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SUMMARY

CellMiner-SCLC (https://discover.nci.nih.gov/SclcCellMinerCDBY/) integrates drug sensitivity and genomic
data, including high-resolution methylome and transcriptome from 118 patient-derived small cell lung cancer
(SCLC) cell lines, providing a resource for research into this “recalcitrant cancer.” We demonstrate the repro-
ducibility and stability of data from multiple sources and validate the SCLC consensus nomenclature on the
basis of expression of master transcription factors NEUROD1, ASCL1, POU2F3, and YAP1. Our analyses
reveal transcription networks linking SCLC subtypes with MYC and its paralogs and the NOTCH and HIPPO
pathways. SCLC subsets express specific surface markers, providing potential opportunities for antibody-
based targeted therapies. YAP1-driven SCLCs are notable for differential expression of the NOTCH pathway,
epithelial-mesenchymal transition (EMT), and antigen-presenting machinery (APM) genes and sensitivity to
mTOR and AKT inhibitors. These analyses provide insights into SCLC biology and a framework for future in-

vestigations into subtype-specific SCLC vulnerabilities.

INTRODUCTION

Although small cell lung cancer (SCLC) represents only 15% of
all lung cancers, it accounts for more than 30,000 cases/year
in the United States, with most patients presenting with widely
metastatic disease. Unlike the increasingly personalized treat-
ment approaches for non-small cell lung cancer (NSCLC),
SCLC is currently treated as a homogeneous disease (Rudin
et al., 2019; Thomas and Pommier, 2016). The typical short life
expectancy and the therapeutic options, which have not
changed for decades (platinum-etoposide combination as first-
line therapy and topotecan at relapse), caused the National Can-
cer Institute (NCI) to categorize SCLC as a “recalcitrant” cancer.

SCLC tumors are usually characterized by their neuroendo-
crine (NE) differentiation, which is immuno-histochemically visu-
alized with markers including synaptophysin (SYP) and chro-
mogranin A (CHGA) (Gazdar et al., 2017; McColl et al., 2017).
Yet a small subset of SCLCs express low levels of these NE
markers (“non-NE”) (McColl et al., 2017; Zhang et al., 2018).

Gheck for
Updates

Hence, SCLCs have been historically defined as “classic” (NE)
or “variant” (non-NE) (Zhang et al., 2018). Gazdar and colleagues
proposed a classification (“NE score”) on the basis of the
expression of 50 genes (25 with increased and 25 with
decreased expression) for NE SCLC, including the transcription
factors ASCL1 (achaete-scute homolog 1) and NEUROD1
(neurogenic differentiation factor 1), which are highly expressed
in NE SCLC (Zhang et al., 2018). A consensus nomenclature for
molecular subtypes has been recently proposed on the basis of
differential expression of two additional transcription factors,
YAP1 (Yes-associated protein 1) and POU2F3 (POU class 2 ho-
meodomain box 3) for the non-NE SCLC subtypes (Rudin et al.,
2019). POU2F3 encodes a POU domain transcription factor nor-
mally expressed in chemosensory cells of the intestinal and lung
epithelium (Huang et al., 2018). YAP1, a key mediator of the Hip-
po signaling pathway, is reciprocally expressed relative to the NE
marker INSM1 (McColl et al., 2017). Hence, SCLCs can be clas-
sified into four groups on the basis of the expression of NEU-
ROD1, ASCL1, POU2F3, and YAP1 (Rudin et al., 2019). For
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brevity, we refer to this classification as “NAPY” (N for NEU-
ROD1, A for ASCL1, P for POU2F3, and Y for YAPT1).

Genomic initiatives spearheaded by The Cancer Genome
Atlas (TCGA) consortium have accelerated the pace of discovery
for many cancers. Yet TCGA was not extended to SCLC,
because of a lack of readily accessible and adequate tumor tis-
sue, as most patients are diagnosed by fine-needle aspiration.
Nevertheless, SCLC research has benefited from the systematic
collection of a large number of tumor cell lines, most of them
developed at the NCI in the NCI-VA and NCI-Navy Medical
Oncology Branches (Mulshine et al., 2019). This collection has
been distributed widely and included in the cancer drug genomic
databases of the NCI, Broad Institute/MIT, and Sanger/Massa-
chusetts General Hospital (MGH) (Barretina et al., 2012; Garnett
et al., 2012; lorio et al., 2016; Polley et al., 2016). However, the
data were until now accessible only from individual platforms,
making it challenging to translate genomic knowledge of SCLC
tumor biology and therapeutic possibilities. Additionally, a num-
ber of SCLC cell lines generated by the Minna-Gazdar group at
UT Southwestern (UTSW) Medical Center (McMillan et al.,
2018) had not been integrated in the NCI (NCI-SCLC), Broad
Institute (Cancer Cell Line Encyclopedia [CCLE]/Cancer Thera-
peutics Response Portal [CTRP]), and Sanger/MGH (Genomics
of Drug Sensitivity in Cancer [GDSC]) databases.

To extend our understanding of the genomics of SCLC, we
performed genome-wide promoter methylation on the NCI set
of 66 SCLC cell lines and whole-genome RNA sequencing
(RNA-seq) for 72 cell lines of the UTSW set. We integrated those
data in a global drug and genomic database (SCLC-Global) en-
compassing 118 SCLC lines from 115 individual patients. The in-
tegrated data, SCLC-CellMiner-CrossDataBase (SCLC-Cell-
Miner), are available from a web-based tool (https://discover.
nci.nih.gov/SclcCellMinerCDB/) derived from our CellMiner
cross-database (CDB) web application (Rajapakse et al., 2018).

RESULTS

SCLC-CellMiner Resource

SCLC-CellMiner integrates genomic and drug activity data for
118 molecularly characterized SCLC cell lines, all of which
have DNA fingerprints establishing their provenance (Figures
1A and 1C): 68 from the NCI collection (Polley et al., 2016), 74
from the GDSC (Garnett et al., 2012), 53 from the CCLE, 39
from the CTRP (Barretina et al., 2012), and 73 from UTSW (Gaz-
dar et al., 2010). Seventeen cell lines (14%) are in all five data
sources, 20 (17%) are in four data sources, 23 (20%) in three
data sources, 15 (13%) in two data sources, and 43 (36%) in
only one data source (Figure 1A; Table S1).

Our integrated resource includes new analyses for high-reso-
lution methylome (Krushkal et al., 2020) and copy number for 66
NCI cell lines and RNA-seq for 72 UTSW cell lines (Figure 1B).
SCLC-CellMiner also makes accessible whole-exome mutation
data for 12,537 genes across 72 cell lines of the UTSW SCLC
database in addition to the previously released exome
sequencing data for 52 cell lines from CCLE and 62 cell lines
from GSDC.

Tested clinical drugs and investigational compounds in each
dataset and across data sources are summarized in Figure 1D.
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The NCI dataset provides the largest number (n = 526), followed
by the CTRP (n = 481), GDSC (n = 297), and CCLE (n = 224).

SCLC-CellMiner allows multiple analyses (Table 1): confirming
cell line reproducibility and identity across datasets, drug activity
reproducibility, determinants of gene expression (on the basis of
DNA copy number, promoter methylation, and microRNA
expression), exploration and validation of genomic networks,
classification of the cell lines on the basis of metadata such as
the NAPY, epithelial-mesenchymal transition (EMT) and anti-
gen-presenting machinery (APM) scores, and validation and dis-
covery of drug response determinants.

Data Validation, CDB Analyses, and CellMiner Univariate
Analyses

Cross-comparison for matched cell lines was used to validate
the new NCI-SCLC methylome (850K lllumina array) (Krushkal
et al., 2020) by comparison with the published SCLC data of
GDSC (450K array) (Rajapakse et al., 2018). The comparison
yields high overall correlation for promoter methylation (Reinhold
etal., 2017), with a median of 0.90 for 9,015 common genes with
a wide expression range for the 43 common cell lines (Figures 2A
and S1). Cross-correlation of the new RNA-seq data from UTSW
with other gene expression data (microarray and RNA-seq) is
also highly significant (Figures 2A and S1). This demonstrates
the high reproducibility and stability of the key molecular charac-
teristics in SCLC lines grown in tissue culture for widely divergent
passages at different institutions and analyzed independently
with different technical platforms (RNA-seq versus microarray,
850K versus 450K methylome arrays).

Reproducibility across datasets can be tested with CellMi-
nerCDB by plotting the same gene (expression, copy number,
or promoter methylation), drug, or microRNA on the x and the
y axes. For instance, Schlafen 11 (SLFN11), whose expression
is highly predictive of response to a broad range of frontline treat-
ments of SCLC (etoposide, topotecan, cis- and carboplatin) as
well as drugs under investigation such as the poly(ADP-ribose
polymerase) inhibitors (Farago et al., 2019; Gardner et al.,
2017; Murai et al.,, 2019; Zoppoli et al., 2012) measured by
RNA-seq in the UTSW database, shows a 0.92 Pearson correla-
tion with its measured values by Affymetrix microarray in the NCI
database (Figure 2B). SLFN11 promoter DNA methylation in the
NCI database also shows a Pearson correlation of 0.9 with its
value in the GDSC (Figure 2C).

CDB analyses are shown in Figure 2 for MYC, which is
commonly amplified and drives proliferation of SCLC (Ireland
et al., 2020), for BCL2, which encodes a canonical antiapoptotic
protein targeted by navitoclax (ABT-263) (Rudin et al., 2012), and
for two SCLC drugs, etoposide and topotecan. MYC amplifica-
tion (in NCI) is correlated with its overexpression (by RNA-seq
in CCLE) (Figure 2D). Navitoclax activity is correlated with
BCL2 expression (Figure 2E). Response to etoposide is corre-
lated in the NCI and CTRP despite different assays; cells re-
sponding to etoposide overlap for topotecan (Figures 2F and
2G).

Integrating the CellMinerCDB database of more than 1,000
cell lines of all lineages, which includes 74 and 53 SCLC cell lines
in GDSC and CCLE (Figures 1A and 1C) (Rajapakse et al., 2018),
allows comparisons among tissue of origin. For instance, MYC
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Figure 1. Summary of the Data Included in SCLC-CellMiner and Resources

(A) Cell line overlap between the data sources. Cell lines in red are from the NCI database (n = 68), dark blue from CTRP (n = 39), light blue from CCLE (n = 53),
orange from GDSC (n = 74), and green from UTSW (n = 73). Cell line details are provided in Table S1.

(B) Summary of the genomic and drug activities data in SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB/). For microarray, mutations, copy
number, and promoter methylation data, the numbers indicate the number of genes. For RNA-seq data, the numbers indicate the number of transcripts. The
bottom row shows the total number of cell lines (N = 118) integrated in SCLC-CellMiner. New data analyses are highlighted in yellow.

(C) Cell line overlap between data sources (see Table S1 for details).
(D) Drug overlap between data sources.

expression is correlated with the replication processivity factor
PCNA (proliferating cell nuclear antigen) in SCLC versus other
tissues, including NSCLC, consistent with the replicative geno-
type of SCLC and high PCNA expression compared with NSCLC
(Figure 2H).

The SCLC Methylome

Two prior studies described the promoter methylation profiles of
SCLC with limited data for cell lines; 18 were examined by Kalari
et al. (2013) and 7 by Poirier et al. (2015) together with primary

tumors and patient-derived xenograft (PDX) samples. Here we
analyzed the methylome of the 66 cell lines of the NCI and pro-
cessed the methylome of the whole 985 GDSC cancer cell line
dataset, including its 61 SCLC cell lines. Individual probe anal-
ysis for the lllumina 850K platform in the NCI SCLC cell lines is
reported in a parallel publication (Krushkal et al., 2020), while
SCLC-CellMiner provides promoter methylation score (Reinhold
et al., 2017). The promoter methylation data are highly reproduc-
ible between the NCl and GDSC datasets for the 43 common cell
lines despite the different lllumina platforms (850K versus 450K)
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Table 1. Examples of SCLC-CellMiner Capabilities

SCLC-CellMiner

Explores and Validates Method Examples Examples of Findings
1 cell line reproducibility “Univariate Analyses: Plot Data:” Figure 2 cell lines are highly
and consistency expression of the same gene “across reproducible across
different datasets” (X and Y) datasets
2 omic data robustness “Univariate Analyses: Plot Data:” Figures transcripts, promoter
and reproducibility expression, copy number variation, 1B, 1C, and 2 methylation, and gene
promoter methylation, mutations for the copy number are highly
same gene “across datasets” (X and Y) reproducible across datasets
3 drug data robustness “Univariate Analyses: Plot Data:” activity of Figures warning: not all drugs
and reproducibility the same drug “across datasets” (X and Y) 2E and 2F are consistent across dataset
4 integrates all the SCLC use the pull-down tabs for “Cell Line Sets” Figures the 119 SCLC cell lines can
cell line genomic datasets and choose “SCLC-Global” 4D, 6H, S2G, be classified in the four
under SCLC-Global (NCI, S2H, and S3C groups of NAPY; development
GDSC, CCLE, CTRP, UTSW) of NAPY genomic signatures
B integration with open in parallel: https://discover.nci.nih. Figures 2, POU2F3 is selective for SCLC;
CellMinerCDB gov/cellminercdb 4,and 5 YAP1 is expressed widely
beyond SCLC; ASCL1 is
co-expressed with NEUROD1
6 select and compare subsets “Univariate Analyses:” select y axis: “Select Figures 2H, NEUROD1 and ASCL1 are
of cell lines based on tissue Tissue/s of Origin” or “Select Tissues to 5F, S3, and S6 also selectively expressed
of origin or metadata: Color” (NEUROD1, ASCL1, POU2F3, in CNS cancer cell lines
NAPY, TNBC, NSCLC YAP1, NE)
7 test phenotypic data “Univariate Analyses:” select “Data Type Figures NE cell lines have low
(mda): NE, APM, EMT mda: NE, APM, EMT;” additional selection 4H and 6 antigen-presenting
can be done for subset (see #6) machinery (APM) score
8 tissue- or subset type- “Select Tissue/s of Origin” or “Select Figures 5, 6, YAP1 cell lines have
specific analyses Tissues to Color” and S4-5S6 lower replication and
(NAPY; NE) highest APM score
9 epigenetics: promoter “Univariate Analyses: Plot Data:” Figure S1 promoter methylation is
methylation for any expression of a given gene versus its a driver for gene
given gene methylation (X and Y “Data Type”) within a expression (NAPY genes;
given “Cell Line Set” or across datasets SLFN11; MGMT;
(independent datasets can be tested for SMARCAT1; CGAS)
missing “Data Type” and confirmation)
10 gene amplification “Univariate Analyses: Plot Data:” Figures 1, MYC genes and other
and deletions for expression of a given gene versus copy 3, and S1 oncogenes are often
any given gene number (Xand Y “Data Type”) within a given driven by copy
“Cell Line Set” or across datasets number variation (CNV)
(independent datasets can be tested for
validation and missing “Data Type”)
11 integrate and complement “Univariate Analyses: Plot Data:” plot Figures 1, drug response data in
different datasets for different parameters (“Data Type for” 2,and 6 one dataset can be
common cell lines genomic or drug response) across “Cell correlated with genomics
Line Sets” (X and Y) to counter missing data of another dataset
in one dataset
12 genomic pathway “Univariate Analyses: Plot Data:” Figures 5, 6, ASCL1 and YAP1 are
discovery (coregulated expression of a given gene (X or Y “Data S2, and S3 integrated in tight
genes and microRNAs) Type”) within a given dataset or across genomic networks
datasets; also use the “Compare Patterns” connected with the
tab NOTCH pathway
13 discover determinants “Univariate Analyses: Plot Data: Compare Figures resistance of YAP1 cell lines to
of drug response and Patterns:” coregulated genes for a given 6 and S6 chemotherapy and potential

targeted drug delivery

gene (X or Y) within a given “dataset”
(independent datasets can be tested for
confirmation)
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response to mTOR and
immune checkpoint inhibitors;
NAPY-specific antigen
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Table 1. Continued

SCLC-CellMiner

Explores and Validates Method Examples Examples of Findings
14 validate genomic “Univariate Analyses: Plot Data: Compare Figure 6 validation of SLFN11
determinant of Patterns:” plot genomic parameter versus for DNA damaging
drug response drug (X or Y “Data Type”) chemotherapy
15 examine drug “Univariate Analyses: Plot Data: Data Figure S1 cell lines sensitive to
correlations: Type:” drug versus drug (X or Y); also select etoposide are
COMPARE analyses “Compare Patterns” to identify drug-drug cross-sensitive to topotecan
correlations
16 multivariate models “Multivariate Analyses: Cell Line Set; Figures 5B discover independent
of drug response Response Data Type; Predictor Data Type/ and 5D; omic or drug parameters
and genomic features s; Predictor Identifier:” enter drug and Figure S3E to build a molecular
genomic parameters to be tested as signature for drug response
identifier or use “LASSO” to discover or gene expression
additional non-redundant determinants of
response
17 data download “Univariate Analyses: View Data: Figure 6 allow further in-depth
Download” tabs or “Multivariate Analyses: analyses and data
Download” tab download in Excel
18 drug identifier not applicable Figures allow drug identification
conversion 2E and 2F across different sources

Set off in quotation marks are the option tabs of SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDBY).

(Figures 2A and 2C). Thus, SCLC-CellMiner provides promoter
methylation for a total of 84 individual SCLC cell lines (43 com-
mon + 23 specific to NCI-SCLC + 18 specific to GDSC).

Low Global Methylation and Promoter Methylome of
SCLC Cell Lines

Global methylation levels show marked differences between the
SCLC and the other cancer cell lines from different histologies
across the GDSC, with SCLC showing the lowest median level
of global methylation among 21 cancer subtypes (Figure 3A).

To assess the distinctiveness of the methylome of the SCLC
cell lines, we compared 61 cell lines from GDSC and 66 cell lines
from NCI with the 75 NSCLC cell lines of the GDSC and the 60
cell lines of the NCI-60, which include nine NSCLC cell lines.
We selected 1,813 genes with the highest methylation range
(SD > 0.25). Hierarchical clustering (Figure 3B) shows that
SCLC cell lines come together (cluster b), except for nine cell
lines (one in cluster a, eight in cluster c), which are all SCLCs
not expressing NE features (“non-NE” SCLCs). Of the five
NSCLC cell lines in the SCLC cluster (b), three are large cell
lung cancers and one is a carcinoid (Table S2). This demon-
strates a promoter methylation signature for SCLC cell lines
associated with NE phenotype.

Genes clustered as (1) hypomethylated in SCLC (clusters
1-3), including ASCL1, NEUROD1, INSM1, and CHGA (Fig-
ure S2); (2) hypermethylated in SCLC (cluster 5); and (3) variably
methylated independently of tissue of origin (cluster 4) (Table
S2). Pathway analysis of the 1,082 hypomethylated genes (clus-
ters 1-3) shows enrichment of neurological as well as extracel-
lular matrix (ECM) pathways (Figure 3C; Table S2), consistent
with the NE and aggregation features of classic SCLC cell lines.
Many genes involved in EMT (Kohn et al., 2014) also tend to be
hypomethylated in SCLC cell lines, including ZEB1, CLDN?7,
and ESRP2.

Histone and Epithelial Genes Are Driven by Methylation
in SCLC Cell Lines

To determine the influence of promoter methylation on gene
expression, we selected gene categories on the basis of our pre-
viously established Development Therapeutics Branch (DTB)
gene sets (Table S3) (Reinhold et al., 2017). Epithelial and histone
genes stood out (Figure 3D, with median correlation of —0.53
and —0.50, respectively). Canonical histones showed the highest
negative correlation between expression and methylation (Fig-
ure 3E), suggesting that epigenetic regulation of canonical his-
tones is a feature of SCLC carcinogenesis.

We also performed gene set enrichment analyses (GSEAs)
looking at Gene Ontology (GO) and functional gene set collections
(MSigDB Hallmark gene set, C2 curated pathway gene set, and
C5 GO gene set, as well as our DTB functional gene sets; Table
S38). They confirmed the high significance of the histones and
epithelial genes as well as additional GO categories, including
protein modifications, microtubule cytoskeleton, mitotic cell cy-
cle, and cellular responses to DNA damage (Table S4).

SCLC DNA Copy Number versus Methylome as Drivers
of Gene Expression
To evaluate the relative importance of promoter methylation and
gene copy number, we derived copy number data from the lllumina
850K methylome array and correlated the expression of each gene
with DNA copy number and methylation in the NCI-SCLC dataset
(Figure 3E) (Reinhold et al., 2017). Correlations for individual genes
can be readily displayed with SCLC-CellMiner (https://discover.
nci.nih.gov/SclcCellMinerCDBY/), and snapshots of genes involved
in SCLC carcinogenesis and driven by methylation (NEUROD1,
ASCL1, POU2F3, YAP1, and SLFN11) are presented in Figure S1.
Unlike the histone and epithelial genes, the expression of
SCLC growth-driving genes, such as the oncogenes (MYC,
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Figure 2. Validation and Reproducibility of the SCLC-CellMiner Data and Snapshots of Representative Outputs of SCLC-CellMiner (https://

discover.nci.nih.gov/SclcCellMinerCDBY/)

(A) Reproducibility between data sources. Pearson’s correlations are indicated above violin plots.
(B) Snapshot showing the reproducibility of SLFN17 gene expression across the 41 common cell lines (AffyArray for NCI/DTP on the x axis versus RNA-seq for
UTSW). Each dot is a cell line. The data can also be readily displayed in tabular form and downloaded in tab-delimited format by clicking on the “View Data” tab to

the right of the default “Plot Data” tab.

(C) Snapshot showing the reproducibility of SLFN711 promoter methylation across the 43 common cell lines independently of the methods used (850K lllumina
Infinium MethylationEPIC BeadChip array for NCI/DTP versus lllumina HumanMethylation 450K BeadChip array for GDSC).
(D) Highly significant correlation between MYC copy number (NCI/DTP) and MYC expression (CCLE) for the 36 common SCLC cell lines.

(E-G) Examples of drug activity across databases for the common cell lines.

(H) High proliferation signature of SCLC cell lines on the basis of high PCNA and MYC expression. Snapshot shows that SCLC (green) overexpress PCNA and fall

into two groups with respect to MYC.

MYCL, MYCN, and AKT1), tumor suppressor genes (CDKN2A,
BAP1, and VHL), and chromatin remodeler genes (EP300 and
CREBBP), are driven primarily by copy number alterations (Fig-
ure 3E; Table S5). CellMinerCDB snapshots showing increased
(MYC, MYCL, and MYCN) or decreased (BAP1 and VHL) copy
number variation are provided in Figure S1.

SCLC-Global Integrates Transcriptomes and Molecular
and Phenotypic Data for 116 Cell Lines

To integrate expression data from microarray and/or RNA-seq
across the five data sources (Figure 1), we created the “SCLC-
Global” expression set by regrouping all datasets by Z score
normalization, which enables CDB analyses of gene expression
(and also other genomic, epigenomic, and phenotypic drug
response information). Principal-component and correlation ana-
lyses (Circos- and CAT-plots) validated the approach (Figures
S2A-S2D and S2F). The “SCLC-Global” data are available in
the pull-down tabs “x-Axis Cell Line Set” and “y-Axis Cell
Line Set” (https://discover.nci.nih.gov/SclcCellMinerCDB/). The
“SCLC-Global” mRNA dataset shows very high correlation with
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each dataset (NCI-SCLC, GDSC, CCLE, and UTSW) (Figure S2E).
For example, ASCL1 expression in SCLC-Global versus SCLC
NCI/DTP is highly correlated (r = 0.99, p = 1.9e-55). SCLC-Global
offers many other features, including cross-correlation with other
databases for DNA methylation, DNA copy number, DNA muta-
tion, microRNA expression, and drug activity.

SCLC-Global can also be used to retrieve all the genes corre-
lated with the expression of any given gene. For instance, for
MYCN, the top correlate (p = 0.967) is MYCNOS (Figures S2G-
S2l), the MYCN Opposite Strand antisense RNA. The data for in-
dividual cell lines can also be visualized by plotting MYCNOS
against MYCN in the SCLC-Global database (Figure S2H). Plot-
ting MYCN versus MYCNOS in the CCLE database using CellMi-
nerCDB extends the finding that MYCN is co-expressed with its
antisense RNA in both SCLC and brain tumor cell lines
(Figure S2I).

NE, NAPY, MYC, and EMT Molecular Signatures
Ranking of the 116 cell lines of SCLC-Global on the basis of their
NE scores (Zhang et al., 2018) shows the expected high


https://discover.nci.nih.gov/SclcCellMinerCDB/
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Figure 3. Methylation Profile of SCLC Cell Lines

(A) Global hypomethylation in SCLC cell lines. Each point represents the median methylation level of individual cell lines for the total set of 17,559 genes. Twenty-

one cancer subtypes from GDSC are ranked according their global methylati

on levels. SCLC cell lines are in red (NCI) and green (GDSC).

(B) Comparison of promoter methylation profiles for 287 cell lines including SCLC (NCI and GDSC), NSCLC (GDSC and NCI-60), and non-lung cancer cell lines
from the NCI-60. The heatmap displays the levels of methylation of 1,813 genes with high dynamic range. Examples of genes are indicated at right and details

provided in Table S3. Clusters a, b, and c include 68, 117, and 102 cell lines,
(C) Pathway analysis.

respectively.

(D) Functional categories with significant correlation between gene expression and promoter methylation for the NCI-SCLC cell lines (n = 66). Median values
transcript expression versus DNA methylation level correlations of 20 functional groups including 17,144 genes (Table S5).

(E) Correlations between gene expression and predictive values of DNA copy number. R values of —1 and +1 indicate perfect negative and positive predictive
power, respectively. Each point represents 1 of a total of 14,046 genes analyzed. Oncogenes and tumor suppressor genes (highlighted in purple and in blue,
respectively) are driven primarily by copy number. Histone genes (red) and epithelial genes (green) are driven primarily by DNA methylation (Table S5). SCLC key

genes (ASCL1, NEUROD1, POU2F3, and YAP1) are also labeled.

correlation with SYP, CHGA, NCAM1, and INSM1 expression
(Figure 4A). To explore the selectivity of those genes for SCLC,
we examined the GDSC and CCLE human tumor cell line collec-
tions with CellMinerCDB (Rajapakse et al., 2018). CHGA, INSM1,
and SYP are selective for SCLC and brain tumors, consistent
with the neuronal differentiation of SCLC (Figures S3A and
S3B). The SCLC cell lines with high NE scores, which can be
readily labeled in SCLC-CellMinerCDB under the “Select Tis-
sues to Color” tab, have significantly higher levels of expression
of CHGA and SYP than cell lines with low NE score (Figure S3C).

Next we tested the lineage transcription factor molecular clas-
sification on the basis of the expression of NEUROD1 and
ASCL1 for NE and YAP1 and POU2F3 for non-NE SCLC (Rudin

et al., 2019) and found clear separation (Figure 4B; Table S6).
Comparison with other tissues showed selective expression of
NEUROD1 and ASCL1 in SCLC and brain tumors (Figure 4C),
while POU2F3 was expressed only in a subset of SCLC cell lines
(Figure 4D). In contrast, YAP1 is not exclusive to SCLC and is ex-
pressed in a wide range of cancer types (except blood and
lymphoid tumors) (Figure 4E), consistent with its broad role in
carcinogenesis (Ma et al., 2019). We also noted a significant frac-
tion of NE-SCLC cells with dual expression of ASCL1 and NEU-
ROD1 (Figures 4B and 4F).

The three MYC genes (MYC, MYCL, and MYCN) play key roles in
SCLC carcinogenesis (Johnson et al., 1987; Little et al., 1983; Nau
etal., 1985, 1986). With SCLC-Global, ~80% of the SCLC cell lines
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Figure 4. SCLC Genomic Molecular Classifications
(A) NE classification. Cell lines with high and low NE score are in dark brown and gray, respectively (n = 116 cell lines; CellMiner-Global). CHGA, SYP, and INSM1

expression after Z score normalization.

(B) NAPY classification for the 116 SCLC cell lines. Expression values across the five data sources were obtained after normalization by Z score (Table S3).
(C) NEUROD1 and ASCL1 expression are specific for both SCLC and brain tumor cell lines (GDSC database; each point is a cell line; n = 986).

(D) POU2F3 is selectively expressed in SCLC but not in brain tumor cell lines (GDSC; n = 986).

(E) YAP1 shows a high range of expression across different cell line subtypes (GDSC; n = 986). (C)-(E) are snapshots (https://discover.nci.nih.gov/cellminercdb).

(F) Co-expression of NEUROD1 and ASCL1 in SCLC-Global.
(G) Subtypes of cell lines in GDSC.
(H) EMT signature and NAPY classification in CellMiner-Global.

() Classification based on expression of the three MYC genes in 106 SCLC cell lines across the five data sources after Z score normalization.

highly express one of the MYC genes, and MYC and MYCL are
most prevalent (Figure 4H). Expression of the MYC genes is mutu-
ally exclusive (Ireland et al., 2020; Mollaoglu et al., 2017), with the
non-NE cell lines (Y and P) expressing MYC and the NE cell lines
expressing MYCL and MYCN (Figures 4H and S3).

The EMT status (Rajapakse et al., 2018) derived from the
expression of 37 genes (Kohn et al.,, 2014) showed that the
SCLC-P cell lines are consistently epithelial, while the SCLC-Y
cell lines have a mesenchymal signature (Figure 4l), except for
NCI-H1607, expressing both YAP71 and POU2F3 (Figure 4B,
left). The SCLC-NE cells form two subgroups, one mesenchymal
and the other intermediate (Figure 41).

SCLC Transcriptional Networks for the ASCL1, YAP/
TAZ, and NOTCH Pathways

As a pioneer transcription factor, ASCL1 binds E-box motifs (as
does NEUROD1) to promote chromatin opening and activation
of neuronal genes. Figure 5A summarizes the ASCL1-NOTCH
network on the basis of our molecular interaction map (MIM)
conventions (https://discover.nci.nih.gov/mim/index.jsp) (Kohn
et al., 2006). Notably both NKX2.1 and PROXT transcription fac-
tors are highly significantly co-expressed with ASCL1, suggest-
ing that they function together (Pozo et al., 2020). This co-
expression is not due to the location of those genes on the
same chromosomes (Figure 5A), indicating upstream regulatory
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transcriptional control with the likely implication of super-en-
hancers. As expected, the transcriptional targets of ASCL1
were co-expressed with ASCL1 (Figures 5A and 5B). One of
those, BCL2, is positively correlated not only with ASCL1 but
also with POU2F3, whereas BCL2 expression is negatively
correlated with NEUROD1 expression (Figures S3H and S3l).
Expression of the cancer-driving genes RET, SOX1, SOX2,
FOXAT1, and FOXA2 is also highly correlated with ASCL17 (Fig-
ure 5A). Expression of DLL3, a known inhibitor of the NOTCH
pathway and direct target of ASCL1, was found to be signifi-
cantly correlated with ASCL7 (r = 0.61, p = 4.05e-13; Figure 5A).

Analysis of the NOTCH pathway whose inactivation is crucial
in NE-SCLC (Gazdar et al., 2017; Leonetti et al., 2019; Ouadah
et al., 2019) showed that NOTCH1, NOTCH2, and NOTCH3 are
jointly downregulated in the SCLC-A cell lines (Figures 5A and
5B). Functional downregulation of the NOTCH pathway is
consistent with the negative correlation (r = —0.545, p = 2.45e-
10) between ASCL71 and REST, the transcriptional target of
NOTCH (Figure 5A). The NEUROD1 subset of NE-SCLC
(SCLC-N) did not show significant correlation between NEU-
ROD1 and DLL3 expression (r = —0.18, p = NS) (Figures S3J
and S3K), questioning whether DLL3 downregulates the NOTCH
pathway in SCLC-N cell lines.

Of the 116 SCLC cell lines in SCLC-CellMiner, 9 belong to the
YAP subset (Figure 4). Because expression of YAP1 is a feature
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Figure 5. Integration of the Transcriptional Networks of the SCLC-A and SCLC-Y Cell Lines with the NOTCH Pathway for the 116 Cell Lines
Derived from SCLC-Global Analyses

(A) Highly significant correlations between ASCL1 expression and NKX2-1 and PROX1 and downstream transcriptional targets (bayonet arrows). Numbers to the
right indicate the significantly positive Pearson’s correlations coefficients (red) (https://discover.nci.nih.gov/SclcCellMinerCDBY) irrespective of chromosome
locations (black in parenthesis). The NOTCH receptor network with its transcriptional target REST (yellow box) shows significant negative Pearson’s correlations
(blue).

(B) Correlations between the expression of ASCL1 and the genes shown in (A) (snapshot from the multivariate analysis tool of SCLC-CellMiner).

(C and D) Same as (A) and (B) except for YAP1.

(E) Correlations between the NOTCH receptors and ligands genes and ASCL1 versus YAP1. Pearson’s correlation coefficients are indicated in parenthesis.
(F) Correlation between NOTCH1 and NOTCH2 expression. YAP1 cells show significantly high expression of both NOTCH1 and NOTCH2.

(G) Correlation between NOTCH1 and NOTCH2 expression across the 1,036 cell lines of the CCLE. SCLC-Y cells have highest expression.

(H) SCLC-Y cells have significantly fewer RB1 mutations.

() t-Distributed stochastic neighbor embedding clustering plot using gene expression data of 60 SCLC and 100 NSCLC cell lines (microarray; GDSC data source).
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in a wide variety of solid tumors (Figure 4E), we explored the YAP
transcriptional network (Figure 5C). The first notable finding is
that YAP1 expression is highly correlated with the expression
of its heterodimeric partner TAZ (encoded by the WWTR1/TAZ
gene) both in the SCLC-Global dataset (Figures 5C and 5D)
and across the 986 cell lines of the GDSC (Figure S4), suggesting
a master transcriptional regulator upstream of both genes, or
YAP1 acting as super-enhancer (Figure 5C).

YAP/TAZ functions as a direct activator of the TEAD transcrip-
tion factors (encoded by TEAD2/TEAD3/TEAD4), whose expres-
sions are highly significantly coregulated with YAP1 (Figure 5C).
As expected, known transcriptional targets of the TEADs are also
significantly correlated with YAP7 expression (Figure 5C). Others
can readily be revealed with the “Compare Patterns” feature of
SCLC-CellMiner using TEAD or YAP1 as “seeds.” Among those
are the cancer- and growth-related SMAD3 and SMADS5 genes,
CCN1/CYR61 (encoding a growth factor interacting with integ-
rins and heparan sulfate), and VGLL4 (Figures 5C and 5D).

Next, we explored the Hippo pathway, which acts as a nega-
tive regulator of YAP/TAZ and is commonly inactivated in solid
tumors (Dasgupta and McCollum, 2019; Ma et al., 2019; Totaro
et al., 2018). Expression of LATS2 and LATS1, which encode
the core kinase of the Hippo pathway and negatively regulate
YAP by sequestering phosphorylated YAP in the cytoplasm,
are significantly positively correlated with YAP1 expression (Fig-
ures 5C and 5D). Similarly, the transcripts of MOB1A and
MOB1B, the cofactors of LATS1/2, are positively correlated
with YAP1 (Figures 5C and 5D). Moreover, the transcripts of
the negative regulators of YAP, AMOT and AMOTL2, which are
released by depolymerized F-actin and sequester YAP from its
nuclear translocation, are also significantly positively coregu-
lated with YAP1 (Figures 5C and 5D) (Dasgupta and McCollum,
2019; Wang et al., 2019). Together, these results demonstrate
that the SCLC-Y cell lines co-express both YAP/TAZ and its
negative regulator genes driving the Hippo pathway, suggesting
an equilibrium (“metastable”) state in which the Hippo pathway
remains active to potentially negatively regulate YAP/TAZ in
SCLC-Y cells.

Consistent with the NOTCH pathway as transcriptional target
of YAP/TAZ and the TEADs (Totaro et al., 2018), YAP1 expres-
sion is highly correlated with NOTCH1, NOTCH2, NOTCH3,
and REST (Figures 5C-5E). In contrast, expression of the
NOTCH ligand DLL3, which acts as negative regulator of the
NOTCH receptors (Andersson et al., 2011), is negatively corre-
lated with YAP1 (Figure 5E). These results support the conclu-
sion that the NOTCH pathway is “on” in the SCLC-Y cells. In
contrast, in the SCLC-A cells, the opposite is observed (Figures
5E and S4C). The SCLC-P cells also show a positive correlation
between the NOTCH receptor and REST effector transcripts and
POU2F3 expression (Figures 5F, S4C, and S4F). These analyses
demonstrate a difference between NE and non-NE SCLC with
respect to NOTCH, with the pathway “off” in the NE subset (N
and A) and “on” in the non-NE subset (P and Y).

Global analyses of the NOTCH pathway across 1,036 cell lines
from the 22 different tissue types of CCLE (Figures 5G, S4D, and
S4E) show that NOTCH2 and NOTCH3 are co-expressed in
many tumor types and that the NE-SCLC cell lines are character-
ized by low NOTCH expression (Figures 5G and S4D). In
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contrast, the SCLC-Y- and -P cells are among the highest
NOTCH-expressing cells.

The SCLC-Y Transcriptome Clusters with NSCLC Cell
Lines

Next, we examined the relationship between the SCLC-Y and
the NSCLC cell lines (Figure 5I). tSNE (t-distributed stochastic
neighbor embedding) is a method to highlight strong patterns
by reducing the dimensionality of a dataset while preserving as
much “variability” as possible. tSNE analysis using gene expres-
sion data between NSCLC (n = 100) and SCLC (n = 60) cell lines
from the GDSC grouped the SCLC-Y with the NSCLC cell lines.
Among the few NSCLC cancer cell lines clustering with the NE-
SCLC were carcinoids and large cell lung cancers (Figure 3B; Ta-
ble S2). Our analysis supports that SCLC-Y cell lines are distinct
among the SCLC subtypes with transcriptome similarity to
NSCLC.

Another characteristic of the SCLC-Y cell lines is their low
number of RB71 mutations (only one cell line among nine shows
RB1 mutation; Figure 5H). However, several of the SCLC-Y lines
(NCI-H196, NCI-H841, NCI-H1339, and NCI-H1607) do not ex-
press RB1 protein (Modi et al., 2000). The SCLC-Y cell lines
also show reduced replication transcriptional network with
lowest PCNA, MCM2, and RNASEHZ2A expression (Figure S5).
Additionally, the SCLC-Y cells express the mesenchymal marker
VIM, the cytoskeleton component and regulators CNN2 (acto-
myosin and F-actin component), and the AMOT genes, which
regulate cell migration and actin stress fiber assembly (Figure 5C)
(Dasgupta and McCollum, 2019).

Global Drug Activity Profiling Suggests Transcription
Elongation Pathways as General Drug Response
Determinants and Hypersensitivity of the SCLC-P Cell
Lines
To explore connections between the NAPY classification and
drug responses, we analyzed the drug responses of the 66
SCLC-NCI cell lines using 134 compounds with the broadest ac-
tivity range (Polley et al., 2016). Unsupervised hierarchical clus-
tering generated two groups of cell lines: those globally drug
resistant and those globally drug sensitive, with a bimodal distri-
bution (Figure 6A). Although the NE cell lines (SCLC-N and
SCLC-A) and SCLC-Y were distributed in both clusters, the
SCLC-P cell lines clustered among the most drug sensitive.
Differential gene expression followed by enrichment pathway
analyses (Figures S6A and S6B) showed the ribosomal and
EIF2 signaling pathway selectively activated in the sensitive
cell lines. EIF2 (eukaryotic translation initiation factor 2A) cata-
lyzes the first regulated step of protein synthesis initiation, pro-
moting the binding of the initiator tRNA to 40S ribosomal sub-
units. EIF2 factors are also downstream effectors of the PI3K-
AKT-mTOR and RAS-RAF-MAPK pathways. These results sug-
gest that global drug response in SCLC is associated with active
protein synthesis.

Drug Activity Profiling in Relationship with the NAPY
Classification

Both the SCLC-A and N subgroups showed a broad range of
response to etoposide, topotecan, and cisplatin, as well as to
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Figure 6. Predictive Biomarkers for SCLC Responses

(A) Global response of the NCI-SCLC cell lines (NAPY classification to the left).

(B) SCLC-P cells are the most sensitive to etoposide and talazoparib. SCLC-Y cell lines are the most resistant.

(C) Selective activity of the BCL2-BCL-XL inhibitor in a subset of the SCLC-A cells and highly significant correlation with BCL2 expression (right).

(D) Activity of mTOR/AKT inhibitors in a subset of non-NE cells.

(E) Activity of the PI3K inhibitors in non-NE SCLC cells.

(F) SLFN11 expression across the 116 SCLC cells exhibits bimodal distribution in all four SCLC subsets and is predictive of response to DNA damaging che-
motherapeutics (Figure S6).

(G) Selective expression of native immune pathway genes in SCLC-Y (correlations between each of the NAPY genes and the listed native immune response
genes. Significantly positive and negative correlations are in red and blue, respectively.

(H) Snapshot from SCLC-CellMiner illustrating the correlation between the YAPT and IFITM3 transcripts across the 116 cell lines of SCLC-Global (Figure S6).
(I) Selective expression of the DLL3 and CEACAMS5 (Figure S6).

(J) Potential surface biomarker targets for NE-SCLC and SCLC-P cells.

(K) Potential surface biomarkers for SCLC-Y cells.

Data in (A)-(E) and (I)-(K) are from the 66 cell lines from the NCI-DTP drug and genomic database.

the PARP inhibitor talazoparib (Figures 6B and S6C). The most  mately 40% of the 116 SCLC cell lines of SCLC-Global do not ex-
significant genomic predictor of response for this NE subgroup  press SLFN11 (Figure S6D) and are predicted to be DNA
is SLFN11 expression (Figure S6C), consistent with analyses in  damaging agent resistant.

other tissue types (Barretina et al., 2012; Rajapakse et al., Methylguanine methyltransferase (MGMT) is a predictive
2018; Zoppoli et al., 2012). The potential value of SLFN11  biomarker of drug response is for temozolomide (TMZ). Cancer
expression as a predictive biomarker is borne out by its highly  cells (typically glioblastomas) with MGMT inactivation are selec-
dynamic and bimodal expression pattern (Figure 6F). Approxi- tively sensitive to TMZ. Analyses of SCLC-Global reveals lack of
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MGMT expression in 33% (N = 38) of the cell lines (Figure S6D).
Notably, the non-NE SCLC cell lines all express MGMT, indi-
cating that the SCLC-P- and -Y cancer cells are predicted to
be poor candidates for TMZ-based therapies (Farago et al.,
2019).

The SCLC-Y cell lines show the greatest resistance to the
standard-of-care drugs (etoposide, cisplatin, and topotecan)
(Figure 6B). This result is not limited to SCLC, as a highly signif-
icant drug resistance phenotype is observed between YAPT
expression and response to etoposide and camptothecin across
the whole database of the CCLE-CTRP (Figure SGE).

To determine whether the NAPY classification predicts sensi-
tivity to drugs not commonly used as standard of care for SCLC,
we analyzed 526 compounds of the NCI database (Polley et al.,
2016) (Table S7). Eighteen drugs were highly subtype specific
(p < 0.01, Kruskal-Willis test). Although the BCL2 inhibitor ABT-
737 was selective of the SCLC-A cells, seven PI3K-AKT-mTOR
inhibitors showed high activity in the non-NE cell lines (SCLC-Y
and SCLC-P) (Figures 6D and 6E). The SCLC-P and -Y cell lines
are also more sensitive to multi-kinase inhibitors, including dasa-
tinib and ponatinib.

Immune Pathways Are Selectively Expressed in the
YAP1 Subgroup of SCLC

Although immune checkpoints inhibitors have been approved for
SCLGC, the benefit in an unselected patient population is modest
with approximately 2-month improvement in median overall sur-
vival when immunotherapy is added to first-line platinum and
etoposide.

To explore the immune pathways in the 116 cell lines of SCLC-
Global and the potential value of the NAPY classification for se-
lecting SCLC patients likely to respond to immune checkpoint in-
hibitors, we explored the transcriptome of a subset of estab-
lished native immune response and antigen-presenting genes.
Figures 6G and 6H shows that the SCLC-Y cell lines are the
only subset expressing innate immune response genes. Expres-
sion of the innate immune effector genes CGAS and STING,
HLA-E and interferon-inducible genes (IFIT3, IFITM1, IFI44L,
IFIT, IFITM8P, and IFITM3) are positively correlated with YAP1
expression. In contrast, the NE subtype shows negative correla-
tion between NEUROD1 and ASCL1 expression for those same
immune genes (Figure 6G).

On the basis of the study of Wang et al. (2019) reporting a novel
APM transcription signature score yielding a high prediction in-
dex for tumor response to immune checkpoint inhibitors, we
tested the APM score in the SCLC cell lines (Figure S6). The
APM score showed a high correlation with PD-L1 expression,
which is notable as PD-L1 is not included among the 13 genes
constituting the APM score. Interestingly, the SCLC-Y subtype
showed the highest APM score (Figure S6K).

Cell Surface Biomarkers for Targeted Therapy in
Relation with the NAPY Classification

Antibody-targeted therapies including antibody-drug conjugates
(ADC) represent a promising approach for specific homing,
increased uptake, and drug retention at tumor sites while
reducing drug exposure to normal tissues and the associated
dose-limiting side effects (Coats et al., 2019).
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A primary criterion for efficient drug delivery is to choose an
exclusively or overexpressed target for the cancer cells. Figures
6l and S6 show the expression of two receptors of clinical ADCs
in the SCLC cell lines: DLL3 (used for SCLCs as rovalpituzumab
tesirine [Rova-T]; Morgensztern et al., 2019; Rudin et al., 2017)
and the carcinoembryonic antigen CEACAMCS5 (used in other
clinical indications as labetuzumab govitecan; Das, 2017).
DLL3 expression is highly correlated with ASCL7 expression
(p = 0.62), suggesting that targeting DLL3 could be selective to-
ward SCLC-A tumors. CEACAMS is highly expressed in only a
subset of SCLC-A cell lines that may be potentially sensitive to
labetuzumab govitecan (IMMU-130). Both DLL3 and CEACAMS5
show highest expression in SCLC among all GDSC tissue types
(Figure S6). Expression of TACSTD2 (TROP2), which is used as
target for sacituzumab govitecan (IMMU-132) in patients with tri-
ple-negative breast cancer (TNBC), exhibits a low expression
level in all SCLC cell lines, suggesting that TACSTD2 as a tar-
geted receptor may not be efficient in SCLC (Figure S6).

Among potential new targets for the development of ADCs, the
specific NE markers NCAM1, CD24, CADM1, and ALCAM are
highly expressed in non-YAP1 SCLC (Figure 6J), suggesting
the potential of developing ADCs targeting such surface recep-
tors for NE-SCLC and SCLC-P patients. In contrast, the non-
NE surface markers CD151 and EPHZ2 are highly expressed in
the YAPT1 cell lines (Figure 6K), suggesting their potential for
SCLC-Y cancers.

DISCUSSION

SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB/)
provides a unique and first-of-its-kind resource of patient-
derived SCLC cell lines characterized comprehensively using
multi-omics and drug sensitivity. It also includes new high-reso-
lution methylome, detailed in a complementary publication
(Krushkal et al., 2020). SCLC-CellMiner enables interrogation
of different databases. The data are highly reproducible across
databases, which allowed us to build an integrated platform
(“SCLC-Global”) to examine genomic characteristics and drug
sensitivities across 116 SCLC cell lines.

Patient-derived cancer cell lines remain the most widely used
models and the primary basis to study the biology of cancers.
They enable high-throughput testing of new drugs and determi-
nant-of-response hypotheses. The database of 116 SCLC cell
lines reported here models the genetic and molecular diversity
of SCLC, as exemplified by their stratification across the four
recently proposed subgroups (NAPY classification) (Rudin
et al., 2019).

Several studies of human cancer cell lines have revealed a drift
at the transcriptomic level for individual cell lines over multiple
passages, or passages in different laboratories. This raised the
concern that cancer cell lines bear more resemblance to each
other, regardless of the tissue of origin, than to the clinical sam-
ples that they model. However, several other studies have come
to the opposite conclusion, demonstrating the need for human
cancer cell line panels (Barretina et al., 2012; Neve et al., 2006;
Reinhold et al., 2019; Wang et al., 2006; Weinstein, 2012; Zoppoli
etal., 2012). For lung cancer cell lines, it has been shown that the
genomic drift during culture life is not a dominant feature
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(Wistuba et al., 1999). The recent analyses across SCLC cell
lines, PDX models, and human tissues reported by Rudin et al.
(2019) and our present analyses provide strong evidence that
the molecular features of SCLC are stable .

SCLC is highly proliferative and under replication stress
(Thomas and Pommier, 2016). SCLC-CellMiner confirms that
genes involved in DNA replication such as PCNA and MKI67
are highly expressed in SCLC (Figure S7). We also found evi-
dence of chromatin adaptation in SCLC. Not only are many
core histone gene promoters hypermethylated (Figure 3) but
also H2AFY, a non-canonical histone encoding macroH2A.1, is
highly expressed in SCLC cell lines. Two H2AFY splice variants
have been identified and SCLC cell lines predominantly express
the macroH2A1.2 variant, known to promote homologous
recombination and proliferation (Kim et al., 2018). In the context
of chromatin and histone genes, ACTL6B, which encodes a sub-
unit of the BAF (BRG1/brm-associated factor) complex, is highly
expressed in the SCLC cell lines (Figure S7). The BAF complex is
functionally related to SWI/SNF complexes that facilitate tran-
scriptional activation of specific genes by antagonizing chro-
matin-mediated transcriptional repression. ACTL6B expression
is specific to SCLC and brain tumor cell lines and highly corre-
lated with the expression of other chromatin genes, including
HMGN2, KDM4B, and SMARCA4 (Figure S7). Only the NE cells
express ACTL6B, while the non-NE cells express lowest KDM4B
and SMARCA4. These results suggest that this specific BAF
complex subunit may be critical in determining the cell fate of
NE cells.

Supporting the importance of epigenetics in SCLC carcino-
genesis, SCLC cell lines exhibit distinct promoter methylation
profile. First, they are globally hypomethylated, suggesting their
plasticity. Second, they exhibit a distinct epigenetic profile
compared with NSCLC (Figure 3B). Most genes with low methyl-
ation are involved in neuronal pathways, suggesting that NE dif-
ferentiation is driven by promoter methylation. In contrast, Poirier
et al. (2015) reported that SCLCs tend to have high methylation
levels. The apparent discrepancy could be due to the inclusion
of PDX and tumor samples in their study. Also, they did not mea-
sure promoter methylation but the proportion of highly variable
CpGs, leading them to conclude that high methylation instability
is consistent with the plasticity of SCLC (Poirier et al., 2015).

SCLC-CellMiner validates the NAPY classification (Rudin
et al., 2019) and provides insights into the coordinated network
regulated by each lineage transcription factor. Potential up-
stream regulators (super-enhancers, microRNAs, or non-coding
RNAs) may explain the co-expression of ASCL1 with NKX2-1
and PROX1 and YAP1 with TAZ and warrants further investiga-
tions, which can be facilitated by SCLC-CellMiner. Consistent
with the results of Rudin et al. (2019), the NAPY classification
shows that the cell lines driven by ASCL7 and NEUROD1 often
overlap and share common features (Figures 4 and 6). Yet they
differ in their relationship with respect to the NOTCH pathway,
with the SCLC-A cells showing strong negative correlation with
NOTCH genes expression, consistent with NOTCH acting as
negative regulator of ASCL1 (George et al., 2015) (Figure 5).

Transcriptome and drug response analyses highlight the dis-
tinguishing features of the SCLC-Y. In contrast to ASCL1, NEU-
ROD1, and POU2F3, YAP1 is expressed widely across different
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tissue types (Figure 4) (Ma et al., 2019), and transcriptome ana-
lyses cluster the SCLC-Y cell lines with NSCLC (Figure 5F).
SCLC-Y cells also express the NOTCH pathway, in contrast to
SCLC-A. This feature could be related to the direct transcrip-
tional activation of the NOTCH pathway by YAP/TAZ (Figure 5C)
(Yimlamai et al., 2014). In addition, SCLC-Y cells do not express
MYCL or MYCN but rather MYC (Figure 4) (McColl et al., 2017;
Mollaoglu et al., 2017). They tend to be RB17 wild-type (Figure 5H)
and have lower expression of replication and proliferation genes
than the other SCLC subtypes (Figures S5 and S7). SCLC-Y cells
were also often derived from non-smoking patients (Table S1;
Figure S5). In total, our data suggest that SCLC-Y cell lines are
probably derived from a different cell type compared with the
NE and SCLC-P subgroups. Our findings of differential drug sen-
sitivities on the basis of transcriptional subtypes support this
notion (Figures 6 and S6) and are consistent with recent studies
showing that non-NE and MYC-driven SCLC cell lines are sensi-
tive to PIBK-AKT-mTOR, AURKA, and HSP90 inhibitors (Chalish-
azar et al., 2019; Wooten et al., 2019).

Overall, our data suggest that targeted therapies in patient
subgroups selected on the basis of NAPY stratification may be
beneficial. Additional therapeutic insights can be derived from
our study. First, although SCLC is among the cancer types
with the lowest expression of immune-related genes, the
SCLC-Y cells notably demonstrate high presenting and native
immune predisposition (Figures 6G, 6H, and S6). If verified in
clinical cohorts of immunotherapy-treated patients, this finding
might enable patient selection. Second, we highlight potential
surface markers that could be targeted on the basis of the
NAPY subgroups. For example, SCLC-Y cells express neither
the therapeutically relevant surface epitopes DLL3 or CEACAM5
(Das, 2017; Morgensztern et al., 2019; Rudin et al., 2017), which
tend to be specific for the SCLC-A (and N). However, SCLC-Y
express CD151 and EPHA2 (Figure 6K) and might respond to
the YAP1 and NOTCH inhibitors in clinical development (Craw-
ford et al., 2018; Leonetti et al., 2019).

Our analyses demonstrate the value of cancer cell line data-
bases and imply that updating drug testing with new clinical
drug candidates shall provide valuable information to guide clin-
ical trials. Our results also suggest the potential value of using the
NAPY classification to select patients for targeted therapies. It is
likely that genomic signatures based on transcriptome and pro-
moter DNA methylation will have to be developed to build reliable
tools to assign samples to each of the NAPY subgroups and
determine their prognostic and therapeutic value.
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RESOURCE SOURCE IDENTIFIER
Deposited Data

NCI-SCLC cell line methylation (850K array) This paper and (Krushkal et al., 2020) GSE145156

UTSW cell line RNA-seq
CellMinerCDB cell line data

(McMillan et al., 2018)
(Rajapakse et al., 2018)

dbDAP phs001823.v1.p1
https://discover.nci.nih.gov/cellminercdb/

Software and Algorithms

ChAMP

STAR aligner
Cufflinks
Ape

Relaimpo

dynamicTreeCut

ComplexHeatmap

Rtsne

clusterProfiler

ReactomePA

Partek Genomics Suite (software for

analysis of microarray data)

GraphPad Prism 7 (software for drawing
graphs and statistics analysis)

Analysis scripts

(Tian et al., 2017)

(Dobin et al., 2013)
(Trapnell et al., 2012)
(Paradis et al., 2004)

(Gromping, 2006)
(Langfelder et al., 2008)
(Gu et al., 2016)

(van der Maaten, 2014)
(Yu et al., 2012)

(Yu and He, 2016)
Partek

GraphPad

This paper

https://bioconductor.org/packages/
release/bioc/html/ChAMP.html

https://github.com/alexdobin/STAR
http://cole-trapnell-lab.github.io/cufflinks/

https://cran.r-project.org/web/packages/
ape/index.html

https://cran.r-project.org/web/packages/
relaimpo/index.html

https://cran.r-project.org/web/packages/
dynamicTreeCut/index.html

https://bioconductor.org/packages/
release/bioc/html/ComplexHeatmap.html

https://cran.r-project.org/web/packages/
Rtsne/index.html

https://bioconductor.org/packages/
release/bioc/html/clusterProfiler.html

https://bioconductor.org/packages/
release/bioc/html/ReactomePA.html

https://www.partek.com/
partek-genomics-suite/

https://zenodo.org/record/3959142

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for reagents may be directed to and will be fulfilled by Lead Contact Yves Pommier (pommier@nih.gov).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The scripts and data used for the analysis can be obtained at https://zenodo.org/record/3959142.

All newly generated methylation datasets are available from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/) under the accession number GEO: GSE145156.

EXPERIMENTAL MODEL AND SUBJECT DETAILS
SCLC-CellMiner is a dedicated CellminerCDB version for SCLC cell lines (Reinhold et al., 2012, 2014, 2017, 2019) https://discover.
nci.nih.gov/cellminercdby/).

The cell line sets included in SCLC-CellMiner Cross-Data-Base (CDB) currently are from the National Cancer Institute SCLC cell
lines from the Developmental Therapeutics Program Small Cell Lung Cancer Project (SCLC NCI-DTP), Cancer Cell Line Encyclopedia
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(CCLE), Genomics and Drug Sensitivity in Cancer (GDSC), Cancer Therapeutics Response Portal (CTRP), the University of Texas
SouthWestern (UTSW) and a new resource SCLC-Global. The data source details are described in “Help” section of the SCLC-Cell-
Miner website.

Most of the data including drug activity and genomics experiments were processed at the institute of origin and were downloaded
from their website or provided from their principal investigator. The genomic data from CTRP and CCLE are common for the over-
lapping cell lines. However, methylation, mutation and copy number data were processed at Development Therapeutics Branch
(DTB), CCR, NCI to generate a gene level summary as described previously (Barretina et al., 2012; Garnett et al., 2012; Krushkal
et al., 2020; McMillan et al., 2018; Polley et al., 2016). The new Global expression (SCLC-Global) was developed at DTB by merging
the gene expression of all the data sources.

METHOD DETAILS

DNA methylation data

Gene-level methylation using the 850K Illumina Infinium MethylationEPIC BeadChip array was summarized based on (Reinhold et al.,
2017). In short, methylation data were normalized using the minfi package using default parameters, where probe-level beta-values
and detection p values were calculated for each probe. This provided 866,091 methylation probe measurements. Methylation probe
beta-values for individual cell lines with detection p values > = 10-3 were set to missing. Also probes with median p value > = 10-6
were set to missing for all cells and removed from the analysis. Probe locations on the human genome (hg19 version) defined by II-
lumina was used for the analysis, annotating proximal gene transcripts and CpG islands. Probes were designated as category “1” or
“2,” with category “1” considered to be most informative. Category “1” probes overlapped CpG islands and they overlapped either
the TSS region within a 1.5kb distance, the first exon or 5’-UTR region. Additionally, probes on the upstream shore of a CpG island
with a maximal distance of 200bp from the TSS were also included as category “1” probes. Category “2” probes were positioned
either in the upstream- or downstream shore of a CpG island and overlapping the first exon, or on the downstream shore of CpG
islands overlapping a 200bp region from the TSS, or in 5’-UTR. In case of genes with multiple transcript start sites, the transcript
methylation with the most negative correlation to the gene level expression was used. The analysis resulted in gene-level methylation
values for 23,202 genes.

Copy number

Genome wide copy number for the cell lines was estimated from the methylation array data using the Chip Analysis Methylation Pipe-
line (ChAMP) (Tian et al., 2017) package. ChAMP returns lists of genomic segments with putative copy number estimates. However,
the estimate is not valid for regions with high methylation detection p values. For this reason, regions spanning more than 1kb with at
least 5 probes with high detection p values (p > 0.05) were filtered out. The copy number estimates were set to missing for those
areas. Gene level copy number (for n = 25,568 genes) was calculated for each gene individually, by calculating the average estimate
between the transcription start sites and transcription end sites.

RNaseq data

The RNA-seq gene expression data from UTSW SCLC were obtained from analyses based on McMillan et al. (2018). The raw data
have been previously submitted to dbGaP (accession phs001823.v1.p1). The paired-end RNA-seq reads from the 70 UTSW SCLC
cell lines were aligned to the human reference genome GRCh38 using STAR aligner (version 2.7), FPKM expression values were
generated with cufflinks (version 2.2.1) (Bullard et al., 2010) and log-transformation.

Global expression data

We generate a new Global SCLC dataset (SCLC-Global) using all combined cell line resources: NCI SCLC, CCLE, CTRP, GDSC and
UTSW. The data sources have a mixture of microarray and RNA-seq gene expression. For each experiment, genes were scaled
across all cell lines to create a z-score normalized dataset. The SCLC-Global expression was calculated by averaging the z-scored
gene expressions from all sources. To test for removal of batch effects by gene scaling (z-score normalization), we clustered the cell
lines based on gene expression using the raw data (Figure S2A) and the normalized data (Figure S2B) in R using the hclust() for clus-
tering, and the ape package (version 5.3) to create the clustering dendrograms.

QUANTIFICATION AND STATISTICAL ANALYSES
Pathway level correlation of expression and DNA methylation
The correlation between methylation and gene expression for multiple functional categories was calculated based on genes in Table

S4 using R programming language. For each category, the median correlation of the related genes was calculated to identify potential
categories of interest.

e2 Cell Reports 33, 108296, October 20, 2020



Cell Reports ¢? CellP’ress

OPEN ACCESS

Predictive power of DNA copy number and methylation on transcript expression

Testing the predictive power of DNA copy nhumber and methylation on transcript expression was performed with linear regression
analysis (as seen in Figure 3E. For each of the 15,798 genes with all three forms of data available (transcript, methylation, and
copy number levels) a linear regression model was fit, with both copy number and methylation as independent variables and tran-
script expression as the dependent variable. The model provided coefficients for the copy number and methylation that gave the
lowest squared error between fitted values and true expression. We separated individual contributions of these two factors for
gene expression prediction using the method of relative importance (Gromping, 2006), using the Img method (Bacher, 1980) from
the R package relaimpo to compute individual R? values. Total (or combined) R? is the summation of these two. Square roots of
the R? values were multiplied by the sign of the coefficients of the factors in the combined model to get the value of R.

Methylome cluster analysis

The methylation cluster analysis was performed using the methylation data from the NCI-SCLC cell lines, GDSC lung cancer (SCLC
and NSCLC) cell lines and the NCI-60 cell lines. Genes with high standard deviation (> 0.25) in the GDSC lung cancer cell lines were
selected for the analysis. The number of reported clusters was selected based on the cutreeDynamic() function of the dynamicTree-
Cut R package (v1.63-1), which split genes into 5 main clusters and cells into 3 main clusters (as reported in the figure). The methyl-
ation heatmap was created with the ComplexHeatmap (Gu et al., 2016) R package (version 1.20.0).

SCLC subtypes and heatmaps

The SCLC cell lines were classified into the NAPY subtypes using the expression of NEUROD1, ASCL1, POU2F3 and YAP1 with the
SCLC-Global expression dataset. Clustering was performed using distance matrix based on Euclidean distance and “ward.D” clus-
tering using the hclust() function in R programming language.

SCLC neuroendocrine score

Cell line neuroendocrine score was calculated based the method reported in Zhang et al. (2018) that uses a gene set of 25 neuroen-
docrine and 25 non-neuroendocrine genes for classification. For each cell line, the expression values of genes were correlated with
the expression averages of neuroendocrine [NE] cells and non-neuroendocrine [non-NE] cells from Zhang et al. (2018). The NE score
was calculated with the following formula:

correl([Xi], [NE]) — correl([X;], [nonNE])
2
where X; denotes the gene expression values of cell line i, [NE] is the mean expression of genes in neuroendocrine cells from Zhang

et al. (2018) and [nonNE] is the mean expression of genes in non-neuroendocrine cells from Zhang et al. (2018). The R script that
calculates the NE score from the SCLC-Global expression data is available in the supplementary materials.

NEscore =

t-SNE clustering of GDSC lung cell lines using gene expression

SCLC and NSCLC cell line grouping was performed with the gene expression data from the GDSC microarray dataset using the t-
SNE algorithmin R (v3.5.1). The random seed was set to 1, the Euclidean distance of genes was calculated with the dist() function with
default settings. The t-SNE grouping was calculated using the Rtsne() function from the Rtsne (van der Maaten, 2014) package (v0.15)
using the calculated distance matrix, with perplexity set to 10, and 5k maximum iterations.

Clustering drug data of NCI-SCLC cell lines
SCLC cell line expression heatmaps for the SCLC markers, NAPY genes and MYC genes were done using the ComplexHeatmap (Gu
et al., 2016) R package (version 1.20.0).

The NCI SCLC drug activity heatmap was generated using R. First, drugs with coefficient of variation less or equal to 0.09 were
filtered out. Then the remaining data for the selected 134 drugs (from originally 527) across the 66 SCLC lines were clustered using
the hierarchical method based on Euclidean distance and complete linkage.

Gene set enrichment analysis and GSEA analysis

A preranked gene set enrichment analysis was run in R using the clusterProfiler (Yu et al., 2012) and ReactomePA (Yu and He, 2016)
packages. Pathways with an adjusted p value below 0.05 were considered as significantly enriched. Single sample gene set enrich-
ment score (APM score) was computed using the R package GSVA (version 1.28.0).

A pre-ranked gene set enrichment analysis (GSEA version 4.0.3) was performed for the correlation between the gene expression
and methylation across all the NCI SCLC cell lines. The score was 1/p value if correlation was positive and —1/p value otherwise. The
gene sets included our DTB 21 gene sets with the Hallmark, C2 (pathways) and C5 (GO) GSEA signatures. The analysis was done
using the classic enrichment statistic with a minimum gene set size of 15 and a maximum of 1000.
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Statistical methods

Correlations, heatmaps, and histograms were generated mostly using The R Project for Statistical Computing. Some plots and anal-
ysis (such as the Kruskal Willis test) were generated using Partek Genomics suite v7.17.1222 (https://www.partek.com/
partek-genomics-suite/) or using SCLC-CellMiner and CellMinerCDB (https://discover.nci.nih.gov/cellminercdb).

Wilcoxon rank-sum tests were used to test the difference between continuous variables such as drug sensitivity and gene expres-
sion according NAPY classification. We considered changes significant if p values were below 0.05. In the figures, p values below
0.00005 were summarized with four asterisks, p values below 0.0005 were summarized with three asterisks, p values below
0.005 were summarized with two asterisks and p values below 0.05 were summarized with one asterisk. The scripts and data
used for the analysis can be obtained at https://zenodo.org/record/3959142.
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Figure S1, Related to Figure 2: Reproducibility and correlations between data sources by cell line

(A) Pearson’s (left) and Spearman’s (right) correlation of cell lines using common genes between data sources. Each
dot is a cell line. (B) Snapshots from SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB) plotting
DNA methylation (y-axis) vs. gene expression (x-axis). The Pearson correlations of NEURODI, ASCL1, POU2F3,
YAPI, SLFENI1, SMARCI1, SOXI and CGAS genes in the NCI-SCLC dataset are -0.60, -0.68, -0.08, -0.38, -0.48, -
0.80, -0.62 and -0.91, respectively. (C) Snapshot from SCLC-CellMiner plotting gene copy number (y-axis) vs.
expression (x-axis). Pearson’s correlations are 0.81, 0.63, 0.80, 0.65 and 0.73, respectively. The bottom right plot
shows the lack of correlation between promoter methylation (y-axis) and expression (x-axis) for VHL.
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Figure S2, Related to Figure 3: Normalized expression data validation and reproducibility of the “Global”
dataset (116 SCLC cell lines) using Z-score

Circos plot visualization of hierarchical clustering distance of cell lines using (A) unnormalized data and (B) Z-score
normalized data. Cell lines clustered based on data origin (RNA-seq or microarray) and database source before
normalization. After Z-score normalization, common cell lines in different datasets clustered together. Principle
component analysis (PCA) plots (C) before and after (D) Z-score normalization between microarray and RNA-seq
data in the CCLE dataset. Each point represents a cell line. Rectangles are the cell lines according to RNA-seq value
and triangles the cell lines according to microarray expression values. Cell lines are color-coded according to the
NAPY classification: SCLC-A cell lines in red, SCLC-N cell lines in blue, SCLC-P in green and SCLC-Y in yellow
The x-axis represents the first principal component, the y-axis the second component and the z-axis the third
principal component. (E) Reproducibility between the SCLC-Global and the individual datasets. Pearson
correlations between the SCLC-Global and the indicated individual data sources for matched cell lines were 0.89,




0.88, 0.94, 0.94 and 0.93 for GLOBAL/NCI, GLOBAL/GDSC, GLOBAL/CCLE (microarray), GLOBAL/CCLE
(RNA-seq) and GLOBAL/UTSW (RNA-seq) expressions, respectively. (F) CAT-plot showing that genes with high
correlation ranking in one comparison have similarly high correlation ranking in other comparisons. (G-I) SCLC-
CellMiner examples for “Compare Patterns”, correlation between MYCN and MYCNOS expression

Each panel is a snapshot from SCLC-CellMiner and CellMinerCDB. (G) SCLC-CellMinerCDB snapshot of
correlation between MYC expression in all SCLC cell lines and all the other genes can be easily found through the
“Compare Patterns” function in the “Univariate Analysis” section (https://discover.nci.nih.gov/SclcCellMinerCDB).
The example shows that MYCN expression is highly correlated with MYCN antisense MYCNOS expression
(Pearson correlation = 0.967, p-value =1.39x10%%). (H) SCLC-CellMiner Snapshot showing MYCNOS expression
(y-axis) vs. MYCN expression (x-axis) in the SCLC-Global cell lines. (I) Findings in SCLC cell lines can be readily
compared to other cancer cell lines using CellMinerCDB (http://discover.nci.nih.gov/cellminercdb). Shown is the
high correlation between MYCN and MYCNOS expression is also present across additional cancer subtypes.
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Figure S3, Related to Figure 4: Expression characteristics of key markers involved in SCLC carcinogenesis

Chromogranin (CHGA), synaptophysin (SYP) and insulinoma-associated protein 1 (INSM1) are neuroendocrine
markers used in routine practice to diagnose SCLC and NE tumors. The images for each panel are snapshots from
the SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB) and CellMiner

(http://discover.nci.nih.gov/cellminercdb) websites. Panels (A) and (B) highlight that CHGA, SYP and INSM1

expressions are highly correlated with Pearson correlations at 0.66 and 0.82, respectively. High expression of these




three neuroendocrine markers is mainly found in SCLC (green points) and brain tumor (red points) cell lines. Using
“Univariate Analysis” function in SCLC-CellMiner website, the plot in panel (C), showing SYP expression (y-axis)
and CHGA expression (x-axis), highlights that high expression of both neuroendocrine markers is found only in the
cell lines with a high NE score. Similarly, panel (D) shows the expression of CHGA (left), SYP (middle) and INSM1
(right) according the NAPY classification. The expression of the three neuroendocrine markers is higher in the
SCLC-N and -A cell lines (blue and red, respectively) compared to the SCLC-P and -Y cell lines (green and yellow,
respectively). Each point represents a cell line. (E) Snapshot of the “Multivariate Analyses” tool of SCLC-CellMiner
using the Linear Regression option and showing that ASCLI expression is highly associated with /NSM1 expression.
(F) Left: MYC is constantly highly expressed in the SCLC-P and -Y cell lines while its expression is bimodal in the
SCLC-N cell lines and generally low in the SCLC-A cell lines. Middle: MYCL expression has an opposite behavior
with low expression in all SCLC-P and -Y cell lines and a bimodal distribution in the SCLC-N and -A cell lines.
Right: MYCN is less frequently expressed in all cell lines, especially the SCLC-Y subset. (G). Snapshot of MYC (y-
axis) and MYCL expression (x-axis) in the 116 SCLC cell lines of SCLC-Global showing their mutually exclusive
expression (correlation = - 0.54). High MYC expression is mainly found in the SCLC-P and -Y cell lines (blue and
yellow points, respectively) while high MYCL expression is mainly in the NE SCLC-A and -N cell lines (red and
green points, respectively). Correlations between ASCL/ expression (y-axis) with BCL2 (H) and DLL3 (J)
expression (x-axis) in the 116 cell lines of SCLC-Global. High BCL2 and DLL3 expressions are mainly found in the
SCLC-A cell lines (red). Of note, SCLC-P cell lines also have high BLC2 expression. Pearson correlations of each
NAPY gene (NEURODI, ASCL1, POU2F3 and YAPI) vs BLCL2 (I) and DLL3 (K). Values in red represent
significantly positive Pearson correlations and values in blue significantly negative correlations.
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Figure S4, Related to Figure 5: YAPI and NOTCH pathway co-expression

Snapshots (http://discover.nci.nih.gov/cellminercdb; https://discover.nci.nih.gov/ScleCellMinerCDB) showing that
YAPI expression is highly correlated with the expression of its heterodimeric partner TAZ (encoded by the
WWTRI1/TAZ gene) across the (A) 986 cell lines of the GDSC and among the (B) 116 SCLC cell lines of SCLC-
Global. (C) Pearson correlations between the NOTCH/REST pathway gene expression and the NAPY genes
(NEURODI1, ASCL1, POU2F3 and YAPI). Expression of the NOTCH genes (except NOTCH4) is negatively
correlated with ASCL1 expression and positively correlated with POU2F3 and YAP1 expressions. (D) Snapshot
from CellMinerCDB (http://discover.nci.nih.gov/cellminercdb) showing correlated expression of NOTCH?2 (y-axis)
and NOTCH1 (x-axis) across histological subtypes in the CCLE dataset. (E) Snapshot of the tabular output from
CellMinerCDB showing Pearson correlations between NOTCH?2 and NOTCH3 expressions across cell lines from the
listed histological subtypes. (F) Snapshot from SCLC-CellMiner showing REST (y-axis) vs. YAPI (x-axis)
expression in the 116 SCLC cell lines of SCLC-Global (http://discover.nci.nih.gov/cellminercdb). (G) Same as A
except for both subtypes of lung cancers (SCLC + NSCLC) in the GDSC dataset
(https://discover.nci.nih.gov/SclcCellMinerCDB). The plots highlight that non-NE cell lines have a high REST
expression (green and red point in panel (F)) and that high Y4P/I expressing lung cancer cell lines (G) also have
high expression of REST.




RB1 (exp, SCLC Global) vs. YAP1 (exp, SCLC Global)
Pearson correlation (r)=0.32, p-value=0.00047.

RB1 (exp, SCLC Global) _

O

(exp, SCLC Global)

PCNA

G

.
9° o ® e
et

Ve

.
&
e

‘,j*.:
o

o,
°

&

1 0 1 2 3 a

YAP1 (exp, SCLC Global)

PCNA (exp, SCLC Global) vs. YAP1. (exp, SCLC Global)
Pearson correlation (r)=-0.42, p-value=2.5¢-06

YAP1 (exp, SCLC Global)

% of smoker patients

N
66% ‘%

Eyes Eno [Eunknown

@ ascu
® nevRoot
® rouzrs
o w1

® ascu
® NeuroD1
® pouzrs
© vary

VIM (exp, SCLC Global)

VIM (exp, SCLC Global) vs. YAP1 (exp, SCLC Giobal)
Pearson correlation (120.56, p-vanse=6.de-12

)

MCM2 (exp, SCLC Global

® ascu
® NeuropL
® rouzes
° et

o 1 > 3 4

YAP1 (exp, SCLC Global)

MCM2 (exp, SCLC Global) vs. YAPL (exp, SCLC Global)
Pearson correlation (r)=-0.36, p-value=5.7e-05

YAP1 (exp, SCLC Global)

® ascu
© NeuRoD!
® rouzr
© w1

CCN2 (exp, SCLCGlobal)

RNASEH2A (exp, SCLC Global)

CCN2: CTGF (exp, SCLC Global) vs. YAP1 (exp, SCLC Giobal)
P 319

earson correlation (r)=0.71, p-value="

® ascu
° © NeuRoDL
® rouzes
© et

YAP1 (exp, SCLC Global)

RNASEH2A (exp SCLC Glaba) vs, YAPL (09, SCLC Global)
n (r) =5.3e.

® asci
© NevRoD1
® rouzr3
° e

YAP1 (exp, SCLC Global)

PROPORTION OF SMOKERS/NON-SMOKERS

80,0

38,5

i3

z N 57

Myes%

56,9

> B 46

B no%

.
<
-

ACCORDING TO NAPY

B unknown %

85,7

22,2
22,2

Figure S5, Related to Figure 5: Examples of correlations between YAPI expression and expression of key
cancer genes and distribution of smoking status

Snapshots (https://discover.nci.nih.gov/SclcCellMinerCDB) of YAPI expression (x-axis) vs. the indicated cancer
genes (y-axis) in the 116 cell lines of SCLC-Global. Each point represents a cell line (red: SCLC-A, green: SCLC-
N, blue: SCLC-P and yellow: SCLC-Y). Panels (A), (B) and (C) show highly positive Pearson correlations between
YAPI and RB1, VIM and CCN2. Panels (D), (E) and (F) show highly negative Pearson correlations between YAP!
and the replication-associated genes PCNA, MCM?2 and RNASEH2A. The red rectangles encompass the SCLC-Y




cell lines. (G) Global distribution of the cell lines based on patient information (smoking status). (H) Distribution of
the cell lines across the NAPY subgroups based on smoking status.
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Figure S6, Related to Figure 6: Drug sensitivity of the SCLC cell lines

(A-B) Pathway analyses for the differentially expressed genes between sensitive and non-sensitive cell lines
according the heatmap analysis shown in Figure 6A. (A) Pathway analysis when considering all genes. (B) Pathway
analysis when considering the genes overexpressed in the most sensitive cell lines group according to Figure 6A.



(C) Correlation between the activity of etoposide (-log IC50) (x-axis) and topotecan (y-axis) across the SCLC cell
lines. (D) Correlation between the activity of etoposide (-log IC50) (x-axis) and cisplatin (y-axis). (E) Correlation
between SLFNI1 expression (x-axis) and the activity of topotecan (y-axis) in the SCLC cell lines. Each point
represents a cell line (red: SCLC-A cell lines, green: SCLC-N cell lines, blue: SCLC-P cell lines and orange: SCLC-
Y cell lines). (F) Broad range of bimodal distribution for SLFNI1 and MGMT expression in the 116 cell lines of
SCLC-Global. 40% of the cell lines (47/116) have a low expression of SLFNI1 and 33% (38/116) low MGMT
expression. Among them, there is no SCLC-P cell line and only one SCLC-Y cell line. (G-H) YAP! expression (x-
axis) is negatively correlated with the activity of etoposide (log -IC50) (G) and negatively correlated with the
activity of topotecan (H) across different histological subtypes (http://discover.nci.nih.gov/cellminercdb). (I-K) We
used a list of the 18 genes constituting the APM signature included as metadata in the CellMiner websites
(https://discover.nci.nih.gov/CellMinerCDB and https://discover.nci.nih.gov/SclcCellMinerCDB). (I-J) Correlation
between the APM score (x-axis, source: https://elifesciences.org/articles/49020) and the expression of PDLI (I) and
IFTIM3 (J). Each point represents a cell line (red: SCLC and blue: NSCLC cell lines). Note the lower APM score
for the SCLC compared to the NSCLC cell lines. (K) PD-L1 expression (x-axis) vs. APM score (y-axis) in the 116
cell lines of SCLC-Global. Note that only few cell lines have high APM score. Among the cell lines with highest
APM score, most are SCLC-Y. Each point represents a cell line (red: SCLC-A, green: SCLC-N, blue: SCLC-P and
orange: SCLC-Y cell lines). (L-M) Snapshot of CellMinerCDB (https://discover.nci.nih.gov/cellminercdb) showing
CEACAMS expression (x-axis) vs. DDL3 expression (y-axis) in the 986 cell lines of the GDSC dataset. Each point
represents a cell line. (L) SCLC are in red and the other cell lines in blue. Most SCLC cell lines have high DLL3
expression but only a subset has high expression of CEACAMS5. (M) Cell lines are represented according to their
histological subtype. SCLC cell lines (light blue) have both high DLL3 and CEACAMS} expression. (N) Snapshot of
CellMinerCDB (https://discover.nci.nih.gov/cellminercdb) showing the expression of TACSTD?2 (x-axis) vs.
SLFNI1 (y-axis) in the 986 cell lines of the GDSC dataset and in the subset of 59 SCLC and 24 triple-negative
breast cancer (TNBC) cell lines of the GDSC dataset (O). Each point represents a cell line (red: SCLC, green:
TNBC and blue: other cell lines).
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Figure S7, Related to Figure 3: Overexpression of selected DNA replication and epigenetic regulatory genes
in SCLC cell lines

Snapshot of CellMinerCDB (https://discover.nci.nih.gov/cellminercdb) showing the expression of PCNA (x-axis) vs
FENI (A), PARPI (B) and H2AFY (C) (y-axis) in all histological subtypes of cell lines from GDSC dataset. Each
point represents a cell line (red: SCLC, green: SCLC-Y cell lines and blue: other cell line subtypes). Note that DNA
replication genes are highly expressed in SCLC cell lines except for the SCLC-Y cell lines. (D) Snapshot of
CellMinerCDB (https://discover.nci.nih.gov/cellminercdb) showing high expression of ACTL6B (x-axis) and
HMGN? (y-axis) in most of the 59 SCLC cell lines (green) and 86 brain cell lines (red) of the GDSC. (E-F)
Snapshot of SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB) showing co-expression of ACTL6B
(x-axis), KDM4B (E) and SMARCA4 (F) (y-axis) among the 116 cell lines of SCLC-Global (green: SCLC-N, red:
SCLC-A, blue: SCLC-P and orange: SCLC-Y cell lines). Note that among the SCLC cell lines, most of the cell lines
expressing low ACTL6B are non-NE (SCLC-P and SCLC-Y).
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