: 

 𝑏(𝑥, 𝑦, 𝑧)𝑊𝐵 = 𝐹𝑇
−1[𝐵𝑊𝐵(𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧)]. (26) 

 

Again, we define the cutoff gain as 

 
𝛽 = 𝐵𝑊𝐵(𝑘𝑐𝑥 , 0, 0) = 𝐵𝑊𝑖𝑒𝑛𝑒𝑟(𝑘𝑐𝑥 , 0, 0)  

1

√1 + 𝜀2
, 

 
(27) 
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so that as before 𝛽 represents the spectral amplitude that is passed at the microscope’s resolution limit. 

Given a forward projector 𝑓, we now need to determine three parameters to fully specify the Wiener-
Butterworth back projector: 𝛼, 𝛽  and 𝑛 . 𝛼  is a small value used to ensure that inverting the forward 
projector does not result in division by zero. As with the Butterworth back projector, the cutoff gain 𝛽 is 
set at a small value that suppresses spatial frequencies beyond the resolution limit, and the filter order 𝑛 
is used to set the transition slope at the cutoff frequency. We’ll discuss these parameters in more detail 
in the next section. 

4. Parameter configuration 

1) The cutoff frequency 

The cutoff frequency is usually defined as the highest possible spatial frequency passed by the microscope. 
We have yet to encounter a microscope capable of achieving this cutoff frequency, so instead we define 
the cutoff frequency as the FWHM of the PSF. Although in principle this choice may slightly underestimate 
the highest resolution achieved by the microscope, in practice we find that it avoids noise amplification 
at the highest spatial frequencies while still yielding high quality reconstructions.  

2) Parameter 𝛼  

As shown in equation (25), 𝛼 is used to invert 𝐷𝐹𝑇(𝑓) in the first, Wiener filter term. We set 𝛼 at a value 
that slightly boosts the spatial frequencies past the cutoff frequency, relying on the Butterworth filter 
term to suppress noise. In our experience, good results are obtained if 𝛼 is set in the range 0.001~0.05 
(Table S2.1).  

3) Parameter 𝛽  

𝛽 defines the spectral amplitude at the cutoff frequency or resolution limit, and in our experience good 
results are obtained when this is set at a small value in the range from 0.001 to 0.05. Alternatively one 
can also set 𝛽  based on the theoretical cutoff of the traditional R-L back projector 

𝐵(𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧)𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
, or 𝐷𝐹𝑇(𝑓): 

 𝛽 = (𝐵𝑇𝑟𝑎𝑑(𝑘𝑐𝑥, 0, 0) + 𝐵𝑇𝑟𝑎𝑑(0, 𝑘𝑐𝑦 , 0) + 𝐵𝑇𝑟𝑎𝑑(0, 0, 𝑘𝑐𝑧))/3. (28) 

 

In this case, 𝛽 is an average of the 3 cutoff gains corresponding to each dimension of the traditional back 
projector. All 𝛽 values used for datasets in our paper are listed in Table S2.1.  

4) Parameter 𝑛 

The filter order 𝑛  is related to the flatness of the frequency distribution within the passband of the 
Butterworth filter. A higher 𝑛 would result in a flatter frequency response until the cutoff. However, as 
mentioned in previous sections, a higher 𝑛 would also make the transition slope closer to a hard cutoff 
like a “brick wall”, causing the ringing artifacts in the spatial domain. In contrast, a lower order 𝑛 would 
make the transition slope gentler and sacrifice some spectral amplitude at spatial frequencies close to the 
cutoff. This choice in turn would require more iterations in R-L deconvolution. To empirically investigate 
this issue, we designed Wiener-Butterworth back projectors with different 𝑛 and tested them on an image 
acquired by iSIM. As shown in Figure S2.3, the deconvolution with 𝑛 = 8 only needs 1 iteration, while 
using smaller 𝑛 requires more iterations for similar image quality. 
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We used 𝑛 in the range 4 - 10 for all datasets presented in our paper (Table S2.1). For the datasets 
acquired by single- or dual- view microscopes, 𝑛 = 8 or 10 enables R-L deconvolution with 1 iteration. 
For the datasets acquired by quad-view light-sheet microscopy, reflective diSPIM and reflective lattice 
light-sheet microscopy, the deconvolution is more sensitive to the ringing caused by a higher filter order. 
We used  𝑛 = 5 , producing a resolution-limited result with only 2-5 iterations. We note that even using 
this relatively conservative choice, Wiener-Butterworth deconvolution is still 10-15x faster than 
traditional R-L deconvolution. 

 

 

Figure S2.3, Comparing Wiener-Butterworth back projectors with different filter orders. a) Lateral (kx) 
line profiles through the central slice of Wiener-Butterworth back projector, for different filter orders. b) 
Lateral (kx) line profiles through the center of the spectral products |𝐷𝐹𝑇(𝑏)𝐷𝐹𝑇(𝑓)| with filter orders 
as in a. c) R-L deconvolution results of images of U2OS cells immunolabeled by Tomm20 Alexa-488 and 
imaged with iSIM. Single planes from imaging stacks are shown, with filter orders and iteration number 
(it) as indicated. d) Higher magnification views, corresponding to the red rectangular region in c. Scale 
bars: c) 10 µm; d) 1 µm. Experiments were repeated on similar datasets at least 2 times for c) and d), with 
similar results obtained each time; representative data from a single experiment are shown. 
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Table S2.1, Parameters for all datasets used in Butterworth and Wiener-Butterworth Deconvolution  

 Butterworth Wiener-Butterworth 

Figures/Videos 
Microscop

e 
𝜷 𝒏 

Iteration 
Number 

𝜶 𝜷 𝒏 
Iteration 
Number 

Fig. 1 e, f, 
Sup. Fig. 4f 
Sup. videos 1-3 

iSIM 0.001 8 4 0.001 0.001 8 1 

Sup. Fig. 5c, 7c Widefield 0.01 10 4 0.01 0.01 10 1 

Sup. Fig. 7a Confocal 0.001 8 3 0.001 0.001 8 1 

Sup. Fig. 7b iSPIM 0.01 10 5 0.05 0.01 10 1 

Figs. 2a, j, 3a, d 
Sup. Figs. 8, 19 
Sup. Videos 4, 5, 
7, 11-15 

diSPIM 0.01 10 
3 

(Sup. Fig. 8) 
0.05 0.01 10 1 

Fig. 2e 
Sup. Fig. 9 
Sup. Video 6 

Quad-view  
light-sheet 

-- -- -- 0.01 0.05 5 5 

Fig. 4c 
Sup. Video 16 

Reflective 
diSPIM 

-- -- -- 0.01 0.02 5 2 

Fig. 4f 
Sup. Video 17 

Reflective 
LLS 

-- -- -- 0.01 0.02 5 4 

Sup. Figs. 13, 14 
Sup. Video 10 

Zeiss Z.1 
light-sheet 

-- -- -- 0.05 0.03 10 1 
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Supplementary Note 3, Connection between single-iteration R-L and Wiener filtration 

The challenges of deconvolution are well known. One seeks to determine a more faithful estimate of the 
imaged object 𝑒 by modeling and compensating for the effects of the convolution kernel 𝑓. If the imaging 
equation is 

 𝑖 = 𝑒 ∗ 𝑓, (29) 
 

then in the Fourier domain it is given by 

 𝐼 = 𝐸𝐹, (30) 

where capital letters denote Fourier transforms, and 𝐹, the Fourier transform (FT) of the point spread 
function 𝑓is known as the optical transfer function (OTF). While it might seem that the FT of the desired 

estimate could be readily obtained by calculating  𝐸̂ = 𝐼/𝐹, this formulation is problematic for two reasons. 
(1) Most OTFs go to zero at some point determined the NA of the lens and wavelength of the light, 
rendering the ratio undefined. (2) when 𝐹 is finite but vanishingly small, dividing the measured data by 
those small values will amplify any noise contaminating 𝑖.   

A common strategy is to include a small constant in the denominator 𝐸̂ = 𝐼/(𝐹 + 𝛼) . This prevents 
division either by zero or by too small a value of 𝐹 and is a form of the Wiener filter. In the frequency 
domain, the resulting filter approximates the inverse OTF at low frequencies where 𝐹 is relatively large 
and then rolls off toward zero at the cutoff frequency. In the spatial domain the effect is a convolution 
with a kernel given by the inverse FT of 1/(𝐹 + 𝛼).  

For the modified R-L explored here, it can be shown that when the starting guess is a uniform image, the 
first iteration corresponds to application of a Wiener-like filter. The modified R-L update is given by 

 𝑒𝑘+1  = 𝑒𝑘 {[
𝑖

𝑒𝑘 ∗ 𝑓
] ∗ 𝑏}. (31) 

If 𝑒0 = 𝑢, where 𝑢 denotes a uniform image of 1s, then  

 𝑒1  = 𝑢{[
𝑖

𝑢∗𝑓
] ∗ 𝑏}, (32) 

Now 𝑢 ∗ 𝑓 = 𝑢  because in the Fourier domain 𝐹𝑇{𝑢 ∗ 𝑓} = 𝑈(𝑣)𝐹(𝑣) = 𝛿(𝑣)𝐹(𝑣) = 𝛿(𝑣)  because 
𝐹(0) = 1 for a normalized PSF. So 

 𝑒1  = 𝑢 {[
𝑖

𝑢
] ∗ 𝑏}, (33) 

The elementwise division of 𝑖 by a uniform image has no effect and neither does the multiplication by a 
uniform image, so  

 𝑒1  = 𝑖 ∗ 𝑏. (34) 

This corresponds to linear, shift-invariant filtration with the modified back projection kernel. I.e., for the 
WB kernel the first iteration is equivalent to filtering with the WB function. Any subsequent iterations lead 
to an effectively nonlinear relationship between the estimated image and the raw measured image.  
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When the starting guess is taken to be the measured image itself, 𝑒0 = 𝑖, the first iteration already leads 
to a nonlinear relationship between the between the estimated image and the raw measured image. In 
this case the expression 

 𝑒1  = 𝑖 {[
𝑖

𝑖 ∗ 𝑓
] ∗ 𝑏}. (35) 

cannot be expressed as the action of a linear filter on the measured data 𝑖.  

  



49 
 

Supplementary Note 4, Deep learning for deconvolution  

Our goal is to create deep learning models that simultaneously improve axial and lateral resolution, 
directly incorporating 3D information contained within the image stacks. A challenge when processing 3D 
image volumes is the associated computational burden. For example, processing a modestly sized 32-bit 
input image stack 40 MB in size, using only 8 convolution layers with 4 channels to output the result, 
implies that 40 x 4 x 8 = 1280 MB of memory is required. Recent evidence suggests that many complex 
tasks benefit from even deeper networks, with more layers4-6. Such increased depth and additional 
operations including activation functions and batch normalization7 help the network to better represent8 
the underlying task and to stabilize the learning procedure7, but at least double the computational 
memory required. Back-propagation, which is used to tune the network parameters according to the loss 
function, additionally doubles computational cost. One solution to the memory problem is to use down-
sampling (pooling) in the learning model, e.g. as employed in the U-net architecture9. However, too much 
down-sampling results in a loss of detail unless the model contains enough parameters to compensate for 
the effect. Another solution is to crop the input data into multiple subimages. Selecting a random subset 
of these images for training can help the model learn the relationship between input and labels (ground 
truth) in a memory-efficient manner, but during the test procedure, stitching is required to combine the 
cropped images back to the original image size. Boundary artifacts10, as well as differing local 
intensity/contrast in each restored sub-image can make this a nontrivial task. These issues motivated our 
search to find an efficient deep learning method for performing 3D deconvolution on the whole volumetric 
image input. 

We adopted the concept of a densely-connected network11 (Densenet) to establish this framework, 
terming our model ‘DenseDeconNet’. The major components of our model are three dense blocks. These 
blocks use multiple dense connections between convolutional layers to extract relevant features from the 
image volumes, learning the deblurring necessary for image reconstruction. To efficiently process volumes 
of nearly 80 MB input size with a 14-layer model, another important concept we incorporated is the use 
of down-sampling and up-sampling operations, decreasing the computational memory required by at 
least 50%.  
 
1. Model architecture 

The DenseDeconNet Framework is shown in Figure S4.1. Our DenseDeconNet adopts a fully convolutional 
architecture12 for 3D image data, taking full advantage of the 3D geometric cues for effective volume-to-
volume image restoration and enabling the processing of input data of different sizes. Our model also 
incorporates dense connections to create short paths from a layer to all its subsequent layers. These 
connections improve the usability of early layers’ features, which decreases the number of parameters 
needed to learn redundant feature maps, thus making the model easier to train. 

As shown in Figure S4.1, our network consists mainly of three dense blocks, with additional 
operations before and after the blocks. The convolutional layer before dense block 1 is used to increase 
the channel number (i.e., the number of feature maps), sampling the input data with dimension w x h x d 
for later skip connection after dense block 3. The convolution in this layer is performed with [3x3x3] kernel 
and [1x1x1] stride, and is followed by a batch normalization (BN) and rectified linear unit (Relu) activation 
function13. The number of output channels (denoted as O11) is 4, resulting in an output of size of w x h x d 
x 4.  

After O11, dense block 1 contains three other convolutional layers with output denoted O12, O13, 
and O14. The operations in each convolutional layer also include a convolution (Conv), a BN, and a Relu 
activation function. The convolution kernel size is set to [3x3x3] with stride [1x1x1]. These operations are 
used to extract higher-level features from previous layers. We denote the series of operation in each layer 
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as T(•), thus O12 can be computed from O11 as: 
𝑂12 = 𝑇(𝑂11) 

We use O12 to compute O13 and to create a short path for delivering the feature map from O11 to O13 as 
follows. First, we concatenate the output channels O12 and O11, denoting this operation as (𝑂12⊕𝑂11), 
where  represents the concatenate operation (Concat). Then we use this concatenation as the input of 
next layer so that O13 is computed as: 

𝑂13 = 𝑇(𝑂12⊕𝑂11) 
Similarly, short paths for O11 and O12 to O14 are created and concatenated with O13 as the input to O14: 

𝑂14 = 𝑇(𝑂13⊕𝑂12⊕𝑂11) 
Concatenation helps subsequent layers to reuse previous feature maps, but it also causes the inclusion of 
redundant features and increases the number of parameters. For example, if the number of output 
channels in O12 is 8 and the number of output channels for O11 is 4, then the number of input channels for 
O13 is 12, and the number of input channels for O14 is 16. Because O12 is derived from O11, their feature 
maps may be similar. To lessen this redundancy, the number of output channels in O13 and O14 is limited to 
4 by using the convolutional layers to select the most important features. This attribute also minimizes 
extraneous computational burden. 
 
 
 

 
 

Figure S4.1, The architecture of our DenseDeconNet neural network. This fully convolutional network 
consists of three dense blocks (dashed rectangles), one down-sampling operation (‘Down conv’), one up-
sampling operation (‘Up conv’) and one skip connection (red dotted line). All operations are implemented 
on 3D data. Conv: convolution; BN: batch normalization; Relu: rectifying linear unit; Leaky_Relu: leaky 
rectifying unit; w: width; h: height; d: depth; Concat: concatenation. Ob1, Ob2, Ob3, Ob4, with b=1, 2, 3 
represent the output of convolutional layers in each dense block. Blue lines signify the extraction and 
transfer of feature maps in all layers. Magenta lines signify the concatenation of the first two layers in each 
block, yellow lines signify the concatenation of the first three layers in each block.  
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After dense block 1, we use a down-sampling layer to decrease the size of the feature map O14 by 
half to w/2 x h/2 x d/2, but include 8 channels. The result O21 serves as the beginning of dense block 2. 
The down-sampling layer consists of a convolution with [2x2x2] kernel and [2x2x2] stride (denoted Down 
conv), a BN and a Relu activation. Constructing O21 in this way enables efficient memory usage while also 
increasing the receptive field to incorporate more information surrounding each voxel. 

Dense block 2 also contains other 3 convolutional layers with similar function to dense block 1, 
with outputs denoted O22, O23, O24, respectively. Again, the number of output channels are limited to 4 or 
8, and we rely on the network learning the most salient features to avoid redundancy.  

After dense block 2, a convolutional layer connects dense block 3 to increase the depth and 
receptive field of the model. This layer consists of a convolution with [3x3x3] kernel and [1x1x1] stride, a 
BN and a Relu activation and compresses the number of feature maps from 8 in the last output of dense 
block 2 (i.e., O24) to 4 in the input of dense block 3 (i.e., O31).  

Dense block 3 contains 3 other convolutional layers with outputs O32, O33, O34, respectively, with 
characteristics shown in Fig. S4.1. After dense block 3, the network needs to recover the size of the original 
input image. Therefore, we use an up-sampling component composed of a transport convolution with 
[2x2x2] kernel and [2x2x2] stride (Up conv) and a BN. However, the transport convolution usually 
introduces checkerboard artifacts10, which decreases output quality. To remedy this problem, we use a 
long skip connection that sums the output of O11 and the up-sampled output of O34. Next, we implement 
a nonlinear Relu operation. A final convolution layer is used to output the result. Because the gradient 
may vanish when the input of the Relu operation is negative, we used a Leaky-Relu operation14 in the last 
convolution layer to maintain the gradient. The total number of learned parameters in our DenseDeconNet 
are approximately 18 thousand. 

We designed our objective (loss) function with three terms: the mean squared error (MSE), the 
structural similarity (SSIM) index12 and the minimum value of the output (MIN). The MSE is widely used as 
a fidelity term to make sure the difference between network outputs and ground truths is as small as 
possible, but it may lead to blurred edges and a loss in resolution and fine image structure15. Thus, we also 
used the SSIM to preserve the global structural similarity between the network output and the ground 
truth. Because the Leaky_Relu in the last convolutional layer permits negative values, we monitor the MIN 
of the output to avoid negative values. The MSE and the MIN complement each other, as the objective 
function tends to make the MIN value larger, but the MSE acts to limits the MIN. Specifically, the objective 
function we aim to minimize is: 

 𝐿(𝑙, 𝑜) = 𝑀𝑆𝐸(𝑙, 𝑜) − ln (
1 + 𝑆𝑆𝐼𝑀(𝑙, 𝑜)

2
) − 𝜆𝑀𝐼𝑁(𝑜) (36) 

where l represents the ground truth, o represents the model output and ln is the natural logarithm 
function. The MSE is defined as: 
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where d, w, h represents the depth, width and height of the ground truth volume. The SSIM is defined as: 
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where 𝜇𝑙, 𝜇𝑜 are the mean values of 𝑙, 𝑜; 𝜎𝑙
2, 𝜎𝑜

2 are the variances of 𝑙, 𝑜; 𝜎𝑙𝑜 is the covariance of 𝑙 and 𝑜; 
and 𝐶1 and 𝐶2 are small constants that prevent the denominator from becoming zero. In our 
implementation, we set 𝐶1 = 1𝑒

−4 and 𝐶2 = 9𝑒
−4. SSIM is in the range (0,1] . When SSIM equals 1, the 

ground truth and output are identical. Values for MSE and SSIM for all datasets are reported in Table S4.2. 
The ln(⋅) operation is used to keep the objective function positive. The last term MIN is the minimum 
value of the output: 𝑀𝐼𝑁(𝑜) = min (𝑜𝑢𝑡𝑝𝑢𝑡).  
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We use a tunable parameter λ to control the influence of MIN. If during training, the output tends to 
shift towards negative values, we set λ > 1, otherwise, we set λ < 1 or λ = 0. 

The network is optimized using the backpropagation algorithm with the adaptive moment estimation 
(Adam) optimizer16 and a starting learning rate r0 which decays during the training procedure according to: 

 
_

_

0 *

global step

decay stepr r k=  
(39) 

where k is the decay rate, global_step represents the number of training iterations (updated after each 
iteration), and decay_step determines the decay period. The values of these parameters are given in Table 
S4.1.  

DenseDeconNet is implemented with the Tensorflow framework version 1.4.0 and python version 
3.5.2 in the Ubuntu 16.04.4 LTS operating system. Training was performed on a workstation equipped with 
32 GB of memory, an Intel(R) Core (TM) i7 – 8700K, 3.70 GHz CPU, and two Nvidia GeForce GTX 1080 Ti 
GPUs with 11 GB memory each. Kernels in the convolution layers were randomly initialized with a Gaussian 
distribution (mean= 0, standard deviation= 0.1). For an input image 70 MB in size, fully training the 
network with 10000 iterations took ∼60 h. 
 

2. Results 

We tested DenseDeconNet on images of membranes and nuclei in live C. elegans embryos acquired with 
diSPIM, images of GCaMP3 expression in live C. elegans embryos acquired with reflective diSPIM, and 
images of α-actinin in live cells acquired with reflective lattice light-sheet (LLS) microscopy. Ground truth 
data consisted of traditional Richardson Lucy (R-L) joint deconvolution with 10 iterations for diSPIM data 
(conventional glass coverslips and reflective coverslips), and R-L deconvolution with the Wiener-
butterworth back-projector with 1 iteration for reflective lattice light-sheet data. Additional parameters 
for datasets are shown in Table S4.1. All data are derived from volumetric time-series (‘4D’ data); 80% of 
volumes are used for training and the remaining 20% for testing. The test data are randomly chosen; all 
results shown in the following figures and in the main text figures display only the test data. Different 
datasets have different input sizes, but the training batch size is always 1. All the input data and ground 
truth data are normalized as follows: 

 𝑋𝑁 =
𝑋 −min (𝑋)

max(𝑋) − min (𝑋)
    𝑋 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 (40) 

We first investigated the performance of deep learning on images of live C. elegans embryos 
expressing a pan-membrane mCherry label and pan-nuclear GFP label, acquired with diSPIM. We used the 
single-view images as network inputs and the dual-view joint deconvolution results as the ground truth. 
As shown in Fig. S4.2, the output of our DenseDeconNet network closely resembles the dual-view 
traditional deconvolution (e.g., the details indicated by yellow and pink arrows), although with worsened 
axial resolution. Interestingly we found that the network retained some details that are lost in the dual-
view ground truth (e.g. the details indicated by the green arrows disappeared in the dual-view 
deconvolution but are retained in our method). These results are likely due to the highly dynamic nature 
of the membrane during embryo development, resulting in slight differences between the two raw views 
(which are acquired 1 s apart) and thus a loss of fine structure in the reconstruction.  

Results were similar for relatively large structures like nuclei (Fig. S4.3) in late embryogenesis, when 
the embryo moves and twists frequently inside the eggshell. As before, the output from DenseDeconNet 
worsened axial resolution relative to the dual-view joint deconvolution (red arrows). However, this effect 
is counterbalanced by the effects of motion blur, which hinder the registration of the two volumetric views 
and compromise the resulting deconvolution (orange arrows).  
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Figure S4.2, Comparisons between raw single views, traditional joint deconvolution (‘Joint Decon’), deep 
learning with single-view input, mCherry-membrane label in live C. elegans embryos. a) Examples are 
from ~1 hour post fertilization and b) 4 hours post fertilization, XY and YZ maximum intensity projections 
are shown. In lateral XY views, both deep learning and traditional joint deconvolution produce similar 
reconstructions. The improved spatial resolution and contrast relative to the raw data reveal details that 
are otherwise obscured (magenta and yellow arrows). In axial YZ views, axial resolution in the learned 
result is not improved to to same extent as in the joint deconvolution (red arrows, see also OTF insets). 
However, the network results retain features evident in View A that are lost in the joint deconvolution 
(green arrows). OTFs averaged from all slices are shown at inset; red bounding box indicates a circle of 
0.33 µm-1. Scale bars: 5 µm. Traditional joint  deconvolution experiments were repeated on similar datasets 
at least 2 times, with similar results obtained each time; the deep learning model was trained on one time-
lapse dataset and applied to multiple datasets (N>=2), with similar results obtained for each dataset. 
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Figure S4.3. Comparisons between raw single view, traditional joint deconvolution (‘Joint Decon’), and 
deep learning, GFP-nuclear label in live C. elegans embryos. Lateral (left) and axial (right) maximum 
intensity projections are shown for each condition; selected time points are shown both earlier in 
embryogenesis (top row) and later, post-twitching (bottom row). Note that the results shown for late 
twitching were obtained using training data from early twitching. Axial resolution is highest in the 
deconvolved result (red arrows). However, movement and twitching lead to degraded registration and 
deconvolution, resulting in improved reconstructions for many nuclei in the learned result (orange arrows). 
Scale bars: 5 µm. Traditional joint  deconvolution experiments were repeated on similar datasets at least 
2 times, with similar results obtained each time; the deep learning model was trained on one time-lapse 
dataset and applied to multiple datasets (N>=2), with similar results obtained for each dataset. 
 

We next investigated if we could further improve our reconstruction by using both orthogonal, 
registered volumes as input, and the joint deconvolution as the ground truth (Supplementary Video 18). 
The only change to the network is that the two inputs are concatenated, and the number of input channels 
is increased to two (Fig. 4b). For example, for two registered, orthogonally captured volumes in the 
reflected diSPIM each with dimensions [w x h x d], the input is now [w x h x d x 2]. However, like the single 
view case considered above, the output sizes of the first convolutional layer in both cases are [w x h x d x 
4], and the following dense blocks and other operations are all the same as in the single view input case. 
Thus, operating the network with two inputs does not substantially increase computational burden. As 
shown in Fig. S4.4 and Supplementary Video 18, using two inputs provides more information to the 
network, allowing resolution and resolution isotropy recovery, as well as the removal of epifluorescence 
contamination. With suitable training data, our DenseDeconNet thus facilitates the reconstruction of raw 
reflective diSPIM data. 

Additional examples illustrating that the network performs better if two registered views are 
incorporated include registered dual-view GCaMP3 C. elegans embryo data acquired in the diSPIM (Fig. 
S4.5, Supplementary Video 16) and α-actinin data acquired by reflective lattice light-sheet (LLS) 
microscopy (Fig. S4.6, Supplementary Video 17).  

For α-actinin data acquired by reflective LLS, the input data size for each view is 398 x 526 x 198 voxels, 
or 158 MB. This size exceeds the current memory limit for our network. Thus, in this case, we were forced 
to crop the data into multiple sub-volumes for training. Each subvolume then has size 210 x 271 x 198 
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voxels (42 MB), with a 22-pixel region in x and 16-pixel region in y overlap between neighboring 
subvolumes to avoid boundary artifacts. Note that when applying the training model to the test data, there 
is no need to crop the input data (i.e., we maintained the original size of the test data).   

 

 
Fig. S4.4, Comparing reconstructions of pan-nuclear C. elegans data with single- vs. dual-view input, 
acquired on the diSPIM. Raw input data, traditional joint deconvolution (‘Joint Decon’), deep learning with 
single-view input, and deep learning with dual-view input. Note the close resemblance (e.g. orange arrows) 
between the learned output with two inputs compared to the traditional deconvolution method. Scale 
bar: 5 µm. See also Supplementary Video 18. Traditional joint  deconvolution experiments were repeated 
on similar datasets at least 2 times, with similar results obtained each time; the deep learning model was 
trained on one time-lapse dataset and applied to multiple datasets (N>=2), with similar results obtained 
for each dataset. 
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Fig. S4.5, Comparisons between raw mirror data, traditional joint deconvolution (‘Joint Decon’), Wiener-
Butterworth joint deconvolution, and deep learning, GCaMP3 expression in twitching C. elegans 
embryos. Lateral (top) and axial (bottom) maximum intensity projections are shown. Note the near 
equivalence of the deconvolved recontructions and the deep learning network output.  Scale bars: 5 µm. 
See also Supplementary Video 16. Traditional and Wiener-Butterworth deconvolution experiments were 
repeated on similar datasets at least 2 times, with similar results obtained each time; the deep learning 
model was trained on one time-lapse dataset and applied to multiple datasets (N>=2), with similar results 
obtained for each dataset. 
 

 
Fig. S4.6, Post-processing mEmerald -actinin data acquired by reflective LLS microscopy. Two single-
plane views at indicated axial depths from the coverlip are shown, columns indicate the two raw, registered 
inputs (conventional and mirror views), traditional joint deconvolution output, the Wiener-Butterworth 
deconvolution, and the output from DenseDeconNet deep learning (DL output). The deep learning output 
closely resembles the results obtained with traditional and Wiener-Butterworth deconvolution, including 
the retention of fine features (red arrows). Scale bar: 5 µm. Traditional and Wiener-Butterworth 
deconvolution experiments were repeated on similar datasets at least 2 times, with similar results 
obtained each time; the deep learning model was trained on one time-lapse dataset and applied to 
multiple datasets (N>=2), with similar results obtained for each dataset. 
 

3. Network Validation  

Reliability testing 

Because the kernels in the convolution layers of our network are randomly initialized, the final learned 
parameters will be slightly different every time training is repeated, even given the same input. To 
determine if these differences significantly alter the network prediction (a common concern when using 
deep learning methods), we independently trained DenseDeconNet four times (N=4) to obtain different 
networks, each trained with randomized orderings of the same input volumes and randomized kernel 
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initialization, and examined the resulting outputs. We denote the learned parameters of each network as 
𝜃𝑛 (m=1,…,N), so the per-pixel mean value of these independent networks is:  

𝑀𝑒𝑎𝑛(𝑥, 𝑦) =
1

𝑁
∑ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦; 𝜃𝑛)
𝑁
𝑛=1                                                 (41) 

where (𝑥, 𝑦)  represents each pixel’s location and 𝑜𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦) represents the normalized output 
intensity of each network. We also compute the standard deviation (SD) of the N networks as a measure 
of network disagreement: 

𝑆𝐷(𝑥, 𝑦) = 𝑠𝑞𝑟𝑡 [
1

𝑁
∑ (𝑜𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦; 𝜃𝑛) −𝑀𝑒𝑎𝑛(𝑥, 𝑦))

2𝑁
𝑛=1 ]           (42) 

These quantities provide estimated maps of the average network output, and the disagreement between 
networks.  To provide a more compact measure of network reliability we also computed the coefficient 
of variation (CV): 

𝐶𝑉 =
∑ 𝑆𝐷(𝑥,𝑦)𝑥,𝑦

∑ 𝑀𝑒𝑎𝑛(𝑥,𝑦)𝑥,𝑦
                                     (43) 

A larger CV value represents a larger disagreement between networks.  

We performed this analysis on images of membranes and nuclei in live C. elegans embryos acquired with 
diSPIM (Figs. S4.7-9), images of GCaMP3 expression in live C. elegans embryos acquired with reflective 
diSPIM (Fig. S4.10), and images of α-actinin in live cells acquired with reflective lattice light-sheet (LLS) 
microscopy (Fig. S4.11). In all cases, we found our network to produce highly reliable output (CV < 0.07 
with the vast majority of pixels showing SD < 5% of the mean).  

 

Fig. S4.7, DenseDeconNet reliability testing with dual-view input, GFP-labeled nuclei in live C. elegans 
embryos acquired with diSPIM. From left to right we show the lateral (top) and axial (bottom) maximum 
intensity projections of input data, predictions of the four networks, the pixel-wise mean, and the pixel-
wise standard deviation (SD). The latter is shown in a different colormap, to better highlight the small 
variations in network performance. Bars at the side of mean and SD images show intensity mapping in 
arbitrary units. The coefficient of variation is 0.0443 and 0.0401 for lateral and axial projections, 
respectively, indicating a small disagreement between networks (see also red and yellow higher 
magnification view insets in network predictions). Scale bars: 5 µm. The deep learning model was trained 
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on one time-lapse dataset and applied to multiple datasets (N>=2), with similar results obtained for each 
dataset. 

 

Fig. S4.8, DenseDeconNet reliability testing with single-view input, GFP-labeled nuclei in live C. elegans 
embryos acquired with diSPIM. From left to right we show the lateral (top) and axial (bottom) maximum 
intensity projections of input data, predictions of the four networks, the pixel-wise mean, and the pixel-
wise standard deviation (SD). The coefficient of variation is 0.059 and 0.0575 for lateral and axial 
projections, respectively, indicating a small disagreement between networks. Scale bars: 5 µm. The deep 
learning model was trained on one time-lapse dataset and applied to multiple datasets (N>=2), with similar 
results obtained for each dataset. 
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Fig. S4.9, DenseDeconNet reliability testing with single-view input, mCherry-membrane in live C. 
elegans embryos acquired with diSPIM. From left to right we show the lateral (top) and axial (bottom) 
maximum intensity projections of input data, predictions of the four networks, the pixel-wise mean, and 
the pixel-wise standard deviation (SD). The coefficient of variation is 0.07 and 0.0675 for lateral and axial 
projections, respectively, indicating a small disagreement between networks. Scale bars: 5 µm. The deep 
learning model was trained on one time-lapse dataset and applied to multiple datasets (N>=2), with similar 
results obtained for each dataset. 
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Fig. S4.10, DenseDecon reliability testing with GCaMP3 expression in twitching C. elegans embryos 
imaged with reflective diSPIM. The top two rows compare the raw mirror data (both lateral and axial 
maximum intensity projections), the pixel-wise mean prediction from the 4 networks, and the pixel-wise 
standard deviation (SD). The bottom two rows show the the predictions from each of the 4 networks. The 
coefficient of variation is 0.0538 and 0.0523 for lateral and axial projections, respectively, indicating a 
small disagreement between networks (yellow and red arrows show regions of slight variation). Scale 
bars: 5 µm. The deep learning model was trained on one time-lapse dataset and applied to multiple 
datasets (N>=2), with similar results obtained for each dataset. 
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Fig. S4.11, DenseDeconNet reliability testing with mEmerald α-actinin data acquired by reflective LLS 
microscopy. Shown are two single-plane views at indicated axial depths from the coverlip. Columns 
indicate the two raw, registered inputs (conventional and mirror views), predictions of the four networks, 
the pixel-wise mean, and the pixel-wise standard deviation (SD). The coefficient of variation is 0.0389 and 
0.0664 for the two examples, indicating a small disagreement between networks. Scale bars: 10 µm. 
Experiments were repeated on similar datasets at least 2 times, with similar results obtained each time; 
representative data from a single experiment are shown. 

 

Generalization testing 

By generalization, we mean the neural network’s ability to produce sensible outputs in response to unseen 
data. One of the main impediments to generalization is overfitting, which can be caused by insufficient 
training data or by a poor choice of network parameters. To examine the generalization of 
DenseDeconNet, we calculated the convergence of the averaged MSE and the averaged loss as a function 
of epoch (up to 100 epochs, 200 iterations for each epoch) during training and validation for both single-
view input and dual-view inputs of GFP-labeled nuclei in live C. elegans embryos acquired with diSPIM 
(Fig. S4.12). Here we randomly selected 200 datasets (by ‘dataset’ we mean the inputs and deconvolution 
of those inputs as ground truth) for training and 91 datasets for validation. In each epoch, the values of 
averaged MSE and averaged loss were computed as: 

ave_MSE =
∑ 𝑀𝑆𝐸𝑛
𝑁
𝑛=1

𝑁
                                                                             (44) 

𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸 − ln (
1+𝑆𝑆𝐼𝑀

2
)                                              (45) 

    𝑎𝑣𝑒_𝑙𝑜𝑠𝑠 =
∑ 𝑙𝑜𝑠𝑠𝑛
𝑁
𝑛=1

𝑁
                                       (46) 

, where N is the number of datasets used for training or validation. 
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With single-view inputs (Fig. S4.12a, b), the averaged MSE and loss converge at ~80 epochs, 
whereas for dual-view inputs (Fig. S4.13c, d), the averaged MSE and loss converge more rapidly and 
achieve values more than 10-fold smaller than those under single-view input training, indicating that the 
dual-view input training model outperforms the single-view input model. This result is unsurprising as 
more information is contained with two inputs. In both models, the averaged MSE and loss for training 
and validation datasets are overlap until ~80 epochs. This overlap shows that DenseDeconNet neither 
underfits nor overfits our data.  

For the results we presented in this paper, we used ~40 epochs (i.e., 7000 - 8000 iterations for 
the nuclei-model shown in Table S4.1). This resulted in a ~56-hour training time for the dual-view input 
nuclear diSPIM model (Fig. S4.4). However, during the revision process for this manuscript, we found that 
training time can be significantly reduced to only 2.5 hours if training is performed with a small cropped 
subvolume (~15 MB) instead of the entire volume (~80 MB), while still maintaining acceptable 
restorations (SSIM values of 0.96-0.99 relative to the ground truth, Fig. S4.13). 

 

Fig. S4.12, Convergence of averaged MSE (a, c) and averaged loss (b, d) on diSPIM nuclear models as a 
function of epoch #. Results for single (a, b) and dual (c, d) input models are included. The blue dashed 
lines indicate the approximate epoch # where the values of averaged MSE and loss between training and 
validation datasets begins to diverge (see also insets).  
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Fig. S4.13, Comparison of restoration quality when training DenseDeconNet with the entire volume vs. 
cropped subvolumes. Results correspond to dual-view inputs showing GFP-labeled nuclei in live C. 
elegans embryos, acquired with diSPIM. From left to right we show the traditional joint deconvolution 
ground truth, the deep learning output with the model established on the entire volume, and the output 
with the model trained on a cropped subvolume. Maximum intensity projections along lateral and axial 
views at three time points are shown for comparison. The two networks predict the nuclei structures with 
same SSIM values relative to the ground truth (top row: 0.99; center row: 0.96; bottom row: 0.99). hpf: 
hours post fertilization. Scale bars: 5 µm. The deep learning model was trained on one time-lapse dataset 
and applied to multiple datasets (N>=2), with similar results obtained for each dataset. 

 

Transfer learning 

We next assessed if a network trained on one dataset could be directly applied to other datasets with 
different structures or acquired with different microscopes. First, we applied the dual-input network 
trained by images of mEmerald α-actinin in live cells acquired with reflective LLS microscopy to another 
mEmerald α-actinin dataset with visually different morphology (Fig. S4.14). We found that the neural 
network removed epi-fluorescence and improved resolution isotropy, and agreed well with the 
deconvolved ground truth (SSIM  0.97). Second, we applied the single-input network trained with 
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mCherry-labeled membrane data to the GFP-labeled nuclear dataset (Fig. S4.15). In this case, the network 
prediction was suboptimal (SSIM relative to the ground truth 0.65 for the membrane model vs. 0.84 for 
the nuclear model), which follows our intuition that membrane and nuclei structures are very different. 
We nevertheless found that the membrane-specific network could be rapidly retrained for nuclear 
prediction with much less nuclear training data than a randomly initialized network. For example, 
prediction results were comparable to the nuclei-specific model (180 pairs of input/ground truth data, 
12000 iterations) when retraining the membrane-specific network with only 100 pairs of nuclei data and 
3000 iterations (Fig. S4.15, SSIM 0.87).  

Last, we applied the network trained by the images of GCaMP3 expression in live C. elegans 
embryos acquired with reflective diSPIM with rolling shutter detection14,15 to another embryo imaged with 
reflective diSPIM, but without rolling shutter detection (Fig. S4.16). Rolling shutter detection more 
effectively rejects epifluorescence contamination in reflective imaging16, which can be modeled using an 
appropriate detection PSF. Although the network prediction removed the epifluorescence contamination 
and recovered isotropic resolution in the new data, the predictions show areas of obvious disagreement 
compared to the ground truth joint deconvolution (which used a PSF appropriate for the data, i.e. without 
rolling shutter detection). This result is consistent with the current result that most deep learning 
networks typically do not generalize well to data obtained from a different type of microscope17,18.  
 

 

Fig. S4.14, Network transfer testing on images of different cells expressing mEmerald α-actinin, 
acquired by reflective LLS microscopy. Leftmost panel shows an example of the training dataset at a single 
plane. Right columns show two single-plane views of other cells (from a different dataset) at indicated 
axial depths from the coverslip, including raw conventional view, raw mirror view, ground truth spatially 
variant deconvolution result (‘Traditional Decon’), and the deep learning output with the model 
established from the first cell. The two cells exhibit different morphologies, but the network predicts fine 
structures well (compare higher magnification views in right hand columns) with an SSIM value of 0.97 
relative to the ground truth. Scale bars: 10 µm. Traditional deconvolution experiments were repeated on 
similar datasets at least 2 times, with similar results obtained each time; the deep learning model was 
trained on one time-lapse dataset and applied to multiple datasets (N>=2), with similar results obtained 
for each dataset. 
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Fig. S4.15, Network transfer testing on images of GFP-labeled nuclei in live C. elegans embryos acquired 
with diSPIM, using the single-input model trained on images from the mCherry-membrane dataset. 
Shown are exemplary images of mCherry-labeled membranes as the training data, a raw image of GFP-
labeled nuclei data as the network input, traditional joint deconvolution (‘Joint Decon’) ground truth, deep 
learning output with the membrane-model, deep learning output after retraining with nuclei images, and 
deep learning output with the original model trained only with nuclear data. Maximum intensity 
projections along lateral and axial views are shown for comparison. As shown by the arrows, the model 
that is trained only with membrane data distorts nuclear shapes, but performs well if retrained with 
nuclear data. The SSIM values of the predictions relative to the ground truth are 0.65, 0.84, and 0.87 for 
the membrane-model, the original nuclei-model, and the membrane-model retrained with nuclei images, 
respectively. Scale bars: 5 µm. Traditional joint deconvolution experiments were repeated on similar 
datasets at least 2 times, with similar results obtained each time; the deep learning model was trained on 
one time-lapse dataset and applied to multiple datasets (N>=2), with similar results obtained for each 
dataset. 
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Fig. S4.16, Network transfer testing on images of GCaMP3 expression in live C. elegans embryos 
acquired with reflective diSPIM, with and without rolling shutter detection. Leftmost column shows an 
example of the training dataset from one embryo measured with reflective diSPIM with rolling shutter 
detection while the second column shows another embryo imaged without rolling shutter detection. The 
third column is a ground-truth, traditional spatially variant deconvolution result (‘Traditional Decon’, using 
a PSF appropriate for the data in column 2, i.e. without rolling-shutter detection). The final column shows 
the deep learning output when DenseDeconNet trained on data acquired with the rolling shutter (first 
column) is applied to data acquired without the rolling shutter (second column). Lateral and axial 
maximum intensity projections are shown for comparison. Although DenseDeconNet removes 
epifluorescence and recovers resolution isotropy, the predicted output shows some areas of obvious 
difference compared to the ground truth (higher magnification views in yellow and red). The SSIM value 
of the prediction relative to the ground truth drops from 0.93 with the original model trained without 
rolling shutter to 0.81 when trained with rolling shutter. Scale bars: 10 µm. Traditional deconvolution 
experiments were repeated on similar datasets at least 2 times, with similar results obtained each time; 
the deep learning model was trained on one time-lapse dataset and applied to multiple datasets (N>=2), 
with similar results obtained for each dataset. 
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Table S4.1, Parameters for all datasets used in deep learning  

Samples 
C. elegans 

embryo 
membrane 

C. elegans embryo 
nuclei 

C. elegans embryos 
expressing GCaMP3  

U2OS cells 
expressing 

mEmerald-α-
Actinin 

Microscope diSPIM diSPIM reflective diSPIM reflective LLS 

Input view 
number 

1 1 2 2 2 

Training volumes 160 180 180 100 80 

Test volumes 40 110 110 55 20 

Training volume 
size, voxels 

240x340x246 
(76.6 MB, 32 bit) 

240x360x240 
(79 MB, 32 bit)  

240x360x240x2 
(158 MB, 32 bit) 

340x170x340x2 
(150 MB, 32 bit)  

210x271x198x2 
(86 MB, 32 bit)  

Test volume size, 
voxels 

240x340x246 
(76.6 MB, 32 bit) 

240x360x240 
(79 MB, 32 bit) 

240x360x240x2 
(158 MB, 32 bit) 

340x310x340x2 
(274 MB, 32 bit) 

398x526x198x2 
(315 MB, 32 bit) 

Learning rate, r0 0.07 0.04 0.004 0.004 0.005 

Decay_step 200 150 600 600 400 

Decay_rate, k 0.98 0.98 0.96 0.985 0.98 

𝛌 1.5 1.2 1.3 1.3 1.3 

Training iteration 
Number 

8000 7000 7000 12000 13000 

Training time ~57 h ~56 h ~56 h ~10.8 h ~8.2 h 

Test time for 
each volume ~1 s ~0.81 s ~1.23 s ~1.68 s ~2 s 

 

For data with dual-view inputs, the additional dimension (2) represents the concatenation/channel 
dimension. Training and model application were performed on a PC workstation equipped with 32 GB of 
memory, an Intel(R) Core (TM) i7 – 8700K, 3.70 GHz CPU, and two Nvidia GeForce GTX 1080 Ti GPU cards 
with 11 GB memory.  
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Table S4.2, MSE and SSIM evaluation between joint deconvolution results (ground truth) and deep learning 
test outputs.  

Samples 
C. elegans embryo 

membrane   

C. elegans embryo 
nuclei  

C. elegans embryos 
expressing GCaMP3 

U2OS cells 
expressing 

mEmerald-α-
Actinin 

Microscope diSPIM diSPIM reflective diSPIM reflective LLS 

Input view 
number 1 1 2 2 2 

Time point @ 1:00 
hpf 

@ 4:00 
hpf 

@ 7:40 
hpf 

@ 11:00 
hpf 

@ 7:00 
hpf 

@ 6.3 s 
(#19 in the movie) 

@ 5 s (#3 in 
the movie) 

MSE 3.0e-04 2.9e-04 6.6e-04 3.5e-03 0.6e-04  4.8e-04 5.0e-05 

SSIM 0.684 0.923 0.805 0.440 0.986 0.923 0.965 

 

MSE: mean squared error; SSIM: structural similarity index. Except for the late twitching embryo with 
single view input, the MSE values are all < 0.001. We suspect this larger MSE value is due to the 
pronounced twitching late in embryogenesis. SSIM values show more variability, with single-view inputs 
for the membrane and late nuclear datasets resulting in lower SSIM values, presumably due to registration 
artifacts in the ground truth data. For datasets with two inputs, the similarity between the ground truth 
joint deconvolution and the deep learning output is very high. hpf: hours post fertilization. 
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