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Effects of social distancing and isolation on epidemic spreading
modeled via dynamical density functional theory

SUPPLEMENTARY INFORMATION
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SUPPLEMENTARY NOTE 1: GENERALIZED MODEL

Here, we present a possible generalization of our SIR-DDFT model. In the main text, we have used the decompo-
sition

Fexc = Fsd + Fsi (1)

with

Fsd = −
∫

ddr

∫
ddr′ Csde

−σsd(r−r′)2
(

1

2
S(r, t)S(r′, t) + S(r, t)R(r′, t) +

1

2
R(r, t)R(r′, t)

)
, (2)

Fsi = −
∫

ddr

∫
ddr′ Csie

−σsi(r−r′)2I(r, t)

(
1

2
I(r′, t) + S(r′, t) +R(r′, t)

)
, (3)

which gives the excess free energy (i.e., the contribution from interactions) as a sum of social distancing and self-
isolation. Instead, one can use the form

Fexc = Fsd + Fiso + Fill. (4)

In this case, social distancing remains unaffected. However, there are now two terms Fiso and Fill determining the way
infected persons interact with others. Fiso is the isolation term, which corresponds to a repulsive interaction between
infected and healthy individuals. The term Fill models the interaction of infected persons with other infected persons.
This can have various forms. They repel each other if they practice social distancing or self-isolation, but they can
also attract each other (e.g., if they intentionally accumulate in a hospital or quarantine station). Assuming that the
interaction corresponding to Fill is also Gaussian, i.e.,

Fiso = −
∫

ddr

∫
ddr′ Cisoe

−σiso(r−r′)2I(r, t)(S(r′, t) +R(r′, t)), (5)

Fill = −1

2

∫
ddr

∫
ddr′ Cille

−σill(r−r′)2I(r, t)I(r′, t) (6)

with the parameters Ciso and Cill for the strength and σiso and σill for the range of the infected-noninfected and
infected-infected interactions, respectively, the model given by Equations (12)-(14) in the main text generalizes to

∂tS = DS∇2S − ΓS∇ ·
(
S∇(CsdKsd ? (S +R) + CisoKiso ? I)

)
− cSI, (7)

∂tI = DI∇2I − ΓI∇ ·
(
I∇(CisoKiso ? (S +R) + CillKill ? I)

)
+ cSI − wI, (8)

∂tR = DR∇2R− ΓR∇ ·
(
R∇(CsdKsd ? (S +R) + CisoKiso ? I)

)
+ wI (9)

with the kernels

Kiso(r) = e−σisor
2

, (10)

Kill(r) = e−σillr
2

(11)

and Ksd as defined in the main text. For Ciso = Cill = Csi and σiso = σill = σsi, the standard case is recovered. The
general model can also allow for attractive interactions between infected persons, or simply for a reduction of the
repulsion between them (resulting from the fact that they are already ill).
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SUPPLEMENTARY NOTE 2: EFFECTIVE TRANSMISSION RATE

As discussed in the main text, many key features of the dynamics in the SIR-DDFT model can be understood by
mapping it onto a standard SIR model using the effective transmission rate ceff . It is defined by the requirement that
the rate of change of the total number of susceptible (S̄) and infected (Ī) persons satisfies (for death rate m = 0)

˙̄S = −ceff S̄Ī, (12)

˙̄I = ceff S̄Ī − wĪ. (13)

Integrating the SIR-DDFT model over space shows that such a parameter ceff exists and is given by

ceff(t) = c

∫
ddr eS(r, t)eI(r, t) (14)

with the normalized distributions eS = S/S̄ and eI = I/Ī. When data for the time evolution of S̄ and Ī are given,
Supplementary Equations (12) and (13) allow to obtain the effective transmission rate as

ceff = −
˙̄S

S̄Ī
(15)

or

ceff =
˙̄I + wĪ

S̄Ī
. (16)

We have used Supplementary Equation (16) to obtain ceff as a function of time for the three time evolutions
shown in Figure 1(b) of the main text, which correspond to the parameter values Csi = Csd = 0 (no interactions),
Csi = 2Csd = −20 (moderate interactions), and Csi = 3Csd = −30 (strong interactions). For better visualization, the
curves have been smoothened using a Savitzky-Golay filter. Since Figure 1(b) in the main text presents the normalized
values S̄n, Īn, and R̄n, we here give the rescaled effective transmission rate ceff,n = Nceff with the population size N
that one has to use if Supplementary Equations (12) and (13) are written for S̄n = S̄/N and Īn = Ī/N rather than
S̄ and Ī. We focus on the time interval [0, 50], since the main infection dynamics takes place during this period. The
results are shown in Supplementary Figure 1. At the beginning, the values of ceff,n are the same in all simulations,
which is a consequence of the identical initial conditions. In the noninteracting case, one observes an increase of ceff,n

to a value of about 2.21 at time t ≈ 2, followed by a strong decrease. For the simulations with interactions, it is found
that ceff,n decreases at the beginning. In the case of strong interactions, a sharp reduction of ceff,n from about 0.62
to about 0.17 is observed between times t = 6 and t = 8. After the initial decay, a regime with a relatively constant
value of ceff,n is reached in all three simulations. The value at t = 50 is given by ceff,n ≈ 0.44 for Csi = 2Csd = −20,
ceff,n ≈ 0.29 for Csi = Csd = 0, and ceff,n ≈ 0.24 for Csi = 3Csd = −30.

For the noninteracting case, the values of ceff,n in the initial spreading phase are relatively large, such that the
number of infected persons can grow rapidly. As indicated in the main text, the time evolution of ceff,n for moderate
interactions also explains the results for Īmax,n and S̄∞,n from the main text: In the presence of interactions, the
transmission rate is lower during the initial spreading phase, leading to a reduction of the peak value Īmax,n. On
the other hand, the final transmission rate is higher for moderate than for no interactions, such that S̄∞,n is slightly
lower in the former case. Finally, the sharp decrease of ceff,n in the case of strong interactions can be explained by
the onset of pattern formation, which greatly reduces the spatial overlap of S and I and therefore, by Supplementary
Equation (14), the value of the effective transmission rate.
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Supplementary Figure 1. Time evolution of the rescaled effective transmission rate ceff ,n for the simulations
presented in Figure 1 of the main text. Initially, large transmission rates are observed for the case of no interactions
(Csi = Csd = 0), explaining the corresponding large value of Īmax,n. At later times, the value of ceff,n is larger for moderate
interactions (Csi = 2Csd = −20). The smallest value of ceff,n is reached for strong interactions (Csi = 3Csd = −30) that lead to
phase separation.
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SUPPLEMENTARY NOTE 3: SIMULATIONS IN ONE SPATIAL DIMENSION

In the main text, we have presented simulation results for an outbreak in a two-dimensional (2D) system. However,
it is also of interest how the model behaves in one spatial dimension (1D). Analytical investigations and numerical
simulations are easier to perform in 1D, whereas the 2D case is more realistic given that humans live on a two-
dimensional surface. A second parameter that is of potential relevance and that will also be considered here is the
domain size.

Supplementary Figure 2. Time evolution of the fraction of susceptible, infected, and recovered persons for
domain size L = 1. The time evolution is shown for no interactions (Csi = Csd = 0) and for interactions with Csi = 2Csd =
−10. The curve Īn is flatter and has a smaller peak in the presence of repulsive interactions as is the case in 2D.

To investigate these aspects, we have numerically solved the model in one spatial dimension for domain sizes L = 1
and L = 10. The spatial step size used was dx = 0.005 (individual simulations) or dx = 0.01 (parameter scan).
As an initial condition, we used a Gaussian with amplitude 1 and variance L2/50. If not specified otherwise in the
figures or corresponding captions, all parameters have the values used for Figure 1 of the main text (see the discussion
of the numerical methods). The results for L = 1 are shown in Supplementary Figure 2, presenting the fraction of
susceptible, infected, and recovered persons as a function of time t, and in Supplementary Figure 3, visualizing the
spatiotemporal evolution of I(x, t) as a function of position x and time. As is obvious, the main effects – inhibition
of the outbreak by repulsive interactions and formation of infection clusters – are also present in 1D. (Since there
is no difference between rings and spots in 1D, we refer to the regions of high infection concentration as ‘infection
clusters’.) An advantage of working in 1D is that a visualization of the complete time evolution of I(x, t) in the form
of a spacetime plot (Supplementary Figure 3) is possible.

In Supplementary Figures 4 and 5, the same plots are shown for a system with L = 10. By comparing Supplementary
Figures 2 and 4, showing the fractions of persons in the various compartments, it is found that the general result –
repulsive interactions lead to a reduction of the outbreak – is not affected by the domain size. A stronger difference is
observed when comparing Supplementary Figures 3 and 5: The number of infection clusters is much larger in the case
of a larger domain. Moreover, infection clusters occasionally merge. The general picture (infected persons self-organize
into small clusters) is in agreement with the 2D result. In particular, the fact that increasing the domain size leads
to a large number of small clusters rather than to a small number of large clusters supports our interpretation of the
phase separation as infected persons self-isolating at home proposed in the main text. The formation of states with
multiple spikes and transitions between them in an infection model has also been discussed in Ref. [1], where phase
separation was interpreted as quarantine.

Finally, Supplementary Figure 6 shows the phase diagrams of the SIR-DDFT model in 1D for a domain size L = 1.
As in the 2D case, a phase transition associated with a reduction of the outbreak and with demixing is observed in the
top left corner of the phase diagrams. A difference is the location of the phase boundary: In 2D, larger values of the
interaction parameters are required for phase separation. This observation is plausible when comparing it to results
for the demixing of GCM fluids by Louis et al. [2], who found that the location of the phase boundary depends on the
zero-wavelength value of the Fourier-transformed Gaussian interaction potential. This is proportional to the range
of the repulsive interaction in 1D and to its square in 2D, such that – for equal parameter values – the quantitative
results change. The region in the bottom left corner of the phase diagrams for the large-domain simulation in 2D, in
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Supplementary Figure 3. Density of infected persons I(x, t) as a function of position x and time t for domain
size L = 1 and interaction strength Csi = 2Csd = −10. The formation of infection clusters is also observed in 1D.

Supplementary Figure 4. The same as in Supplementary Figure 2, but now for domain size L = 10. For a larger
domain size, repulsive interactions still lead to a lower number of infections.

which diffusive spreading is more important than phase separation, is not visible in Supplementary Figure 6 (demixing
is the dominant effect).

In summary, it was found that, while certain quantitative differences arise, most of the main qualitative results are
not affected by changing the number of spatial dimensions or the domain size. This is an important advantage for the
practical applicability of the model, as it implies that useful insights can already be gained from solving it in 1D on
small domains, which greatly reduces the computational cost. Important exceptions include the difference between
infection rings and spots and the existence of a region with reduced spreading in the bottom left corner of the phase
diagram.

5



Effects of social distancing and isolation on epidemic spreading...M. te Vrugt, J. Bickmann, R. Wittkowski

Supplementary Figure 5. The same as in Supplementary Figure 3, but now for domain size L = 10. Enlarging
the domain leads to an increase of the number of infection clusters and a more complex time evolution.

Supplementary Figure 6. Phase diagrams for the SIR-DDFT model in 1D for domain size L = 1. The dependence
of the maximal fraction of infected persons Īmax,n and the final fraction of susceptible persons S̄∞,n on the strength of self-
isolation Csi and social distancing Csd is shown. The phase boundary arises in the same way as in 2D, although at different
parameter values.
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