Slow motions in A•T rich DNA sequence

Ben Imeddourene¹, A., Zargarian¹, L., Buckle¹, M., Hartmann¹, B., & Mauffret^{1,*}, O.

Figures:

Figure S1: 1D and 1D-T1 inversion recovery spectra of the DNA aromatic region.

Figure S2. Chemical shift variations of H2 adenine protons as a function of temperature.

Figure S3: Examples of mono-exponential decays of relative peak intensities.

Figure S4: Examples of on-resonance $^{13}C6/8~R_{1\rho}$ relaxation dispersion profiles for nucleotides not submitted to conformational exchange.

Figure S5: Examples of off-resonance ${}^{13}C1$ ' $R_{1\rho}$ relaxation dispersion profiles for nucleotides not submitted to conformational exchange of A₉ and G₂₁.

Tables:

Table S1: Parameters used for the R1p relaxation dispersion experiments.

Table S2: R₂ and R_{ex} values from fits of on-resonance R_{1p} relaxation dispersion experiments.

Table S3: Conformational exchange parameters from off-resonance $R_{1\rho}$ relaxation dispersion experiments.

Table S4: Unusual α/γ backbone angles in X-ray structures of decamers.

Figure S1: 1D and 1D-T1 inversion recovery spectra of the DNA aromatic region.

A: 1D (bottom) and 1D-T1 inversion recovery (top) spectra of the aromatic region of the unlabeled oligomer at 25° C in 2 H₂O. The inversion recovery delay was optimized to selectively visualize the H2 resonances of adenines, which showed large differences in T1 values. The adenine numbering is recall on the top of the Figure.

Figure S2. Chemical shift variations of H2 adenine protons as a function of temperature. The variations of the H2 chemical shifts (δ H) of A₇ and A₁₉ located at the dodecamer center, were plotted as a function of temperature; accordingly, the Tm of the studied dodecamer is 57°C.

Figure S3: Examples of mono-exponential decays of relative peak intensities.

The mono-exponential decays of relative peak intensities presented here were measured on the C2 atom of the adenine A_{19} . I_T is the peak intensity of the C2 atom of A_{19} at each measured relaxation time T in millisecond (ms); I_0 is the intensity at T=0. The I_T/I_0 ratio is plotted as a function of T, from experiments performed with various spinlock powers ($\omega_1/2\pi$) specified above each panel. The R1p values given within the panels were obtained by fitting the decay curves with the equation $I_T = I_0 \exp(-RT)$, R being the time constant of the exponential.

Figure S4: Examples of on-resonance ${}^{13}C6/8$ R₁ $_{\rho}$ relaxation dispersion profiles for nucleotides not submitted to conformational exchange.

 $R_{1\rho}$ (= $R_2 + R_{ex}$) rates of the T_{17} -C6 and G_{11} -C8 atoms were plotted as a function of the effective spin lock field strength ($\omega 1/2\Pi$). The experiments were performed twice at 25°C. The two-state model fits (solid lines) were obtained using the protocol described in Materials and Methods. ($R_2 + R_{ex}$) standard deviations were calculated from the 500 runs carried out for each fit. The averaged R_2 and R_{ex} values are specified in each panel.

Figure S5: Off-resonance ${}^{13}C R_{1\rho}$ relaxation dispersion profiles for C1' atoms of A₉ and G₂₁.

 $R_2 + Rex (= R_{1\rho})$ values are given as a function of the resonance offset from the major state ($\Omega_{off}/2\Pi$). Error bars represent experimental uncertainties. The experiments were carried out at four different spin lock powers (from 150 to 700 Hz, color code in insets). Table S1 : Parameters used for the R1p relaxation dispersion experiments.

On resonance experiments

1- Aromatic carbon probes (N: nucleotide, Cx: aromatic carbon) :

C₁C6, C₂C6, G₃/G₁₅C8, C₄C6, T₅C6, T₆/T₁₈C6, A₇/A₁₉C8, A₇C2, A₁₉C2, A₈C8, A₈C2, A₉/A₂₀C8, A₉C2, A₂₀C2, C₁₀C6, G₁₁C8, C₁₂C8, G₁₃C8, C₁₄C6, G₁₅/G₃C8, T₁₆C6, T₁₇C6, G₂₁C8, C₂₂C6, G₂₃C8; the slash symbol indicates overlapping signals in the HSQC spectra.

17 values of spin lock power (ω): 144, 181, 229, 257, 288, 323, 363, 407, 457, 575, 645, 724, 912, 1445, 1819, 2290, 3630 Hz

2- C1' probes :

C₁C1', C₂C1', G₃/G11 C1', C₄C1', T₅C1', T₆C1', A₇C1', A₈C1', A₉C1', C₁₀C1', C₁₂C1', G₁₃C1', C₁₄C1', G₁₅C1', T₁₆C1', T₁₇C1', T₁₈C1', A₁₉C1', A₂₀C1', G₂₁C1', C₂₂C1', G₂₃C1', G₂₄C1'; the slash symbol indicates overlapping signals in the HSQC spectra.

15 values of spin lock power (ω): 229, 257, 288, 323, 363, 407, 457, 575, 645, 724, 912, 1445, 1819, 2290, 3630 Hz

Off resonance experiments

Off resonance spin lock power (ω) & \pm {offset (Ω), 36 values}

Adenine C1' probes : A7 C1', A8 C1', A9 C1', A19 C1', A20 C1'
 Hz & ±{30,60,90,120,150,180,210,240,270,300,360,420,480,540,600,700,800,1000}
 Hz & ±{30,60,90,120,150,180,210,240,270,300,360,420,480,540,600,700,800,1000}
 Hz & ±{50,100,150,200,250,300,350,400,450,500,600,700,800,900,1000,1200,1500,2000}
 Hz & ±{100,200,300,400,500,600,700,900,1100,1300,1600,2000,2500,3000,350,4000,5000,7500}

Other C1' probes: C₄ C1', G₁₅ C1', G₂₁ C1'
150 Hz & ±{30,60,90,120,150,180,210,240,270,300,360,420,480,540,600,700,800,1000}
250 Hz & ±{30,60,90,120,150,180,210,240,270,300,360,420,480,540,600,700,800,1000}
400 Hz & ±{50,100,150,200,250,300,350,400,450,500,600,700,800,900,1000,1200,1500,2000}

Table S2 : R_2 and R_{ex} values from fits of on-resonance $R_{1\rho}$ relaxation dispersion experiments

The R_2 and R_{ex} values reported in these Tables were obtained from fits of on-resonance ¹³C $R_{1\rho}$ relaxation dispersion data collected for three carbon types, C2, C6 or C8, and C1'. Standard deviations were estimated from duplicate data. Two nucleotides separated by a slash (N/N) indicate overlapping data. The data related to the five adenines of the dodecamer are stressed by a grey background.

nucleotide	$R_2(s^{-1})$	$R_{ex}(s^{-1})$
A ₇	30.2 ± 0.4	3.0 ± 1.4
A_8	30.3 ± 0.3	0.8 ± 0.4
A ₉	30.2 ± 0.1	0
A ₁₉	28.2 ± 0.7	6.2 ± 1.8
A ₂₀	30.5 ± 0.2	0
	nucleotide A ₇ A ₈ A ₉ A ₁₉ A ₂₀	$\begin{array}{c c} nucleotide & R_2 (s^{-1}) \\ \hline A_7 & 30.2 \pm 0.4 \\ \hline A_8 & 30.3 \pm 0.3 \\ \hline A_9 & 30.2 \pm 0.1 \\ \hline A_{19} & 28.2 \pm 0.7 \\ \hline A_{20} & 30.5 \pm 0.2 \\ \end{array}$

Table S2-1

atom	nucleotide	$R_2(s^{-1})$	$R_{ex}(s^{-1})$
C6	C1	28.7 ± 0.2	0
C6	C_2	31.8 ± 0.4	2.0 ± 1.2
C6	C_4	33.3 ± 0.1	0
C6	T ₅	30.5 ± 0.5	0
C8	A_8	26.7 ± 0.2	7.4 ± 0.5
C6	C ₁₀	33.5 ± 0.7	0
C8	G ₁₁	25.3 ± 0.2	1.5 ± 0.5
C6	C ₁₂	32.7 ± 0.2	0
C6	C ₁₄	33.6 ± 0.2	2.3 ± 0.6
C6	T ₁₆	31.8 ± 0.8	0
C6	T ₁₇	31.5 ± 0.6	0
C6	C ₂₂	32.9 ± 0.3	2.0 ± 0.8
C8	G ₂₄	27.0 ± 0.1	0
C8	G ₃ /G ₁₅	$27.9\ \pm 0.5$	0
C6	T_6/T_{18}	31.6 ± 0.2	3.9 ± 0.7
C8	A ₇ /A ₁₉	26.9 ± 0.2	8.4 ± 0.7
C8	A_{9}/A_{20}	26.6 ± 0.2	6.7 ± 0.5

Table S2-2

Table S2-3

atom	nucleotide	$R_2 (s^{-1})$	$R_{ex}(s^{-1})$
	C1	10.5 ± 0.2	0
	C ₂	16.2 ± 0.3	0
	C_4	17.4 ± 0.2	0
	T ₅	17.3 ± 0.2	4.9 ± 0.4
	T_6	15.9 ± 0.1	2.7 ± 0.5
	A ₇	17.3 ± 0.4	15.1 ± 0.7
	A_8	17.5 ± 0.3	7.5 ± 0.8
	A ₉	18.0 ± 0.1	6.0 ± 0.2
	C ₁₀	16.7 ± 0.2	3.6 ± 0.4
	C ₁₂	16.3 ± 0.2	0
$C1^{\prime}$	G ₁₃	12.2 ± 0.3	0
CI	C ₁₄	15.5 ± 0.2	0
	G ₁₅	18.5 ± 0.2	0
	T ₁₆	17.6 ± 0.3	3.5 ± 0.8
	T ₁₇	19.7 ± 0.2	0
	T ₁₈	18.6 ± 0.3	0
	A ₁₉	18.7 ± 0.2	15.9 ± 0.2
	A ₂₀	17.2 ± 0.1	2.5 ± 0.2
	G ₂₁	17.7 ± 0.1	0
	C ₂₂	17.2 ± 0.2	0
	G ₂₃	16.1 ± 0.1	0
	G ₂₄	14.4 ± 0.1	0

Table S3: A_7 , A_8 and A_{19} conformational exchange parameters from off-resonance $R_{1\rho}$ relaxation dispersion experiments.

The exchange parameters presented here complete those of the Table 2. R_1 and R_2 are the intrinsic longitudinal and transverse relaxation rates, respectively. These data were extracted using individual fits of experimental off-resonance relaxation dispersion data collected at 600 MHz, 25°C and pH 6.5.

		$R_1 (s^{-1})$		$R_2(s^{-1})$	
		Method 1	Method 2	Method 1	Method 2
	A ₇	1.51 ± 0.29	1.44 ± 0.09	17.74 ± 1.39	17.13 ± 0.99
C1'	A ₈	1.43 ± 0.31	1.26 ± 0.10	16.86 ± 1.24	16.36 ± 0.42
	A ₁₉	1.92 ± 0.18	1.76 ± 0.07	16.94 ± 1.31	19.0 ± 0.63

Table S4: Unusual α/γ backbone angles in X-ray B-DNA structures

The examined dataset is composed of 33 high resolution ($R \le 2$ Å) X-ray B-DNA structures, without mismatch, modified bases or phosphates, or non-paired bases. This Table reports the seven oligomers that contain unusual α/γ backbone angles (in bold and italic, underlined).

PDB code	sequence	<u>α/γ</u>
1IKK	CCTTTAAAGG	
	GGA <u>AA</u> TTTCC	<u>g+/t</u>
1SK5	CTTTT <u>AA</u> AAG	<u>g+/t</u>
	GAAAATTT <u>TC</u>	<u>g+/t</u>
1D49	CGATTAATCG	
	GCT <u>AA</u> TTAGC	<u>g+/t</u>
126D	CATGGCCATG	
	GTA <u>CC</u> GGTAC	<u>g+/g-</u>
307D	C <u>AA</u> AGA <u>AAA</u> G	<u>g+/g- * 3</u>
	GTTTCTTTTC	
307D	C <u>AA</u> AGA <u>AAA</u> G	<u>g+/g- * 3</u>
	GTTTCTTTTC	
17FG	CCGAG <u>CT</u> CGG	<u>g+/g-</u>
ILFU	GGC <u>TC</u> GAG <u>CC</u>	g + /g - *2