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Supplementary Figure 1│Atomic force microscope (AFM) image of TEMPO-oxidized 

cellulose nanofiber (CNF). 
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Supplementary Figure 2│Characterization of TiO2 coated mica microplatelet (TiO2-mica). 

a, Scanning electron microscope (SEM) image of micro-sized TiO2-mica platelets. The average 

lateral size of TiO2-mica is about 25 µm, and the thickness is about 1 µm. b, The statistical lateral 

size of the TiO2-mica microplatelet, showing the lateral size ranging from 4 µm to 60 µm. c, SEM 

image of the surface of TiO2-mica microplatelet, showing the TiO2-mica consisted of TiO2 

nanograins with diameters ranging from 10 to 100 nm on its surface. d, Transmission electron 

microscope (TEM) image of the micro-sized TiO2-mica platelet. e, TEM image of the surface of 

TiO2-mica microplatele, showing the TiO2 nanograins were evenly coated on the surface of TiO2-

mica. f, XRD pattern of TiO2-mica microplatelets. 
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Supplementary Figure 3│The comparison of the unique connected-nanograin structure 

between natural nacre and the all-natural bioinspired structural material. a, Surface of 

Anodonta woodiana. b, Surface of the all-natural bioinspired structural material. 
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Supplementary Figure 4│Comparison of Fourier transform infrared spectroscopy (FT-IR).  

  



 

 

6 

 

Supplementary Figure 5│Comparison of loss factor (tan δ). The curves show that Tan δ of the 

all-natural bioinspired structural material is more stable than widely used petroleum-based plastics 

under temperature ranging from 30 ℃ to 190 ℃.  
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Supplementary Figure 6│Comparison of thermal conductivity. Comparison of thermal 

conductivity of the all-natural bioinspired structural material with typical polymers1. 
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Supplementary Figure 7│Comparison of thermal diffusivity. Comparison of thermal 

diffusivity of the all-natural bioinspired structural material with typical polymers1. 
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Supplementary Figure 8│Comparison of thermal and mechanical properties of all-natural 

bioinspired structural material with typical polymers, metals, and ceramics. a, Ashby 

diagram of specific modulus versus specific yield strength1,2. b, Ashby diagram of thermal 

expansion versus specific fracture toughness1,2. 
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Supplementary Figure 9│Comparison of hardness. Comparison of Shore D hardness number 

of the all-natural bioinspired structural material with other widely used materials. Error bars 

represent standard deviation. 
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Supplementary Table 1│Comparison of mechanical and thermal properties of all-natural 

bioinspired structural material with polyamide (PA)1. 

Properties This work PA 

Ultimate strength (MPa) 281 90-165 

Modulus (GPa) 20 2.62-3.2 

Fracture toughness (KⅠc, MPa m1/2) 6.7 2.22-5.62 

Hardness (HSD) ~94 ~83 

Thermal expansion coefficient (10-6 K-1) ~7 ~147 

Thermal conductivity (W m-1 K-1) ~0.53 ~0.24 
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