
REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

Identification of the specificity of open chromatin regions (OCRs) in different brain regions and cell 

types provides a novel avenue to understand the molecular diversity in the human brain. 

Furthermore, the integration of external databases and application of the cell type specific OCRs 

identified in this study as markers for computational deconvolution method provides strong 

evidence for the importance of cell type specific analysis. However, a major issue with this study is 

the low number of patients (n=4) and that there are already a number of published studies of 

isolated cells and single cells maps of brain cell types, which also looks at these cell types and in 

several instance with more resolution (i.e., PMID: 31042697, 30760929, 32139688 and data in 

PsychEncode). The novelty of this paper is that it offers more brain regions, specifically the 

cingulate and visual cortex, but the benefit of these additional regions for the schizophrenia work 

included in this paper is not clear. Another concern is that many of the analyses tells us what we 

already know about the different cell types investigated (i.e. there are cell type differences in open 

chromatin regions, GABA neurons have GABA receptor activation, glutamatergic neurons are linked 

to neuropsychiatric disease risk variants). Though such information gives the reader confidence in 

the quality of the cell material being analyzed, the paper overall is limited in terms of adding new 

biology to what we already know. Therefore, this paper though well written and carefully prepared, 

it has some important limitations. 

Other Major Issues 

1. The microglia and astrocyte signal (MGAS) is mixed, which likely signifies an astrocyte-

dominant signal due to the predominance of this cell type 

2. Please explain why almost half of all the OCRs identified in each cell type are unique for only a 

single replicate per group. 

3. The authors mention in a comparison across brain regions that there are only statistical 

differences OCRs in glutamate neurons (line 148). However, with such a small number of patient 

samples, is such a statistical analysis meaningful? Does the identification of no significant 

difference in GABA, OLIG and MGAS, say anything biologically interesting? 

4. Can the authors statistically test and explicitly mention in the results that greater number of 

OCRs found in glutamate neurons is not driven by sequencing read depth or genome coverage 

differences in glutamate neuron? 

5. Comparisons with Roadmap DNase data in figure 2b states predominant overlap. Please provide 

an enrichment score to prove that this is not by chance. Without enrichment analysis, any 

interpretation of the overlap, such as MGAS enrichment in immune cells, is less reliable. 

6. The enhancer construct analysis in specific cell types is a nice addition to the paper. However, 

the results are difficult to interpret. Why does only cortical layer 5 neurons express glutamate cell-

specific enhancer (BDNF enhancer) and why is there a relatively low colocalization between the 

GABA cell-specific enhancer (DLX6), while the MGAS cell specific enhancer (TYROBP) is not 

observed in MGAS cells? Could there be species differences that affect the interpretability of the 

results? Would in vitro/human cell culture experiments have been a better choice? If enhancer 

constructs are a concern (as mentioned in the discussion) analysis of cell-type specific Hi-C data 

could be an option. 

7. The use of LD score regression to examine the overlap of disease risk SNPs is nicely done. 

However, the diseases selected (neuropsychiatric diseases) are rather expected to be associated 

with neuronal OCRs based on several other publications (i.e. Price et al. 2019 Genome Biology, 

Polioudakis et al., 2019 Neuron). Could it be more interesting to examine overlap with the 170+ 

diseases in the LDScore regression tool with the brain cell types in this study? This could generate 

new leads on the contributions of these cell type to other diseases. 

Minor Issues 

1. The three brain regions studied should be mentioned in the abstract 

2. The abstract states that glutamatergic neurons are the most affect cell type in schizophrenia –



this is a somewhat misleading statement because though true among the cells studied in this 

paper, there was no analysis of dopaminergic cell type which likely also have a strong role in this 

disease. 

3. The first sentence of the second paragraph in the introduction need to be changed to clearly 

explain the limitation in the field. 

4. For bioinformatic outlier removal, please provide a read or peak coverage and/or correlation 

value threshold. 

5. The authors should mention the age and postmortem interval of the samples. Perhaps this could 

contribute to the 34% residual value in Fig 1f. 

6. Promoter accessibility changes with both brain region and cell type. Was this taken into account 

during the overlapping analysis? 

7. Why is the protein coding gene map comparison to GREAT in cell-specific pathways enrichments 

not provided as a supplementary figure (line 211)? Should a correlation analysis be included? 

8. Figure 3b does not clearly show the overlap of TFs from multiple cell types. For example, the 

oligodendrocyte lines are over the non-neuronal lines making it difficult to see the overlap in TF 

like SF family. Separate cell type plot or modifying the existing plot could improve the clarity of 

this figure. 

9. Multiple figures have axis too small to effectively read, making it difficult to interpret data. 

Please edit all figures accordingly. 

Reviewer #2 (Remarks to the Author): 

The study by Dr. Roussos and colleagues carries out ATAC-seq on 3 cerebral cortex regions in 4 

individuals using FANS for NeuN, Sox6 and Sox10 to delineate 4 distinct cell types GABA neurons, 

Glu neurons, oligodendrocytes and microglia/astrocytes. This study follows up on the 2018 

Genome Research paper of the same group which characterised NeuN+ and NeuN- cell 

populations, by further refining cell types. 

The study is thorough, well written, and carries out standard analyses of ATAC-seq data, such as 

overlap analyses with epigenomic features, TSS, TF binding sites etc., as well as assessment of 

enhancer function in vivo for several open-chromatin regions. 

1. The QC FRiP score are quite low: 0.05-0.15, while the standard for Encode data for example is 

>0.2. The authors need to provide additional information to demonstrate an acceptable signal-to 

noise ratio, such as, for example a TSS enrichment score (https://www.encodeproject.org/data-

standards/terms/#enrichment) and a replication rate or a correlation across replicates (i.e. 

different individuals , same brain region and cell type). 

2. A comparison between the current ATAC-seq data and RNA-seq data from NeuN+/NeuN- cells 

(eg. PMID 31288836) is necessary for a functional interpretation of the open chromatin regions, 

rather than just overlaps (with gene sets from the Epigenomics Roadmap consortium. 

3. The Jaccard index is not appropriate for calculating the overlap with different epigenomic 

features, as it does not take into account genome-wide background. A test with random sampling 

of the genomic background for each chromHMM category should be used instead. 

4. For the variant enrichment analyses, an enrichment of eQTL data (eg. GTEX ) would be valuable 

to demonstrate the enrichment of regulatory variants in the OCRs identified in the present study. 

5. The title is an overstatement: there is no assessment of the function of glutamatergic neurons 

and no experimental evidence for genetic variants associated with schizophrenia affecting such 

function. 



Minor: 

FigS6,7: It’s unclear what Log2Fc refers to, as these are enrichment analyses. 

Reviewer #3 (Remarks to the Author): 

This paper provides the first ATAC-Seq study to examine subtypes of neurons and non-neuronal 

cells. Therefore, although the sample size is small I believe it is a strong publication (indeed, it 

provides a further example of the power of within-subjects analyses of this type). The authors 

should be commended for making their data open access, and for providing it for review - this 

greatly enhances both the potential impact of the paper and the ease of review. The manuscript is 

generally well written and the figures and tables are largely clear. I therefore have only questions 

of clarification: 

1. On p7, and in Fig 2b, I believe that the REMC comparisons would benefit from clarification. For 

example, the text states “[…] our 160 cell-specific OCRs predominantly overlap with REMC brain 

samples”. Is this a typo? If not, please clarify how OCRs overlap with samples. Similarly, in Fig 2b, 

please state what the asterisks represent (and clarify why some bars have multiple asterisks). 

2. Table 1 also requires clarification: Table 1: where were the neuronal and non-neuronal data in 

this table obtained from? If they are simply the Glu + GABA and OLIG + MGAS why do the values 

not add up? 

3. Regarding the GWAS-related findings, were results corrected for between-phenotype 

correlations? Furthermore, it would be good to add comment about the diagnostic categories that 

*don't* show clear association, e.g. bipolar. Furthermore, what corrections (if any) were run for 

multiple comparisons for these studies? 

4. It would be good to have more information about the postmortem brains included here – pH, 

and ideally RIN – I realise that this study did not examine RNA directly, but these measures still 

speak to overall tissue quality. It might be that some of this information is in Table S1, but the 

table is only partially readable as PDF (e.g. what was the cause of death of Female sample #4) 

Minor point: 

Why did the authors use Hg19 for their annotations? Could they provide a liftover to Hg38? 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

Identification of the specificity of open chromatin regions (OCRs) in different brain regions and cell types 

provides a novel avenue to understand the molecular diversity in the human brain. Furthermore, the integration 

of external databases and application of the cell type specific OCRs identified in this study as markers for 

computational deconvolution method provides strong evidence for the importance of cell type specific analysis. 

However, a major issue with this study is the low number of patients (n=4) and that there are already a number 

of published studies of isolated cells and single cells maps of brain cell types, which also looks at these cell 

types and in several instance with more resolution (i.e., PMID: 31042697, 30760929, 32139688 and data in 

PsychEncode). The novelty of this paper is that it offers more brain regions, specifically the cingulate and 

visual cortex, but the benefit of these additional regions for the schizophrenia work included in this paper is not 

clear. Another concern is that many of the analyses tells us what we already know about the different cell types 

investigated (i.e. there are cell type differences in open chromatin regions, GABA neurons have GABA 

receptor activation, glutamatergic neurons are linked to neuropsychiatric disease risk variants). Though such 

information gives the reader confidence in the quality of the cell material being analyzed, the paper overall is 

limited in terms of adding new biology to what we already know. Therefore, this paper though well written and 

carefully prepared, it has some important limitations. 

Response: 

The goal of this study is to generate a multi-regional atlas of chromatin accessibility, which extends our 

previous efforts (PMID: 29945882) by increasing the number of captured cell types. We would like to first 

acknowledge that there are multiple shortcomings of epigenomics/transcriptomics based on FANS/flow 

cytometry. Isolating human brain cells for  studies is challenging and, although nuclear isolation from frozen 

specimens is possible this approach is only limited to broad defined cell types where available antibodies can 

be used to sort those nuclei. On the other hand, single cell approaches offer an agnostic, unbiased approach 

to capture the cellular heterogeneity. However, there are still limitations in single cell approaches, particularly 

when it comes to epigenomics as each nucleus contains only one copy of each chromosome. This means that 

the data is extremely sparse and due to its lower yields, oftens does not accurately quantify differences in 

chromatin accessibility. We briefly hint at this in the discussion, and have now elaborated slightly on this. 

Considering orthogonal datasets such as the chromatin accessibility map of the present study will improve 

signal to noise ratio and perform more robust de novo taxonomy in single cell data sets. The articles mentioned 

above are all single cell RNA-seq, and not ATAC-seq. Given that single nuclei ATACseq becomes the most 

popular epigenomic assay (and the one that is widely used in psychENCODE, AMP-AD and other consortia), it 

is critical to define robust markers for broad cell types in the human brain tissue that will be used as a 

reference map to define cell types with higher resolution. As for the PsychEncode data, the existing ATACseq 

data are primarily on bulk tissue or neuron vs non-Neuron FANS, though there are ongoing efforts to expand 

this to further cell types. Importantly, as noted by Reviewer #3: “This paper provides the first ATAC-Seq study 

to examine subtypes of neurons and non-neuronal cells.”  

We acknowledge that a lot of focus in the paper is on quality assurance and on confirming established brain 

biology, both necessary to substantiate the data set as a future resource for the scientific community. Amongst 

the novel findings in the paper, we would in addition to our comment above and the novelty indicated by the 

reviewer him-/herself like to highlight how we used the data to identify novel cell specific enhancers. Further, to 

the best of our knowledge, glutamatergic epigenome has not previously been directly linked to common 

schizophrenia risk variants.  



As for the number of individuals in the study (n=4) with a total of twelve samples per cell type, this is not 

inconsistent with previous efforts such as Roadmap for epigenome, ENCODE and the reference brain atlas by 

psychENCODE. The various analysis in the paper as well as visual inspection of the individual bigWig tracks 

highlight the marked differences in chromatin accessibility between the cell types and the comparatively small 

differences between brain regions and individuals. The high number of open chromatin regions showing cell 

type differences in our quite strict approach (see also below) identified a high number of differentially 

accessible sites, again indicating that our study is well powered to study such cell type differences. 

As for the regional differences, it would admittedly have been beneficial with a higher sample count. Here the 

contrasts for each cell type include twelve samples (e.g. GLU ACC samples versus the average of GLU 

DLPFC and GLU PVC samples), but only showed significant differences for glutamatergic neurons. This is of 

interest when interpreted together with the variance partitioning analyses and pi1 estimates. In the variance 

partitioning, the brain region added 3%-4% to the variance explained to the model (a point estimate) compared 

to the 1.5% of variance explained by the person, which in both cases is vastly lower than the variance 

explained by cell type alone (54%-58%). The pi1 estimates told a similar story. This leads us to conclude that 

“Chromatin accessibility was found to vary vastly by cell type and, more moderately, by brain region”. A larger 

sample size would probably have afforded significant findings in all cell types. We’ve added a comment 

regarding this to the discussion. 

Other Major Issues 

1. The microglia and astrocyte signal (MGAS) is mixed, which likely signifies an astrocyte-dominant signal due 

to the predominance of this cell type 

Response: 

We thank the reviewer for pointing out that the relative signal coming from these subtypes and its importance 

haven’t been stated in the paper. We have now added this to the discussion. Despite the ratio of the microglia 

vs astrocytes likely being skewed, we do in fact see both the astrocyte and microglia signatures as evidenced 

by visual inspection of chromatin accessibility around known marker genes as well as the overlap with single 

cell approaches as in supplementary figure 6a.

2. Please explain why almost half of all the OCRs identified in each cell type are unique for only a single 

replicate per group. 

Response:  

In our supplementary methods, we did not provide any information directly about the peak calling, but simply 

referenced a previous study. In light of this comment and in realizing the importance of this in interpreting the 

aforementioned figure, we’ve added this section to the supplement “In short, we merged samples from the 

same brain region and cell type into one BAM-file (e.g. one file would contain all reads from the four samples of  

glutamatergic neurons derived from the four ACC dissections). The resultant twelve bam files were then 

subsampled to a uniform depth and used as an input for the peak caller.” This merging of files prior to peak 

calling was done to increase power for detecting open chromatin regions that were only accessible in a subset 

of cells or cell subtypes. 

There are multiple potential explanations for a large part of the open chromatin regions being only identified in 

one out of three merged BAM-files from the same cell type. One could be that the OCRs show some/complete 

specificity to the brain regions assayed. Supporting this idea is the fact that GLU and GABA had the highest 

number of unique open chromatin regions and were also the two cell types showing the highest pi1 estimates 



for brain region variability. Another contribution to the uniqueness of the identified cell types could be 

stochastic. Given a random sampling of reads and noise, a true peak might be called in one sample where the 

reads by chance resembles what the peak caller expects an open chromatin region to look like, whereas in 

another it might look more like random reads/noise. Open chromatin regions might simply not consistently 

show a sufficient signal if the region is only accessible in a small subset of cells and/or cell subtypes. 

Supporting this theory is the fact that open chromatin at promoters, which have comparatively higher 

accessibility than the other open chromatin regions, are more consistently called. A corollary of this would be 

that more open chromatin regions are yet to be discovered. Considering the uniqueness of the open chromatin 

regions in the cell types separately (e.g. the colored bars in figure 1c), which is relevant considering the 

massive differences in chromatin accessibility across cell types, 66%-80% of the promoter open chromatin 

regions were called in two or more brain regions. For non-promoter open chromatin regions these numbers 

ranged from 50%-67%. 

3. The authors mention in a comparison across brain regions that there are only statistical differences OCRs in 

glutamate neurons (line 148). However, with such a small number of patient samples, is such a statistical 

analysis meaningful? Does the identification of no significant difference in GABA, OLIG and MGAS, say 

anything biologically interesting? 

Response: 

This comment has been addressed in the response to the reviewers introductory section

4. Can the authors statistically test and explicitly mention in the results that greater number of OCRs found in 

glutamate neurons is not driven by sequencing read depth or genome coverage differences in glutamate 

neuron? 

Response:  

As mentioned in the response to comment #2, we’ve now given an explicit statement about how the open 

chromatin regions were identified including a statement about the BAM-files used for the peak-calling being 

subsampled to uniform depth. We apologize for this not being specifically mentioned in the initial submission. 

The peak-caller, when applied to open chromatin assays such as ATAC-seq identifies regions where there are 

significantly more reads compared to the background. Given the subsampling and the internal mechanism of 

the peak-calling algorithm, the higher number of peaks cannot be down to sequencing depth/coverage 

differences.  

5. Comparisons with Roadmap DNase data in figure 2b states predominant overlap. Please provide an 

enrichment score to prove that this is not by chance. Without enrichment analysis, any interpretation of the 

overlap, such as MGAS enrichment in immune cells, is less reliable. 

Response:  

The Figures 2b and S7 (previously called S5) were based on the overlap with the 127 different samples 

categorized into the four different types of samples ("Brain derived cells","Brain tissue","Immune" and "Other"). 

In this section we provide A) evidence that our statements about differences in overlap between the 

annotations are not down to chance. B) An analysis of enrichment against the genomic background. 



To assess the significance of these differences between the cell specific OCRs we’ve now regressed the 

Jaccard overlap with these four roadmap sample categories against taking the “Other”-category as the 

intercept. This is not to evaluate the enrichment against the genomic background but the differences between 

the datasets. We’ve added this analysis to the text. 

In this regression analysis, "Brain derived cells" and "Brain tissue" was significantly enriched compared to the 

“Other” Roadmap samples in all of our ATAC-seq peaks. For “Immune” there was at least a nominally 

significant depletion for “Glutamatergic”, “GABAergic”, and “oligodendrocytes”, whereas “Microglia & 

Astrocytes” showed a nominally significant enrichment. The full results are shown below for the reviewers: 

Glutamatergic 

#################################### 

                                     Estimate   Std. Error   t value     Pr(>|t|) 

(Intercept)                       0.026931026 0.0004710918 57.167253 1.893457e-90 

myCats.4.catsBrain derived cells  0.008813518 0.0017938642  4.913146 2.794514e-06 

myCats.4.catsBrain tissue         0.013135347 0.0014211053  9.243049 9.067937e-16 

myCats.4.catsImmune              -0.007190621 0.0009061632 -7.935238 1.105181e-12 

GABAergic 

#################################### 

                                     Estimate   Std. Error   t value      Pr(>|t|) 

(Intercept)                       0.022083958 0.0002762632 79.938100 6.940597e-108 

myCats.4.catsBrain derived cells  0.004563740 0.0010519790  4.338242  2.961864e-05 

myCats.4.catsBrain tissue         0.006025879 0.0008333814  7.230639  4.469606e-11 

myCats.4.catsImmune              -0.004780566 0.0005314029 -8.996122  3.529452e-15 

Oligodendrocyte 

#################################### 

                                     Estimate   Std. Error   t value     Pr(>|t|) 

(Intercept)                       0.040845041 0.0007386238 55.298838 9.690587e-89 

myCats.4.catsBrain derived cells  0.007967411 0.0028125958  2.832761 5.394327e-03 

myCats.4.catsBrain tissue         0.019247954 0.0022281479  8.638544 2.494574e-14 

myCats.4.catsImmune              -0.003330996 0.0014207713 -2.344498 2.065513e-02 

Microglia & Astrocytes 

#################################### 

                                    Estimate   Std. Error   t value     Pr(>|t|) 

(Intercept)                      0.046654595 0.0007340164 63.560701 6.286672e-96 

myCats.4.catsBrain derived cells 0.009074932 0.0027950511  3.246786 1.504255e-03 

myCats.4.catsBrain tissue        0.010437812 0.0022142489  4.713929 6.465203e-06 

myCats.4.catsImmune              0.003461819 0.0014119087  2.451872 1.561547e-02 



To assess the enrichment against the genomic background, we’ve extended Figure S7 (called S5 in the initial 

submission) to also show the enrichment against the genomic background. For this figure, we added the 

following text to the Online Methods: 

“… The enrichment against the genomic background was calculated based on the overlap per base pair as: 

(intersectionOfOurAtacSeqPeaksetAndRoadmapData/sizeOfRoadmapData)/(sizeOfOurAtacSeqPeakset/geno

meSize),  

where the genomeSize is the non-gapped genome (e.g. excluding centromeres and gaps in the assembly). 

RoadmapData is the actual DNase peaksets/chromHMM overlap shown in the respective figures. As the 

intersections concern thousands of peaks, randomness contributes little to the degree of enrichment. To 

substantiate this we redid the overlap calculations, but before this, each peakset (Neuron, non-Neuron, 

Glutamatergic, GABAergic, Oligodendrocytes, and Microglia/Astrocytes) was shuffled across the non-gapped 

genome with BedTools’ “shuffleBed”. Note that enrichments calculated against the genomic background are 

slightly biased due to non-uniform mappability and possibly other technical factors.” 

Figure S7b is shown below. Note the results from the shuffling in the legend text. 



Figure S7b 

Figure S7. Overlap of Identified cell-specific open chromatin regions with existing epigenomic annotations. 

The cell-specific OCRs were identified as detailed in the main text. The overlap was calculated by (a) the Jaccard 

index of the base pair overlap and (b) enrichment against the genomic background. Samples from REMC were 

aggregated into 4 groups: brain tissue, brain derived cells, immune cells/tissue, and other non-brain 

cells/tissues. The enrichment in panel b was also recalculated after shuffling the peaks. For the 2,286 overlap 

comparisons jointly assessed in this manner, the median enrichment was 0.97 (min 0.69, max 1.16, interquartile 



range 0.95-1.00). Note that the REMC open chromatin/chromHMM states are all identified in the given 

cell/tissue and not those specific to it. Dots near the boxes represents outlier samples.



It is not unexpected that all of the plots below show an enrichment against the genomic background above 

one, as 1) the imputed Roadmap DNase/chromatin states are not differential DNase/chromatin states but all 

regions identified in a given cell type in their imputed dataset. 2) Comparing against the genomic background is 

slightly biased as noted before due to technical artefacts such as mappability. The latter bias can also in part 

be seen in the randomly shuffled analysis with the median being 0.97 and not 1. 

We have added the following statement to the main text: “Comparing to the genomic background, our cell 

specific OCRs showed 5-27 fold enrichments in the brain related REMC DNase samples (Figure S7b).” 

Jaccard Indices and enrichment metrics offer complementary information. Jaccard weighs the relative sizes of 

the annotations, which is a goal in Figure 2b. The enrichment could be marked in one comparison but with one 

of the annotations being quite small and thus be based on a comparatively small part of the genome. We 

would thus prefer to keep Figure 2b in the main paper,  but we have created an alternative version called 

“Alternative Figure 2b” below.  All of the information in “Alternative Figure 2b” is also found in Figure S7b. 

Alternative Figure 2b 



6. The enhancer construct analysis in specific cell types is a nice addition to the paper. However, the results 

are difficult to interpret. Why does only cortical layer 5 neurons express glutamate cell-specific enhancer 

(BDNF enhancer) and why is there a relatively low colocalization between the GABA cell-specific enhancer 

(DLX6), while the MGAS cell specific enhancer (TYROBP) is not observed in MGAS cells? Could there be 

species differences that affect the interpretability of the results? Would in vitro/human cell culture experiments 

have been a better choice? If enhancer constructs are a concern (as mentioned in the discussion) analysis of 

cell-type specific Hi-C data could be an option. 

Response: 

We also noted the varying functionality, or validation, of the putative enhancers, and in the original discussion, 

we included this paragraph: 

Possible explanations for the lack of validation for the MGAS (TYROBP) OCR include: (1) interspecies 
differences; (2) specific promoter-enhancer interactions are lost when only transfecting the putative enhancer; 
(3) conformational/insulator differences between the in-situ enhancer and the transgenic mice; (4) uncertainty 
of the original OCR function; and (5) insertional effects overcame the CTCG insulators in the vector. 

 In response, we will elaborate on several of these points: 

 OCRs have proven to not all be active enhancers, and in fact, multiple validation papers show only 30-50% 
will successfully validate. In addition to what we included in the first version of the manuscript, other reasons 
include the need to act in a combinatorial manner and the fact that some OCRs are actually repressive. 

 Regarding interspecies differences, many enhancers, particularly developmental, are highly conserved 
between species (doi: 10.1016/j.cell.2013.05.056; doi: 10.1038/nature08451; doi: 10.1038/nature05295), and 
even if a particular sequence acts as an enhancer only in human, the appropriate binding factors are usually 
present in the mouse. We certainly considered in vitro/human cell culture systems for validation, but ultimately 
decided that none of the systems would ensure that the cells would be mature enough considering the OCRs 
were identified in adult brain, and also, there would be no spatial resolution. 

We hoped that most interspecies differences would not preclude validation via mouse transgenesis, but this 
possibility cannot be fully discarded. 

 Hi-C data would of course be useful for interpretation of the promoter interactions of the OCRs we chose to 
validate, but since we speculate that cell-type specific interactions are occurring, no public data was available 
during the construction of our vectors. The putative enhancer selected for GABA population, was identified as 
a GABA-specific peak by H3K27ac ChIP-seq performed in DLPFC (doi: 10.1126/sciadv.aau6190). We assume 
that the variability of DLX6 enhancer is more susceptible to insertional effects compared to the others. Very 
recently, PLAC-seq analysis performed in the cortex of human individuals, revealed cell-type specific 
interactions between OCRs (doi: 10.1126/science.aay0793). The authors identified the same OCRs that we 
used to validate the TYROBP enhancer as a cell-type specific enhancer. 

 In this paper we have examples of each of the previously discussed points; (1) CNDP single enhancer showed 
activity within the expected cell population, (2) BDNF was specific for only one layer of the cortex, suggesting 
that other BNDF enhancers exist, (3) DLX6 was partially validated but with differences between founders and 
(4) TYROBP although meeting all criteria is likely not an active enhancer or belongs to some distant gene with 
this strange pattern of expression. 

7. The use of LD score regression to examine the overlap of disease risk SNPs is nicely done. However, the 

diseases selected (neuropsychiatric diseases) are rather expected to be associated with neuronal OCRs 

based on several other publications (i.e. Price et al. 2019 Genome Biology, Polioudakis et al., 2019 Neuron). 

Could it be more interesting to examine overlap with the 170+ diseases in the LDScore regression tool with the 



brain cell types in this study? This could generate new leads on the contributions of these cell type to other 

diseases. 

Response:  

We agree completely with the reviewer that broad application of LDSc-regression to assess the cell types 

implicated in various traits is of interest. And we acknowledge that the two referenced studies are also nice 

ones. There are no predefined list of traits used for the LDSc-regression, and all traits where the summary 

statistics are attainable could potentially be used as an input for the program (e.g. LD hub has aggregated 

>800 GWASs), though each file needs to be manually obtained and wrangled into the format expected by the 

program.  

In our study, however, we would have problems with a too high burden of multiple testing. Knowing our 

annotation to be relatively scarce compared to the the broader regions and more powerful peaksets identified 

by ChIP-seq (PMID: 26414678,PMID: 25693563), and testing against the general genomic background of the 

53 element baseline model, we focussed on well powered neuropsychiatric traits along with a few traits not 

expected to involve the brain as negative controls. 

As a compromise between scope and burden of multiple testing, we’ve added 16 additional mostly brain 

related traits bringing the total to 30. This means we are on par with Price et al. and above Poliudakis et al. in 

terms of number of traits tested. 

For more general testing of neuronal epigenomics broadly against GWAS traits we would await ChIP-seq 

epigenomic data or more powerful approaches than LDSc-regression (which for instance only considers 

variants with a MAF>5%). 

Minor Issues 

1. The three brain regions studied should be mentioned in the abstract 

Response: 

We agree and have now added the three brain regions to the abstract. 

2. The abstract states that glutamatergic neurons are the most affect cell type in schizophrenia - this is a 

somewhat misleading statement because though true among the cells studied in this paper, there was no 

analysis of dopaminergic cell type which likely also have a strong role in this disease. 

Response:  

We agree that this limitation should be stated and have now rephrased the sentence in the abstract as: “ 

Combining our cell specific open chromatin with a bulk tissue study of schizophrenia brains increased 

statistical power and confirmed glutamatergic neurons to be the most affected amongst the four assayed cell 

types.“. We’ve further added the following to the discussion: “It would be interesting to assay the 

epigenome of dopaminergic neurons and particularly their involvement in schizophrenia. We do, 

however, also note that our study encompassed the DLPFC, which has long been implicated in 

schizophrenia (PMID: 3382321) and does not particularly relate to dopaminergic function.”



3. The first sentence of the second paragraph in the introduction need to be changed to clearly explain the 

limitation in the field.  

Response: 

We apologize for the lack of clarity here. The sentence used to be “Studies of the human brain epigenome 

have, however, focused mostly on bulk tissue, in vitro cultured cells, included only two broadly defined brain 

cell types (neurons and non-neurons), or were performed in a single brain region2-4”, and have now been 

rephrased as: “The epigenome of the human brain is, however, still poorly understood, in part due to 

technical limitations. Even in fresh tissue, which is not readily available, isolation of intact cells is 

challenging. Although promising, the use of iPSC derived brain cells and/or organoids are not ideal 

proxies. Frozen archival tissue is more easily available, but the majority of cell type specific markers are 

lost upon thawing. Still, nuclei can be extracted and identified using a currently limited set of 

antibodies specific to the nucleus of a given cell type. Thus, studies have previously been limited to 

examining bulk tissue, in vitro cultured cells, included only two broadly defined brain cell types 

(neurons and non-neurons), or were performed in a single brain region2-4”.  

4. For bioinformatic outlier removal, please provide a read or peak coverage and/or correlation value threshold.  

Response:  

We have changed the underlined text in the supplement: “We examined libraries that had a low FRiP (<5%), 

had a low final read count (<5 million reads), visually were outliers in clustering, or looked to have outright 

failed when inspecting the bigWig track. In this analysis, one sample with GABAergic neurons from the anterior 

cingulate cortex was clearly of inferior quality and was left out, thus leaving 47 samples for downstream 

analyses”. FRiP, or “fraction of reads in peaks”, is basically a signal to noise ratio, and based on the Bayesian 

Information Criterion analysis, the most important one in our analysis. As FRiP improved the model the most, it 

was added to the model in the first iteration. In the next iteration no other covariate was estimated to improve 

the fit of the model. In other words, FRiP was the most important technical covariate of those that we tested. 

We see this as a justification of using FRiP in the outlier identification step. A limitation to FRiP, as with many 

other quality metrics, is that it depends on other factors than strictly quality. In this case peak calling would 

directly affect FRiP, as more peaks/larger coverage would mean a higher fraction of reads would be within the 

peaks. 

5. The authors should mention the age and postmortem interval of the samples. Perhaps this could contribute 

to the 34% residual value in Fig 1f. 

Response:  

We have now added the following to the main text “…of four individuals in early adulthood (ages 20-28), who 

had not been diagnosed with neuropsychiatric illness at the time of death, and all with a post-mortem interval 

less than 24 hours.” Unfortunately, we don’t have more specific times for the post-mortem intervals.  

It is a valid point that such factors could contribute to the residuals. We have added the following section 

“Sampling error from finite sampling depth and untested technical confounds likely contributes to the residuals 

in the model. This includes covariates relating to the individual person such as post-mortem interval, but as 



such covariates would show collinearity with “Person” in the model, which explains only a modest fraction of 

the variance, such person-related covariates are unlikely to drastically affect chromatin variability.” In addition, 

from ongoing studies from our large group we have found PMI to have little effect or no effect at all compared 

to other covariates such as FRiP. This mirrors RNAseq analysis where PMI will have a small effect, especially 

compared to other variables (such as RIN and pH) that seems to capture better the quality of brain tissue. 

Although age as a covariate is expected to have a large effect on chromatin accessibility, this effect is 

expected to be minimum or have no effect at all given the limited age range of our cohort. 

6. Promoter accessibility changes with both brain region and cell type. Was this taken into account during the 

overlapping analysis? 

Response: 

In short, yes, we do account for both cell type and brain region. We apologize that this wasn’t written more 

clearly in the original submission. We have added the following to the methods section: “We here thus model 

both cell type and brain region effects.” As well as: “In each of these contrasts, the cells were compared 

with the respective cells of the same brain region, and significance was established as this contrast 

differing from 0 (e.g. p(GLU_ACC- GABA_ACC + GLU_DLPFC - GABA_DLPFC + GLU_PVC - 

GABA_PVC!=0)). In this way potential overall differences in brain region are accounted for." 

7. Why is the protein coding gene map comparison to GREAT in cell-specific pathways enrichments not 

provided as a supplementary figure (line 211)? Should a correlation analysis be included? 

Response: 

We apologize for not detailing this further. This approach seemed less powerful, and is not well established like 

GREAT. In particular, functionally related genes tend to be aggregated across the genome, and this approach 

might be slightly biased towards picking up gene sets, which have genes mostly in gene dense regions. 

Therefore, we would like to omit the details of these results from an already long paper to avoid confusion with 

the main results. We have added this sentence “This alternative approach to gene set enrichment analyses, 

however, seemed less powerful.” to the paper. For the reviewers and the journal, the top pathways and p-

values using this alternative approach is shown in the table below, but we would prefer not to include it:



Cell set Pathway P-value (BH-adjusted)

GLU Signaling By GPCR (Re) 5.3E-27

GLU Olfactory Transduction (KG) 2.9E-21

GLU Sensory Perception (GO) 3.7E-21

GLU Peptide Cross Linking (GO) 1.4E-13

GLU Keratinocyte Differentiation (GO) 8.6E-12

GABA Central Nervous System Development (GO) 6.7E-02

GABA Cognition (GO) 6.7E-02

GABA Reg. of Hormone Levels (GO) 6.7E-02

GABA Neuron Differentiation (GO) 1.0E-01

GABA Memory (GO) 1.1E-01

OLIG Gliogenesis (GO) 7.6E-03

OLIG Oligodendrocyte Differentiation (GO) 3.4E-02

OLIG Peripheral Nervous System Development (GO) 4.2E-01

OLIG Glial Cell Development (GO) 6.1E-01

OLIG Ensheathment of Neurons (GO) 9.5E-01

MGAS Neg. Reg. of Transcription From RNA Polymerase II Promoter (GO) 3.9E-09

MGAS Response to Wounding (GO) 3.1E-07

MGAS Neg. Reg. of Cell Proliferation (GO) 3.8E-07

MGAS Epithelium Development (GO) 5.1E-07

MGAS Neg. Reg. of Multicellular Organismal Process (GO) 6.3E-07

Neuron Olfactory Transduction (KG) 2.6E-15

Neuron Sensory Perception (GO) 3.5E-14

Neuron Signaling By GPCR (Re) 1.6E-09

Neuron Neuroactive Ligand Receptor Interaction (KG) 1.6E-06

Neuron Cell Cell Signaling (GO) 4.3E-06



non-Neuron Neg. Reg. of Transcription From RNA Polymerase II Promoter (GO) 1.9E-06

non-Neuron Pi3kci AKT Pathway (PI) 3.8E-03

non-Neuron AKT Phosphorylates Targets in The Cytosol (Re) 7.1E-03

non-Neuron Transcription From RNA Polymerase II Promoter (GO) 7.1E-03

non-Neuron Covalent Chromatin Modification (GO) 7.1E-03

8. Figure 3b does not clearly show the overlap of TFs from multiple cell types. For example, the 

oligodendrocyte lines are over the non-neuronal lines making it difficult to see the overlap in TF like SF family. 

Separate cell type plot or modifying the existing plot could improve the clarity of this figure. 

Response:

We acknowledge this is a problem, and have addressed the problematic figure by nudging the connections so 

they are more clearly visible when more than one annotation connects to the same transcription factor.  

9. Multiple figures have axis too small to effectively read, making it difficult to interpret data. Please edit all 

figures accordingly.  

Response: 

We acknowledge this and apologize. Figures 1, 2, 5, S6, S8, S7, and S9 have been tweaked. 

Reviewer #2 (Remarks to the Author): 

The study by Dr. Roussos and colleagues carries out ATAC-seq on 3 cerebral cortex regions in 4 individuals 

using FANS for NeuN, Sox6 and Sox10 to delineate 4 distinct cell types GABA neurons, Glu neurons, 

oligodendrocytes and microglia/astrocytes. This study follows up on the 2018 Genome Research paper of the 

same group which characterised NeuN+ and NeuN- cell populations, by further refining cell types. 

The study is thorough, well written, and carries out standard analyses of ATAC-seq data, such as overlap 

analyses with epigenomic features, TSS, TF binding sites etc., as well as assessment of enhancer function in 

vivo for several open-chromatin regions.  

Major Issues 

1. The QC FRiP score are quite low: 0.05-0.15, while the standard for Encode data for example is >0.2. The 

authors need to provide additional information to demonstrate an acceptable signal-to noise ratio, such as, for 

example a TSS enrichment score (https://www.encodeproject.org/data-standards/terms/#enrichment) and a 

replication rate or a correlation across replicates (i.e. different individuals , same brain region and cell type). 

Response: 



We appreciate the reviewer's concern about data quality. We note that our experiments were performed on 

nuclei extracted from frozen postmortem brain specimens. Few studies have applied ATAC-seq to frozen 

tissue. Such tissues are, by their very nature, suboptimal due to both the freeze/thawing and the post mortem 

interval. This would be expected to have a direct and adverse effect on data quality when compared to fresh 

tissue/cell lines. As evidenced by the results presented in the paper or a simple inspection of the UCSC tracks, 

however, the ATAC-seq data very much still provide valuable insights into the cell specific human brain 

epigenomes. 

To more quantitatively assess the concerns about the quality of our data, we processed three publicly available 

ATAC-seq datasets through our pipeline: 

● Fullard et al 2018 (115 NeuN+/- samples from 14 regions; PMID: 29945882) 

● Bryois et al (248 bulk tissue samples from DLPFC; PMID: 30087329) 

● Rizzardi et al (22 NeuN+/- samples from DLPFC and NUC; PMID: 30643296) 

Using the ataqv package (PMID: 32213349) to calculate TSS enrichment, and found our data to have 

comparable levels of TSS enrichment as shown below (NEW FIGURE 1b). This is despite the fact that we 

employ the most challenging experimental protocol as we are assaying four brain cell subtypes, not only 

NeuN+/- or bulk tissue. TSS enrichment metric for all samples of this study was added to Table S1. 

To study the reproducibility among the biological samples within the same cell type and brain region, we 

performed pairwise correlation by estimating the overall similarity between the raw reads coverage (number of 

reads) over consecutive bins of 10,000 bp genomic regions (Figure NEW FIGURE 1a). 

Both figures have now been included in the supplement along with the explanation in the Online Methods. 

NEW FIGURE 1. Intersample correlation and TSS enrichment. (a) Correlations of raw reads counts over 

consecutive bins of 10,000 bp genomic regions between samples originating from the same cell type and brain 

region. (b) Comparison of TSS enrichment in housekeeping genes for our dataset and three additional 



postmortem human brain ATAC-seq datasets. Note that the double sorting employed in the current study puts 

more stress on the nuclei than a single sorting step (Fullard and Rizzardi) or simply using bulk tissue (Bryois). 

2. A comparison between the current ATAC-seq data and RNA-seq data from NeuN+/NeuN- cells (eg. PMID 

31288836) is necessary for a functional interpretation of the open chromatin regions, rather than just overlaps 

(with gene sets from the Epigenomics Roadmap consortium.  

Response: 

We acknowledge the reviewer’s request for comparisons against additional epigenomic and transcriptomic 

studies that assayed postmortem human brain tissue. To quantify the concordance of our differential analysis 

results (changes on ATAC-seq & RNA-seq level between neurons and non-Neurons), we compared our 

dataset to the suggested study as well as three additional ones: 

● RNA-seq from Mendizabal et al. 2019 (89 NeuN+/Olig2+ DLPFC samples; PMID:31288836)  

● RNA-seq from Rizzardi et al. 2019 (20 NeuN+/- samples from 2 regions; PMID: 30643296) 

● ATAC-seq from Rizzardi et al. 2019 (22 NeuN+/- samples from 2 regions; PMID: 30643296) 

● ATAC-seq from Fullard et al. 2018 (115 NeuN+/- samples from 14 regions; PMID: 29945882) 

Here, we calculated the correlation of our chromatin accessibility changes between neurons and non-Neurons 

with their differential analyses (NEW FIGURE 2). We observed very strong correlation with two epigenomics 

datasets (Pearson correlation of 0.934 and 0.894), implying a robustness of our findings. Transcriptomics 

datasets showed lower but still very convincing levels of concordance (Pearson correlation of 0.491 and 

0.466), especially considering our simplistic approach utilizing only promoter OCRs (Online Methods). These 

results have been added to the manuscript. 



NEW FIGURE 2. Comparison of cell specificity across RNA/ATAC-seq studies. The cell specificity of 

OCRs and gene expression was assessed using fold change concordance (log2 values) between our ATAC-

seq dataset (fold changes for comparison between neuronal vs non-Neuronal / Oligodendrocyte samples) and 

external ATAC-seq / RNA-seq datasets. For external ATAC-seq datasets, correlation was calculated on 

overlapping OCRs (minimum 25% overlap). For external RNA-seq datasets, correlation was calculated 

between fold change of chromatin accessibility of promoter OCRs from our ATAC-seq and fold change of gene 

expression of corresponding genes from external RNA-seq study. This simplistic approach to correlating 

ATAC-seq to RNA-seq is not expected to yield high correlations, as distal elements are ignored and as OCRs 

include both enhancers and silencers. (a) ATAC-seq of NeuN+/- samples from 14 brain regions. (b) ATAC-seq 

from NeuN+/- samples from dorsolateral prefrontal cortex and nucleus accumbens. (c) RNA-seq from 

NeuN+/Olig2+ samples from dorsolateral prefrontal cortex. (d) RNA-seq from NeuN+/- samples from 

dorsolateral prefrontal cortex and nucleus accumbens. 



3. The Jaccard index is not appropriate for calculating the overlap with different epigenomic features, as it does 

not take into account genome-wide background. A test with random sampling of the genomic background for 

each chromHMM category should be used instead. 

Response: This has been addressed in the response to reviewer #1’s 5th major issue. 

4. For the variant enrichment analyses, an enrichment of eQTL data (eg. GTEX ) would be valuable to 

demonstrate the enrichment of regulatory variants in the OCRs identified in the present study. 

Response: We acknowledge the relevance and have now done an overlap analysis, which found SNPs likely 

to causally affect gene expression based on GTEx data to be enriched in the open chromatin regions. In 

particular, looking at the ratio of causal SNPs in the open chromatin regions compared to the background, 

odds ratios from 1.6 to 2.9 were observed. These results are shown in the new Table S2 in the manuscript. We 

have added one author to the paper (Dr. Biao Zeng), who was responsible for this analysis. 

5. The title is an overstatement: there is no assessment of the function of glutamatergic neurons and no 

experimental evidence for genetic variants associated with schizophrenia affecting such function. 

Response:  

We acknowledge this and have changed the title to: “Common schizophrenia risk variants are enriched in open 

chromatin regions of glutamatergic neurons”.  

Minor: 

FigS6,7: It’s unclear what Log2Fc refers to, as these are enrichment analyses. 

Response:  

We apologize for the lack of clarity, and have renamed it as log2 enrichment. We previously just had a citation 

for the methodology in the online methods, but have now added this text for clarification “In short, the number 

of OCRs overlapping the presumed regulatory domains of genes in a particular gene set is compared to OCRs 

overlapping any regulatory domains. Enrichment is then the OCR density for the regulatory domains of the 

gene set compared to the OCR density in the union of all regulatory domains.” 

Reviewer #3 (Remarks to the Author): 

This paper provides the first ATAC-Seq study to examine subtypes of neurons and non-neuronal cells. 

Therefore, although the sample size is small I believe it is a strong publication (indeed, it provides a further 

example of the power of within-subjects analyses of this type). The authors should be commended for making 

their data open access, and for providing it for review - this greatly enhances both the potential impact of the 

paper and the ease of review. The manuscript is generally well written and the figures and tables are largely 

clear. I therefore have only questions of clarification: 



1. On p7, and in Fig 2b, I believe that the REMC comparisons would benefit from clarification. For example, the 

text states “[…] our 160 cell-specific OCRs predominantly overlap with REMC brain samples” Is this a typo? If 

not, please clarify how OCRs overlap with samples. Similarly, in Fig 2b, please state what the asterisks 

represent (and clarify why some bars have multiple asterisks). 

Response:  

We apologize for the lack of clarity in the sentence in question and have rephrased it as follows: “To 

investigate how our data compared to existing epigenomic data, we computed the overlap of our OCRs with 

open chromatin from DNase-seq as well as chromatin states from the Roadmap epigenomics mapping 

consortium2,9 (REMC) (Figures 2b and S5). In terms of the Jaccard index, open chromatin and active 

chromatin states identified in REMC brain related samples showed a higher overlap with our cell specific OCRs 

than non-brain related samples.” 

We apologize for not stating what the dots near the boxes in Figure 2b means. They are simply outlier samples 

identified by the plotting software (ggplot2 in R). This is now stated in the paper. 

2. Table 1 also requires clarification: Table 1: where were the neuronal and non-neuronal data in this table 

obtained from? If they are simply the Glu + GABA and OLIG + MGAS why do the values not add up? 

Response: 

Table 1 is based on the identification of cell specific OCRs. In our admittedly quite lengthy Online Methods 

under “Statistical analysis of differences in chromatin accessibility” there is a very technical description of why 

neurons are not simply GLU+GABA etc. Here, we have expanded this for clarity: “…Resultantly, such cell 

specific OCRs are truly specific to the cell type in question. For example, an OCR showing high and 

comparable chromatin accessibility in GLU and GABA and a low accessibility in OLIG and MGAS would not be 

assigned as specific to GLU.”   

A bit later we have added: “These “Neuron” and “non-Neuron” sets thus also include OCRs that are specific to 

the overall cell group but might be equally accessible in both of the constituent cell subtypes. For instance, an 

OCR which is highly and equally accessible in GLU and GABA but lowly accessible in both OLIG and MGAS 

would be listed here as a “Neuronal” OCR. It would, however, not be listed as GLU or GABA specific as 

detailed above.” 

We have further added this to the legend of Table 1: “"Neuronal” is not simply the sum of “Glutamatergic” and 

“GABAergic”, as the two latter exclude chromatin that are not specific to either neuronal subtype (Online 

Methods). Likewise, “non-Neuronal” is not the sum of the two constituent cell subtypes.” 

3. Regarding the GWAS-related findings, were results corrected for between-phenotype correlations? 

Furthermore, it would be good to add comment about the diagnostic categories that *don't* show clear 

association, e.g. bipolar. Furthermore, what corrections (if any) were run for multiple comparisons for these 

studies? 

Response:  

The way that LDSc is implemented, one GWAS at a time is tested against the annotations. Thus, each GWAS 

was run individually through the LDSc software. We apologize for this not being clear and have now elaborated 

on it in the Online Methods. 



We have addressed some of the limitations concerning the power of LDSc in our response to Reviewer #1’s, 

7th major point. We have further added this comment: “Some neuropsychiatric traits did not show enrichment 

in our open chromatin regions, which might result from a lack of power in the GWAS, lack of power in the LDSc 

approach, or the limited genomic extent of our epigenomic annotations.” 

We used the “Benjamini & Hochberg” FDR correction for multiple testing, which has now been explicitly stated 

at Figure 5 and S17. We apologize for this not being the case in the initial submission. 

4. It would be good to have more information about the postmortem brains included here pH, and ideally RIN. I 

realise that this study did not examine RNA directly, but these measures still speak to overall tissue quality. It 

might be that some of this information is in Table S1, but the table is only partially readable as PDF (e.g. what 

was the cause of death of Female sample #4) 

Response: 

Unfortunately, neither RIN nor pH was available for our samples. However, we can get an idea about the 

impact differences in the sample quality across our four brains by looking at our variance partitioning analysis 

(Figure 1f). Cell and brain region contribute massively (57%) to the variance in chromatin accessibility, 

whereas “Person”, representing the four different brain samples, had a comparatively low impact (1.5%). We 

believe “Fraction of reads in peaks (FRiP)” in table S1 to be a good but imperfect indicator of sample quality. 

We apologize for the cause of death for Female sample #4 being cut off in the files generated by the online 

manuscript system. It should of course be plainly visible in the final Excel file. The cause of death was “sudden 

natural, heart”.

Minor point: 

Why did the authors use Hg19 for their annotations? Could they provide a liftover to Hg38? 

Response: 

Hg19 was the prevailing assembly at the time of initial data preparation, and the existing external data used in 

the paper is based on hg19. We acknowledge that hg38 is now widely adopted, and we have therefore added 

hg38 peaks to GEO record (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143666 - reviewer's 

password yfuzmmwwjbqlvct). We have also updated UCSC open chromatin tracks available from the project 

webpage to support both hg19 and hg38 (https://icahn.mssm.edu/boca2). 



REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

The authors have done a nice job answering the reviews and improving their manuscript. In 

particular they now present their findings in a manner that better highlights the novelty and 

applicability of their ATAC-seq resource and clarified methodological concerns. Their revised Figure 

2b is appropriate. I have no further recommendations. 

Reviewer #2 (Remarks to the Author): 

The authors have satisfactorily addressed all of my questions. Thank you. 

Reviewer #3 (Remarks to the Author): 

I thank the authors for their thorough responses to my comments (and those of the other 

reviewers). They have satisfactorily addressed the points that I made.


