Supplementary information

Temperature-dependent optical and vibrational properties of PtSe₂ thin films

Desman P. Gulo¹, Han Yeh², Wen-Hao Chang², and Hsiang-Lin Liu^{1,*}

¹Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan ²Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan

*Corresponding author: hliu@ntnu.edu.tw

Supplementary Fig. 1. Room temperature experimental at 60°, 65°, 70°, and 75° incidence angles and fitting model of ellipsometric parameters of psi (Ψ) and delta (Δ) of bilayer PtSe₂ thin film.

Supplementary Fig. 2. Room temperature experimental at 60°, 65°, 70°, and 75° incidence angles and fitting model of ellipsometric parameters of psi (Ψ) and delta (Δ) of multilayer PtSe₂ thin film.

Supplementary Fig. 3. Room temperature experimental at 70° incidence angle and fitting model of ellipsometric parameters of psi (Ψ) and delta (Δ) of (a) bilayer and (b) multilayer PtSe₂ thin films.

Supplementary Fig. 4. Room temperature refractive index and extinction coefficient of (a) bilayer and (b) multilayer PtSe₂ thin films by rotating the sample's azimuthal orientation of 45 and 90 degrees.

Supplementary Fig. 5. The plot of $(\alpha \cdot E)^{1/2}$ vs. photon energy enables the extraction of indirect band gap of multilayer PtSe₂ thin films at 4.5 K.