Supplementary Information for

An all-natural bioinspired structural material for plastic replacement

Qing-Fang Guan[†], Huai-Bin Yang[†], Zi-Meng Han[†], Zhang-Chi Ling, Shu-Hong Yu*

* Correspondence to: Shu-Hong Yu (<u>shyu@ustc.edu.cn</u>).

[†] These authors contributed equally to this work.

Supplementary Figure 1 | Atomic force microscope (AFM) image of TEMPO-oxidized cellulose nanofiber (CNF).

Supplementary Figure 2 | Characterization of TiO₂ coated mica microplatelet (TiO₂-mica). a, Scanning electron microscope (SEM) image of micro-sized TiO₂-mica platelets. The average lateral size of TiO₂-mica is about 25 μ m, and the thickness is about 1 μ m. b, The statistical lateral size of the TiO₂-mica microplatelet, showing the lateral size ranging from 4 μ m to 60 μ m. c, SEM image of the surface of TiO₂-mica microplatelet, showing the TiO₂-mica consisted of TiO₂ nanograins with diameters ranging from 10 to 100 nm on its surface. d, Transmission electron microscope (TEM) image of the micro-sized TiO₂-mica platelet. e, TEM image of the surface of TiO₂-mica microplatele, showing the TiO₂ nanograins were evenly coated on the surface of TiO₂mica. f, XRD pattern of TiO₂-mica microplatelets.

Supplementary Figure 3 | The comparison of the unique connected-nanograin structure between natural nacre and the all-natural bioinspired structural material. a, Surface of *Anodonta woodiana*. b, Surface of the all-natural bioinspired structural material.

Supplementary Figure 4 | Comparison of Fourier transform infrared spectroscopy (FT-IR).

Supplementary Figure 5 | Comparison of loss factor (tan δ). The curves show that Tan δ of the all-natural bioinspired structural material is more stable than widely used petroleum-based plastics under temperature ranging from 30 °C to 190 °C.

Supplementary Figure 6 Comparison of thermal conductivity. Comparison of thermal conductivity of the all-natural bioinspired structural material with typical polymers¹.

Supplementary Figure 7 Comparison of thermal diffusivity. Comparison of thermal diffusivity of the all-natural bioinspired structural material with typical polymers¹.

Supplementary Figure 8 | Comparison of thermal and mechanical properties of all-natural bioinspired structural material with typical polymers, metals, and ceramics. a, Ashby diagram of specific modulus versus specific yield strength^{1,2}. b, Ashby diagram of thermal expansion versus specific fracture toughness^{1,2}.

Supplementary Figure 9 | Comparison of hardness. Comparison of Shore D hardness number of the all-natural bioinspired structural material with other widely used materials. Error bars represent standard deviation.

Properties	This work	PA
Ultimate strength (MPa)	281	90-165
Modulus (GPa)	20	2.62-3.2
Fracture toughness ($K_{\rm Ic}$, MPa m ^{1/2})	6.7	2.22-5.62
Hardness (HSD)	~94	~83
Thermal expansion coefficient (10 ⁻⁶ K ⁻¹)	~7	~147
Thermal conductivity (W m ⁻¹ K ⁻¹)	~0.53	~0.24

Supplementary Table 1 | Comparison of mechanical and thermal properties of all-natural bioinspired structural material with polyamide (PA)¹.

Supplementary References

- 1. M. Ashby, *Materials Selection in Mechanical Design*. (Elsevier, Oxford, 2011).
- 2. Guan Q. F., et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. *Sci. Adv.* **6**, eaaz1114 (2020).