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Supplementary Materials 1 

Study Population 2 

The National Center for Biotechnology Information (NCBI) ‘pathogen detection’ 3 

repository (https://www.ncbi.nlm.nih.gov/pathogens) Salmonella metadata was first 4 

downloaded (13 October 2017) and explored to identify non-typhoidal Salmonella (NTS) 5 

isolates recovered in the U.S. between 2006 and 2017 and for which data on the ‘Run 6 

number’ and the ‘serotype’ was available. For isolates with only the ‘Biosample’ 7 

information, ‘Run numbers’ were retrieved (in batches) separately from the Sequence Read 8 

Archive (SRA)-NCBI repository, when available.  9 

A local dictionary of the serotype and equivalent antigenic formula for NTS serotypes was 10 

created based on ‘SNOMED Clinical Terms’ at the national center for biomedical ontology 11 

(NCBO) website (http://bioportal.bioontology.org/ontologies/; SNOMED classes: 12 

Organism> Microorganism> Prokaryote> Bacteria> Salmonella). The dictionary was used 13 

to unify the serotype naming in the metadata.  14 

Overall, 28,494 sequences of NTS isolates belonging to 281 serotypes were identified.  15 

Focusing on serotypes of public-health impact, the data was filtered to include only 16 

serotypes that had at least 100 isolates and at least one isolate was retrieved from humans. 17 

The filtered selection included 25,897 sequences of isolates belonging to 37 serotypes. 18 

Collection sources were categorized into five categories: human, bovine (animal and food 19 

products), poultry (animal and food products), porcine (animal and food products) and 20 

other (including environmental, wildlife, domestic animals and non-available sources). 21 

Categorization was based on the NCBI metadata in columns ‘Host’, ‘Host disease’, 22 

https://www.ncbi.nlm.nih.gov/pathogens
http://bioportal.bioontology.org/ontologies/
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‘Isolation source’ (Included in Table S1). In addition, 3,376 samples isolated from stool or 23 

other body secretions that were sequenced by the Enteric Diseases Laboratory Branch 24 

(EDLB) of the Centers for Disease Control and Prevention (CDC), were categorized as 25 

‘Human’ source unless indicated otherwise.  26 

Data Analysis  27 

Data quality 28 

For each serotype, paired-end Illumina reads were downloaded from NCBI’s ftp server (75 29 

isolates were excluded at this step as their raw reads were not available at NCBI sequence 30 

read archive (SRA) repository) and reads quality was assessed using FASTQC v0.11.6 [1]. 31 

De-novo genome assemblies were conducted using ‘SPAdes’ de novo assembler v3.12.0 32 

[2] with the “careful” option in order to reduce short indels and minimize the number of 33 

mismatches in the final assembly. When required, the ‘repair.sh’ command in BBmap 34 

v38.06 [3] was used to fix disordered raw reads before reassembly. The assemblies N50 35 

were calculated using QUAST v4.6.3 [4] and assemblies with N50 lower than 30,000 base 36 

pairs (bp; n=188) were excluded from the analysis. The Salmonella In Silico Typing 37 

Resource (SISTR) v1.0.2 [5] was used, and only sequences with predicted serotypes (by 38 

both the serover antigen and cgmlst) that were in agreement with the serotype as defined in 39 

the metadata were further analyzed (1,497 isolates were excluded from the analysis in this 40 

step). The serotype Typhimurium var. -5 (i.e. Copenhagen) was predicted by SISTR as S. 41 

Typhimurium and therefore, in this case, the SISTR output was only used to verify that S. 42 

Copenhagen isolates were identified as S. Typhimurium and not any other serotype.  43 

The average coverage depth of the assemblies was estimated after completion of the 44 

analysis (i.e. after removal of genetic duplicates, see below). For this purpose, reads were 45 
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aligned to the contig assemblies using bowtie2 v2.3.4.1 [6] and BBmap [3] was used to 46 

calculate the average coverage depth of the contigs. In 18,211/18,282 (99.6%) of the 47 

sequences the average coverage was at least 20, in 39/18,282 (0.21%) of the sequences the 48 

average coverage was below 20 and in 33/18,282 (0.18%) of the sequences the average 49 

coverage could not be calculated as the raw reads were not available for downloading from 50 

NCBI anymore. The sequences with the low (below 20) and unknown average coverage 51 

were not removed from the analysis, however given the amount of isolates included in 52 

these groups (0.39% of all sequences analyzed here) it is not likely that their inclusion has 53 

affected the analysis outcomes. 54 

Genetic analyses 55 

Serotype phylogenies reconstruction 56 

Before using ‘FastTree’ v2.1.10 [7] for phylogeny reconstruction of each serotype, 57 

genetically identical duplicates were removed from the analysis [overall 5,855 sequences 58 

were removed; up to 27 duplicates were removed in 50% of the serotypes and the highest 59 

and lowest number of duplicates were removed in S. Enteritidis (n=3,042) and S. 60 

Johannesburg (n=3)].  61 

Packages ‘ape’ v5.0 [8] and ‘ggtree’ v1.10.5 [9] in R software v3.4.3 [10] were used for 62 

visualization. In the final (FastTree) phylogenetic trees, 195 sequences were removed to 63 

improve the visualization. These sequences (outliers) included individual sequences or 64 

small groups of similar sequences (up to five sequences) demonstrating high dissimilarity 65 

to other sequences within the serotype (i.e. longer tree branches), yet neither low quality of 66 

the data nor misidentification of the serotype was evident. Up to three outliers were 67 

identified in 50% of the serotypes; none were found in nine serotypes and the highest 68 
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number of outlier sequences was found in S. Javiana (n=32). The outlier sequences were 69 

analyzed as part of each serotype analysis, yet were removed from the final trees to 70 

improve the visualization of the genetic subpopulations within each serotype.  71 

A scheme of the pipeline used in the analyses: metadata filtration, data quality assessment 72 

and genetic analyses is illustrated in figure S1.  73 

Data interpretation 74 

Comparison between subtyping by serotypes and genetic subpopulations 75 

Data of the genetic characteristics [i.e. presence of acquired antimicrobial resistance genes 76 

(AARGs), multilocus sequence types (MLST) and plasmid replicons) were summarized for 77 

each serotype and its genetic subpopulations (Table S2). For this purpose, the serotypes 78 

data was stratified by genetic subpopulations. Then, for each antibiotic class [i.e. beta-79 

lactams; aminoglycosides; folate pathway inhibitors; tetracyclines; macrolide and 80 

lincosamide (including sulphonamide and trimethoprim); quinolones; phenicols; and others 81 

(including colistin, fosfomycin, fusidic acid, glycopeptide, nitroimidazole, oxazolidinone 82 

and rifampicin)] the number of sequences harboring AARGs and the percentage of 83 

sequences harboring AARGs within the genetic subpopulation were calculated. In addition, 84 

similar information was summarized for predominant AARGs (i.e. found in at least 10% of 85 

the sequences within the subpopulation) in each antibiotic class. However, for beta lactams 86 

and quinolones, the data was summarized for all AARGs that were found. The MLST and 87 

plasmid replicons were summarized for predominant types only (i.e. found in at least 10% 88 

of the sequences within the subpopulation). 89 
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In addition, to described above and in the text, the following packages in R software v3.4.3 90 

[10] were used: (i) for data manipulation and summarization – dplyr v0.8.0.1 [11], 91 

lettercase v0.13.1 [12], stringr v1.2.0 [13], tidyr v0.8.0 [14] and xlsx v0.5.7 [15]; for 92 

creating and formatting the figures - cowplot v0.9.2 [16], Hmisc v4.1.1 [17], ggplot2 93 

v2.2.1 [18], ggpubr v0.2 [19] and gridExtra v2.3 [20].  94 

 95 
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Supplementary figure captions 155 

Figure S1 – A scheme of the pipeline used in the analyses: metadata filtration (yellow 156 

box), data quality assessment (green box) and genetic analyses (purple box). Infographics 157 

were created using ‘draw.io’ website. Notes: a average coverage was estimated for the final 158 

18,282 sequences only (see Supplementary text); b outliers were only removed from the 159 

final phylogenetic trees figures (see Supplementary text); c the final number of sequences 160 

analyzed after exclusion of duplicates (but not the outliers; see Supplementary text). 161 

Figure S2 – The percentage of sequences that were obtained from each source are 162 

presented for each genetic subpopulation within serotype. Barplots were generated for each 163 

of the 37 serotypes included in the study. Bars are colored according to the source: human 164 

(purple), bovine (blue), poultry (brown), porcine (orange) and other (grey). The number of 165 

sequences included in each subpopulation/serotype are indicated above each bar column. 166 

The ‘Total’ column includes the sum of all subpopulations within serotype in addition to 167 

sequences (of that serotype) that were not grouped in any of the subpopulations (see 168 

supplementary material text for details). 169 

Figure S3 – The percentage of sequences that were obtained from each collection period in 170 

each genetic subpopulation within serotype. Barplots were generated for each of the 37 171 

serotypes included in the study. Bars are colored according to the collection period: 2006-172 

2009 (blue), 2010-2013 (green) and 2014-2017 (red). The number of sequences included in 173 

each subpopulation/serotype are indicated above each bar column. The ‘Total’ column 174 

includes the sum of all subpopulations within serotype in addition to sequences (of that 175 

serotype) that were not grouped in any of the subpopulations (see supplementary material 176 

text for details). 177 
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Figure S4 – A maximum likelihood phylogenetic tree was reconstructed with RAxML 178 

using the single nucleotide polymorphisms (SNPs) found in the core genome of 179 

representative sequences from all 37 serotypes (n=370). Ten sequences were selected from 180 

each serotype phylogeny to represent the diversity of the genetic subpopulations. The tree 181 

was rooted using S. Paratyphi type A outgroup (SRR3033248, SRR3277289; not included 182 

in the figure). Bootstrap replicates (n=5,000) were used for branch support. Tree tips were 183 

colored according to the serotype and the genetic subpopulation number was indicated in 184 

the tip name. 185 

Figure S5 – The percentage of plasmid size groups found in each genetic subpopulation 186 

within serotype. Barplots were generated for each of the 37 serotypes included in the study. 187 

Bars are colored according to the plasmid size groups: ‘small’- up to 6kbp (Purple); 188 

‘intermediate’- between 6kbp and 100kbp (yellow); and ’large’- more than 100kbp (dark 189 

red). The number of sequences in each subpopulation/serotype are indicated above each 190 

bar column. The ‘Total’ column includes the sum of all subpopulations within serotype 191 

(see supplementary material text for details). 192 
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Figure S1 199 
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Figure S3 203 
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