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Figures and Schemes 

 

 

Figure S1. Selective release of cytotoxic agent (CA4) from non-toxic BAPC under tumor 
hypoxia. BAPCs are designed to activate selectively in the hypoxic tumor microenvironment, 
thereby releasing their cytotoxic anticancer agent (payload).S1  

 

The disorganized, leaky tumor-associated capillaries with shunts and blind ends lead to 

diminished blood flow in the central mass of the tumor and an increased average diffusion 

distance for oxygen and nutrients to reach tumor cells. S2 Furthermore, there is a distinct oxygen 

concentration gradient present in a significant percentage of solid tumors, varying from 

normoxic to hypoxic to anoxic. S3 Tumor-associated hypoxia is believed to be one of the 

significant contributing factors to treatment failure and relapse of solid tumors in cancer patients, 

as the tumor cells in the hypoxic region have been implicated in resistance. S3–S6 
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Figure S2. A) Mechanism of action for tirapazamine with hypoxic cells; B) Structure of TH-
302; C) Structure of PR-104.S7–S10 

 

Tirapazamine represents one type of hypoxia-selective therapeutic agent. Reduction of its 

triazine moiety to a free radical leads to DNA damage and poisoning of topoisomerase II (Figure 

S2, A).S7,S8 While Phase I and Phase II clinical trials for tirapazamine had positive results, a 

Phase III clinical trial utilizing the combination of tirapazamine with the conventional anticancer 

agent cisplatin to treat advanced non-small cell lung cancer was unsuccessful,S3 due largely to 

dose-limiting toxicity.S11,S12 The high degree of hypoxia-selective activation coupled with its 

performance in early clinical trials resulted in tirapazamine being viewed as a promising positive 

control against which new hypoxia-selective therapeutic agents are often compared.S2 TH-302 

(evofosfamide),S13,S14 a 2-nitroimidazole-based nitrogen mustard prodrug (Figure S2, B) that 

releases its parent drug bromoisophosphoramide mustard under hypoxic conditions, advanced to 

Phase III human clinical trials.S9,S15 Unlike the Phase I and II studies, the results of the Phase III 

clinical trials showed no statistical significance for TH-302 against pancreatic adenocarcinoma 

and soft tissue sarcoma. S16–S19 PR-104 (Figure S2, C) is a phosphate ester pre-prodrug which 
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contains a nitrogen mustard moiety that becomes active and induces DNA cross-linking under 

hypoxic conditions.S2,S10,S20 Nitroreduction can act as an electronic switch to activate a reactive 

center, as in the case of the reduction of the PR-104 alcohol to form the cytotoxic hydroxylamine 

(or amine), or initiate fragmentation from the radical anion or hydroxylamine to release the 

trigger and generate the (non-radical) parent cytotoxin, the nitrogen mustard in the case of TH-

302.S9,S21,S22 

 

 

Figure S3. Combretastatin A-4 (CA4) incorporating nitrothiophene-based bioreductive 
triggers.S23 

 

 
 

Scheme S1. Synthesis of nitrothiophene triggers: A) Previously established synthetic route (by 
Davis and co-workers); S23 B) Modified synthetic route.S24, S25 
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The synthetic route reported by Davis and co-workers was utilized in the synthesis of the 

nor- and mono-methyl nitrothiophene triggers 16 and 17, which involved reduction of aldehyde 

14 and ketone 15, respectively (Scheme S1).S23 However, in our hands, the synthesis of the gem-

dimethyl nitrothiophene trigger 19 (Scheme S1) suffered from two consecutive low-yielding 

steps, which included methylation of the carbonyl group followed by nitration at the C5 position. 

In order to obtain a sufficient quantity of compound 19, it proved efficacious to develop a 

modified synthetic route that provided all three triggers (nor-, mono- and gem-) from a single 

starting material (aldehyde 14).S1,S25 Methylation of aldehyde 14 furnished mono-methyl trigger 

17, which, upon subsequent oxidation and methylation, yielded gem-dimethyl trigger 19 in good 

yield (Scheme S1). 

 
 

 
 

Scheme S2. Attempted Deprotection of Compounds 22, 23 and 24 
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Solubilization Vehicles for in vivo Studies 

Since BAPC 45 was insoluble in buffered saline or water, it was necessary to develop a 

suitable vehicle to solubilize this agent for in vivo use. While BAPC 45 proved soluble in 

DMSO, there are limits (in terms of volume tolerability) associated with using DMSO alone in 

mice. A solubilization study identified several potential vehicles [including: 90% DMSO / 10% 

PBS; 33.3% DMSO / 66.7% sesame oil; 50% DMSO / 50% Tween 80; 12% DMSO / 12% 

Tween 80 / 71% PEG 400 / 5% PBS; 11% DMSO / 11% Tween 80 / 67% PEG 400 / 11% 

ethanol; and 10% DMSO / 55% sesame oil / 35% PEG 400 (referred to as DSP)] from which the 

latter was chosen for in vivo studies based on its improved ability to solubilize BAPC 45. 
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Synthesis of Bioreductive Triggers 

Synthesis of Compounds 16, 17 and 19 Using the Previously Established Synthetic Route 

(Davis’ Route)S23 

(5-Nitrothiophen-2-yl)methanol (16) S23. This bioreductive trigger was prepared following the 

synthetic protocol reported by Pinney and Co-workers.S25 1H NMR (500 MHz, CDCl3) δ 7.84 

(1H, d, J = 4 Hz, ArH), 6.96 (1H, d, J = 4 Hz, ArH), 4.91 (2H, d, J = 5.5, CH2), 2.20 (1H, s, 

OH); 13C NMR (126 MHz, CDCl3) δ 153.4, 150.9, 128.9, 123.6, 60.4. 

1-(5-Nitrothiophen-2-yl)ethan-1-ol (17)S23. 2-Acetyl-5-nitrothiophene (1.00 g, 5.85 mmol) was 

dissolved in dry methanol (20 mL) in an ice bath (0 °C). NaBH4 (0.259 g, 6.71 mmol) was 

added, and the reaction mixture was stirred for 2 h. Ice was added to the reaction mixture, and it 

was acidified to neutral pH with 3 M HCl. The solution was then extracted with EtOAc, and the 

organic phase was dried with Na2SO4 and evaporated under reduced pressure. Flash 

chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, 

EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B à 

64% A/36% B over 13.12 min (10 CV), 64% A/36% B over 2.38 min (2 CV); flow rate 50.0 

mL/min; monitored at 254 and 280 nm] yielded mono methyl trigger 17 (0.932 g, 5.38 mmol, 

92%) as a brown oil: 1H NMR (500 MHz, CDCl3) δ 7.81 (1H, d, J = 4 Hz, , ArH), 6.90 (1H, d, J 

= 4 Hz, , ArH), 5.15 (1H, dq, J = 6 Hz, J = 5 Hz, CH), 2.23 (1H, d, J = 5 Hz, OH), 1.63 (3H, d, J 

= 6 Hz, CH3); 13C NMR (125 MHz, CDCl3) δ 160.0, 149.9, 129.1, 122.2, 66.3, 25.1. 

2-(Thiophen-2-yl)propan-2-ol (18)S23. 2-Acetylthiophene (10.0 g, 79.2 mmol) was dissolved in 

dry THF (100 mL) in an ice bath (0 °C). CH3Li (64 mL, 103 mmol, 1.6 M) was added dropwise, 

and the reaction mixture was stirred for 18 h. The reaction was quenched with water, and volatile 
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components were evaporated under reduced pressure. The reaction mixture was then extracted 

with EtOAc, and the organic phase was dried with Na2SO4 and evaporated under reduced 

pressure. Flash chromatography of the crude product using a prepacked 100 g silica column 

[eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 12% A/88% B over 1.19 min (1 CV), 

12% A/88% B à 100% A/0% B over 13.12 min (10 CV), 100% A/0% B over 2.38 min (2 CV); 

flow rate 50.0 mL/min; monitored at 254 and 280 nm] yielded 2-(thiophen-2-yl)propan-2-ol (18) 

(3.60 g, 25.3 mmol 32%) as a yellow oil: 1H NMR (500 MHz, CDCl3) δ 7.20 (1H, dd, J = 5 Hz, J 

= 1.5 Hz, ArH), 6.97 (2H, m, ArH), 2.04 (1H, s, OH), 1.68 (6H, s, CH3). 

2-(5-Nitrothiophen-2-yl)propan-2-ol (19)S23. The tertiary alcohol 18 (6.22 g, 4.37 mmol) was 

dissolved in Ac2O (67 mL) and cooled to -78 oC. Fuming HNO3 (25 mL) was added dropwise, 

and the reaction mixture was stirred for 2 h while allowing the reaction mixture to warm to -15o 

C. Ice (200 g) was added to the solution, which was stirred for 40 min. The reaction mixture was 

extracted with EtOAc (3×75 mL), and the organic phase was washed repeatedly with brine, 

water and saturated sodium bicarbonate, dried over Na2SO4, filtered and concentrated under 

reduced pressure. The crude product was purified using flash column chromatography affording 

the alcohol product 19 (0.655 g, 0.35 mmol, 8%) as an orange wax: 1H NMR (CDCl3, 600 MHz) 

δ 7.79 (1H, d, J = 4.2 Hz, ArH), 6.87 (1H, d, J = 4.2 Hz, ArH), 2.13 (1H, s, OH), 1.67 (6H, s, 

CH3); 13C NMR (151 MHz, CDCl3) δ 163.6, 133.9, 128.9, 121.4, 72.0, 32.2. 

 

Synthesis of Compounds 15, 17 and 19 Using the Modified Synthetic Route (Titanium 

Tetrachloride Route) S24, S25 

1-(5-Nitrothiophen-2-yl)ethan-1-ol (17). S24, S25 This bioreductive trigger was prepared 

following the synthetic protocol reported by Pinney and Co-workers.S25 1H NMR (500 MHz, 
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CDCl3) δ 7.81 (1H, d, J = 4 Hz, ArH), 6.90 (1H, d, J = 4 Hz, ArH), 5.15 (1H, dq, J = 6 Hz, J = 5 

Hz, CH), 2.23 (1H, d, J = 5 Hz, OH), 1.63 (3H, d, J = 6 Hz, CH3); 13C NMR (125 MHz, CDCl3) 

δ 160.0, 149.9, 129.1, 122.2, 66.3, 25.1. 

1-(5-Nitrothiophen-2-yl)ethan-1-one (15). This bioreductive trigger was prepared following the 

synthetic protocol reported by Pinney and Co-workers.S25 1H NMR (600 MHz, CDCl3) δ 7.89 

(1H, d, J = 4.3 Hz, ArH), 7.58 (1H, d, J = 4.3 Hz, ArH), 2.60 (3H, s, CH3); 13C NMR (151 MHz, 

CDCl3) δ 190.5, 156.5, 148.2, 130.2, 128.4, 26.6. 

2-(5-Nitrothiophen-2-yl)propan-2-ol (19). S24, S25 This bioreductive trigger was prepared 

following the synthetic protocol reported by Pinney and Co-workers.S25 1H NMR (CDCl3, 600 

MHz) δ 7.79 (1H, d, J = 4.2 Hz, ArH), 6.87 (1H, d, J = 4.2 Hz, ArH), 2.13 (1H, s, OH), 1.67 

(3H, s, CH3), 13C NMR (151 MHz, CDCl3) δ 163.6, 133.9, 128.9, 121.4, 72.0, 32.2. 
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1H NMR (600 MHz, CDCl3) for Compound 2 
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13C NMR (151 MHz, CDCl3) for Compound 2 
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1H NMR (600 MHz, CDCl3) for Compound 3 
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13C NMR (151 MHz, CDCl3) for Compound 3   
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1H NMR (500 MHz, CDCl3) for Compound 4 
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13C NMR (151 MHz, CDCl3) for Compound 4 
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1H NMR (600 MHz, CDCl3) for Compound 5 
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13C NMR (151 MHz, CDCl3) for Compound 5 
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1H NMR (500 MHz, CDCl3) for Compound 6 
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13C NMR (126 MHz, CDCl3) for Compound 6 
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1H NMR (600 MHz, CDCl3) for Compound 7 
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13C NMR (151 MHz, CDCl3) for Compound 7 
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1H NMR (600 MHz, CDCl3) for Compound 10 
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31P NMR (240 MHz, CDCl3) for Compound 10 
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1H NMR (500 MHz, CDCl3) Compound 11 
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13C NMR (126 MHz, CDCl3) for Compound 11 
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1H NMR (600 MHz, CDCl3) Compound 12 

 



S31 
 

13C NMR (151 MHz, CDCl3) for Compound 12 
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1H NMR (500 MHz, CDCl3) for Compound 13 
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13C NMR (125 MHz, CDCl3) for Compound 13 
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1H NMR (500 MHz, CDCl3) for Compound 15 
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13C NMR (500 MHz, CDCl3) for Compound 15 
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1H NMR (500 MHz, CDCl3) for Compound 16 
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13C NMR (500 MHz, CDCl3) of Compound 16 
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1H NMR (500 MHz, CDCl3) of Compound 17 
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13C NMR (500 MHz, CDCl3) for Compound 17 
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1H NMR (500 MHz, CDCl3) for Compound 19 
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13C NMR (500 MHz, CDCl3) for Compound 19 
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1H NMR (500 MHz, CDCl3) for Compound 20 
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13C NMR (125 MHz, CDCl3) for Compound 20 
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1H NMR (500 MHz, CDCl3) for Compound 21 
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13C NMR (125 MHz, CDCl3) for Compound 21 
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HPLC trace of Compound 21 
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HRMS Traces of Compound 21 

 
 

 

100 200 300 400 500 600 700 800 900 1000

m/z

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Re
la

tiv
e 

Ab
un

da
nc

e

0

20

40

60

80

100

397.1713
z=1

333.1409
z=1 771.3519

z=1413.1451
z=1

318.1170
z=1

181.0899
z=1

581.2529
z=2

833.3237
z=1

483.1100
z=1

945.2813
z=1

719.1889
z=?

374.1724

375.1802

397.1622

NL:
7.81E8

LD-V-11-1A_Orbo 
+ESI#12  RT: 0.11  AV: 
1 T: FTMS + p ESI 
sid=35.00  Full ms 
[100.00-1000.00] 

NL:
7.84E5

C 21 H26 O6: 
C 21 H26 O6

pa Chrg 1

NL:
7.84E5

C 21 H26 O6 +H: 
C 21 H27 O6

pa Chrg 1
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C 21 H26 O6 Na 1

pa Chrg 1
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1H NMR (600 MHz, CDCl3) for Compound 22 
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13C NMR (151 MHz, CDCl3) for Compound 22 
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HPLC Traces of Compound 22 
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Mass Spectrum of Compound 22  
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1H NMR (500 MHz, CDCl3) of (Z)-3-Methoxy-2-(2-(5-nitrothiophen-2-yl)propoxy)-6-(3,4,5-trimethoxystyryl)-phenyl-4-
methylbenzenesulfonate (23)  
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 13C NMR (500 MHz, CDCl3) of (Z)-3-Methoxy-2-(2-(5-nitrothiophen-2-yl)propoxy)-6-(3,4,5-trimethoxystyryl)-phenyl-4-
methylbenzenesulfonate (23) 
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HPLC trace of compound 23 
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Mass Spectrum of Compound 23 
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1H NMR (500 MHz, CDCl3) for Compound 24 
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13C NMR (125 MHz, CDCl3) for Compound 24 
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HPLC Traces of Compound 24 
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Mass Spectrum of Compound 24 
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1H NMR (600 MHz, CDCl3) for Compound 25 
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13C NMR (151 MHz, CDCl3) for Compound 25 
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HPLC Traces for Compound 25 
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Mass Spectrum of Compound 25 
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1H NMR (600 MHz, CDCl3) for Compound 26 

 

  



S81 
 

HPLC Traces of Compound 26 
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Mass Spectrum of Compound 26 
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1H NMR (500 MHz, CDCl3) for Compounds 27 and 28 
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13C NMR (125 MHz, CDCl3) for Compounds 27 and 28 
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1H NMR (500 MHz, CDCl3) for Compound 29 
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13C NMR (125 MHz, CDCl3) for Compound 29 
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HPLC Traces of Compound 29 
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Mass Spectrum of Compound 29 
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1H NMR (600 MHz, CDCl3) for Compound 30  
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13C NMR (125 MHz, CDCl3) for Compound 30  
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1H NMR (500 MHz, CDCl3) of Compound 31 
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13C NMR (500 MHz, CDCl3) of Compound 31 
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1H NMR (600 MHz, CDCl3) for Compound 33 
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13C NMR (151 MHz, CDCl3) for Compound 33 
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1H NMR (500 MHz, CDCl3) of Compound 34 
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13C NMR (500 MHz, CDCl3) of Compound 34 
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1H NMR (500 MHz, CDCl3) for Compound 35 

 
Note: The proton count drops at the non-aromatic nitrothiophene carbon for the nor-methyl cyclic structure 35. 
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13C NMR (125 MHz, CDCl3) for Compound 35 
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13C DEPT NMR (125 MHz, CDCl3) for Compound 35 
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HPLC Traces for Compound 35 
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Mass Spectrum for Compound 35 
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1H NMR (500 MHz, CDCl3) of Compound 36  
 

 
Note: The proton signal at the non-aromatic nitrothiophene carbon disappears for the mono-methyl cyclic structure 36. 
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13C NMR (500 MHz, CDCl3) of Compound 36 
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HPLC Trace of Compound 36 
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Mass Spectrum of Compound 36 
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1H NMR (600 MHz, Acetone) for Compound 37 
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13C NMR (151 MHz, Acetone) for Compound 37 
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13C DEPT NMR (125 MHz, Acetone) for Compound 37 
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HPLC Traces for Compound 37 
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Mass Spectrum of Compound 37 
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1H NMR (500 MHz, CDCl3) of Compound 38  
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13C NMR (500 MHz, CDCl3) of Compound 38 
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HPLC Trace of Compound 38 
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Mass Spectrum of Compound 38  
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1H NMR (600 MHz, CDCl3) for Compound 39 
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13C NMR (151 MHz, CDCl3) for Compound 39 
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HPLC Traces for Compound 39 
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Mass Spectrum of Compound 39 
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1H NMR (500 MHz, acetone d-6) of Compound 40 
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13C NMR (500 MHz, acetone d-6) of Compound 40 
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HPLC Trace of Compound 40 
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Mass Spectrum of Compound 40 
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1H NMR (600 MHz, CDCl3) for Compound 41 
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13C NMR (151 MHz, CDCl3) for Compound 41 
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HPLC Traces for Compound 41 
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Mass Spectrum for Compound 41 
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1H NMR (500 MHz, CDCl3) of Compound 43 
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13C NMR (500 MHz, CDCl3) of Compound 43 
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HPLC Trace of Compound 43 



S158 
 



S159 
 



S160 
 



S161 
 

 



S162 
 

Mass Spectrum of Compound 43 
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1H NMR (500 MHz, CDCl3) of Compound 44 
 

 
 

 



S164 
 

13C NMR (500 MHz, CDCl3) of Compound 44 
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HPLC Trace of compound 44 
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Mass Spectrum of Compound 44 
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1H NMR (500 MHz, CDCl3) of Compound 45 
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13C NMR (500 MHz, CDCl3) of Compound 45 
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HPLC Trace of Compound 45 
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X-Ray Crystallography Data for Compound 45  
 

Crystallographic data for compound 45 (CCDC-1502328) reported in this paper have been 

deposited with the Cambridge Crystallographic Data Centre. Copies of  the  data  can  be  

obtained,  free  of  charge,  on  application  to  the Director, CCDC, 12 Union Road, Cambridge 

CB2 1EZ, UK (fax:+44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk). Compound 45 is 

referred to as KP61 in the tables on pages S176-S183. 
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Table S1.  Crystal data and structure refinement for kp61. 

Identification code  kp61 

Empirical formula  C25 H27 N O7 S 

Formula weight  485.54 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 8.0895(7) Å a= 100.514(5)°. 

 b = 12.0696(10) Å b= 104.240(5)°. 

 c = 14.0112(12) Å g = 108.180(5)°. 

Volume 1208.84(18) Å3 

Z 2 

Density (calculated) 1.334 Mg/m3 

Absorption coefficient 0.179 mm-1 

F(000) 512 

Crystal size 0.31 x 0.28 x 0.11 mm3 

Theta range for data collection 2.06 to 26.46°. 

Index ranges -9<=h<=10, -15<=k<=15, -16<=l<=17 

Reflections collected 12273 

Independent reflections 4851 [R(int) = 0.0427] 

Completeness to theta = 26.46° 97.5 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9802 and 0.9465 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4851 / 0 / 313 

Goodness-of-fit on F2 1.028 

Final R indices [I>2sigma(I)] R1 = 0.0457, wR2 = 0.1101 

R indices (all data) R1 = 0.0772, wR2 = 0.1277 

Largest diff. peak and hole 0.158 and -0.218 e.Å-3 
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 Table S2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for kp61.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   

S(1) 3104(1) 5110(1) 1330(1) 61(1) 

O(1) 975(3) 2648(2) 59(2) 112(1) 

O(2) 88(3) 3044(2) -1374(1) 94(1) 

O(3) 5098(2) 7059(1) 3092(1) 52(1) 

O(4) 7261(2) 8749(1) 4853(1) 66(1) 

O(5) -4646(2) 1366(2) 1585(1) 79(1) 

O(6) -1425(2) 1040(1) 2114(1) 71(1) 

O(7) 1682(2) 2868(1) 3284(1) 65(1) 

N(1) 959(3) 3351(2) -460(2) 73(1) 

C(1) 2038(3) 4618(2) 40(2) 60(1) 

C(2) 2242(4) 5513(3) -422(2) 80(1) 

C(3) 3320(4) 6639(2) 290(2) 80(1) 

C(4) 3899(3) 6577(2) 1275(2) 53(1) 

C(5) 5164(3) 7583(2) 2234(2) 56(1) 

C(6) 7146(3) 7905(2) 2232(2) 84(1) 

C(7) 4646(4) 8688(2) 2330(2) 69(1) 

C(8) 4284(3) 7434(2) 3785(1) 45(1) 

C(9) 5429(3) 8284(2) 4725(2) 49(1) 

C(10) 4634(3) 8594(2) 5448(2) 56(1) 

C(11) 2758(3) 8086(2) 5236(2) 56(1) 

C(12) 1602(3) 7231(2) 4313(2) 49(1) 

C(13) 2427(3) 6927(2) 3591(2) 47(1) 

C(14) -406(3) 6740(2) 4103(2) 61(1) 

C(15) -1683(3) 5628(2) 3628(2) 60(1) 

C(16) -1551(3) 4457(2) 3224(2) 50(1) 

C(17) -3142(3) 3499(2) 2579(2) 57(1) 

C(18) -3120(3) 2368(2) 2196(2) 56(1) 

C(19) -1484(3) 2175(2) 2432(2) 54(1) 

C(20) 127(3) 3133(2) 3083(2) 51(1) 

C(21) 85(3) 4252(2) 3489(2) 52(1) 

C(22) 8469(3) 9566(2) 5828(2) 74(1) 
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C(23) -6392(4) 1422(3) 1509(2) 99(1) 

C(24) -1556(5) 656(3) 1080(2) 98(1) 

C(25) 3340(3) 3811(2) 3954(2) 66(1) 

________________________________________________________________________________ 
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 Table S3.   Bond lengths [Å] and angles [°] for  kp61. 

_____________________________________________________  

S(1)-C(1)  1.699(2) 

S(1)-C(4)  1.707(2) 

O(1)-N(1)  1.215(3) 

O(2)-N(1)  1.222(3) 

O(3)-C(8)  1.387(2) 

O(3)-C(5)  1.462(2) 

O(4)-C(9)  1.362(2) 

O(4)-C(22)  1.430(3) 

O(5)-C(18)  1.374(3) 

O(5)-C(23)  1.413(3) 

O(6)-C(19)  1.380(2) 

O(6)-C(24)  1.405(3) 

O(7)-C(20)  1.369(2) 

O(7)-C(25)  1.419(3) 

N(1)-C(1)  1.438(3) 

C(1)-C(2)  1.344(3) 

C(2)-C(3)  1.393(3) 

C(3)-C(4)  1.368(3) 

C(4)-C(5)  1.510(3) 

C(5)-C(7)  1.511(3) 

C(5)-C(6)  1.528(3) 

C(8)-C(13)  1.368(3) 

C(8)-C(9)  1.399(3) 

C(9)-C(10)  1.383(3) 

C(10)-C(11)  1.378(3) 

C(11)-C(12)  1.389(3) 

C(12)-C(13)  1.397(3) 

C(12)-C(14)  1.476(3) 

C(14)-C(15)  1.335(3) 

C(15)-C(16)  1.470(3) 

C(16)-C(17)  1.389(3) 

C(16)-C(21)  1.395(3) 

C(17)-C(18)  1.380(3) 

C(18)-C(19)  1.386(3) 
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C(19)-C(20)  1.399(3) 

C(20)-C(21)  1.380(3) 

 

C(1)-S(1)-C(4) 90.52(11) 

C(8)-O(3)-C(5) 120.04(14) 

C(9)-O(4)-C(22) 117.76(18) 

C(18)-O(5)-C(23) 117.7(2) 

C(19)-O(6)-C(24) 115.77(18) 

C(20)-O(7)-C(25) 117.19(16) 

O(1)-N(1)-O(2) 124.0(2) 

O(1)-N(1)-C(1) 117.4(2) 

O(2)-N(1)-C(1) 118.6(2) 

C(2)-C(1)-N(1) 125.5(2) 

C(2)-C(1)-S(1) 114.02(19) 

N(1)-C(1)-S(1) 120.41(17) 

C(1)-C(2)-C(3) 110.8(2) 

C(4)-C(3)-C(2) 113.7(2) 

C(3)-C(4)-C(5) 129.0(2) 

C(3)-C(4)-S(1) 110.99(18) 

C(5)-C(4)-S(1) 119.94(15) 

O(3)-C(5)-C(4) 106.26(15) 

O(3)-C(5)-C(7) 113.24(16) 

C(4)-C(5)-C(7) 111.97(19) 

O(3)-C(5)-C(6) 104.83(18) 

C(4)-C(5)-C(6) 109.06(18) 

C(7)-C(5)-C(6) 111.10(19) 

C(13)-C(8)-O(3) 121.15(17) 

C(13)-C(8)-C(9) 120.55(18) 

O(3)-C(8)-C(9) 118.14(18) 

O(4)-C(9)-C(10) 124.90(19) 

O(4)-C(9)-C(8) 116.78(18) 

C(10)-C(9)-C(8) 118.3(2) 

C(11)-C(10)-C(9) 120.4(2) 

C(10)-C(11)-C(12) 122.11(19) 

C(11)-C(12)-C(13) 116.73(19) 

C(11)-C(12)-C(14) 120.37(19) 
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C(13)-C(12)-C(14) 122.79(19) 

C(8)-C(13)-C(12) 121.85(19) 

C(15)-C(14)-C(12) 131.8(2) 

C(14)-C(15)-C(16) 132.1(2) 

C(17)-C(16)-C(21) 118.51(19) 

C(17)-C(16)-C(15) 118.41(19) 

C(21)-C(16)-C(15) 123.0(2) 

C(18)-C(17)-C(16) 121.3(2) 

O(5)-C(18)-C(17) 124.6(2) 

O(5)-C(18)-C(19) 115.2(2) 

C(17)-C(18)-C(19) 120.2(2) 

O(6)-C(19)-C(18) 121.8(2) 

O(6)-C(19)-C(20) 118.94(19) 

C(18)-C(19)-C(20) 119.0(2) 

O(7)-C(20)-C(21) 124.03(19) 

O(7)-C(20)-C(19) 115.48(18) 

C(21)-C(20)-C(19) 120.48(19) 

C(20)-C(21)-C(16) 120.5(2) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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 Table S4.   Anisotropic displacement parameters  (Å2x 103) for kp61.  The anisotropic 

displacement factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

S(1) 80(1)  59(1) 49(1)  21(1) 21(1)  30(1) 

O(1) 149(2)  71(1) 90(2)  22(1) 16(1)  25(1) 

O(2) 85(1)  116(2) 59(1)  -3(1) 11(1)  37(1) 

O(3) 63(1)  57(1) 49(1)  18(1) 25(1)  33(1) 

O(4) 54(1)  66(1) 65(1)  8(1) 12(1)  18(1) 

O(5) 56(1)  72(1) 86(1)  8(1) 11(1)  13(1) 

O(6) 84(1)  48(1) 77(1)  17(1) 20(1)  24(1) 

O(7) 55(1)  51(1) 89(1)  20(1) 14(1)  26(1) 

N(1) 75(2)  84(2) 60(1)  12(1) 22(1)  36(1) 

C(1) 71(2)  69(2) 47(1)  16(1) 25(1)  32(1) 

C(2) 102(2)  98(2) 48(1)  29(1) 30(1)  41(2) 

C(3) 111(2)  76(2) 62(2)  36(1) 34(2)  36(2) 

C(4) 64(1)  61(1) 53(1)  24(1) 32(1)  32(1) 

C(5) 64(1)  54(1) 61(1)  22(1) 33(1)  25(1) 

C(6) 67(2)  96(2) 98(2)  34(2) 46(2)  25(2) 

C(7) 92(2)  56(1) 78(2)  30(1) 41(1)  34(1) 

C(8) 57(1)  42(1) 46(1)  15(1) 21(1)  25(1) 

C(9) 55(1)  44(1) 54(1)  17(1) 16(1)  22(1) 

C(10) 71(2)  50(1) 46(1)  9(1) 16(1)  27(1) 

C(11) 81(2)  53(1) 52(1)  19(1) 34(1)  37(1) 

C(12) 60(1)  46(1) 58(1)  22(1) 28(1)  29(1) 

C(13) 54(1)  42(1) 47(1)  13(1) 16(1)  21(1) 

C(14) 68(2)  60(1) 78(2)  25(1) 39(1)  39(1) 

C(15) 55(1)  64(1) 76(2)  28(1) 32(1)  32(1) 

C(16) 52(1)  55(1) 56(1)  27(1) 24(1)  25(1) 

C(17) 52(1)  68(1) 60(1)  30(1) 22(1)  26(1) 

C(18) 52(1)  59(1) 53(1)  20(1) 15(1)  15(1) 

C(19) 62(2)  48(1) 55(1)  22(1) 20(1)  20(1) 

C(20) 53(1)  50(1) 59(1)  27(1) 22(1)  23(1) 

C(21) 49(1)  48(1) 60(1)  22(1) 18(1)  17(1) 

C(22) 68(2)  59(1) 73(2)  14(1) 1(1)  12(1) 
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C(23) 56(2)  108(2) 102(2)  4(2) 7(2)  19(2) 

C(24) 130(3)  84(2) 97(2)  23(2) 60(2)  46(2) 

C(25) 50(1)  66(1) 87(2)  25(1) 20(1)  26(1) 
______________________________________________________________________________ 
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Mass Spectrum of Compound 45 
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NADPH Cytochrome P450 Oxidoreductase Cleavage Assay 

HPLC Conditions: 

Solvent: 55% Acetonitrile/water isocratic; detection wavelength: 300 nm; flow rate: 1 mL/min. 
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NOTE:  KGP370 in the HPLC traces refers to compound 43 in the manuscript. 
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NOTE:  KGP370 in the HPLC traces refers to compound 43 in the manuscript. KGP371 in the 

HPLC traces refers to compound 44 in the manuscript. 
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NOTE: KGP371 in the HPLC traces refers to compound 44 in the manuscript. 
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NOTE:  KGP372 in the HPLC traces refers to compound 45 in the manuscript. 
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NOTE:  KGP372 in the HPLC traces refers to compound 45 in the manuscript. KGP400 in the 

HPLC traces refers to compound 21 in the manuscript. 



S191 
 

 

NOTE:  KGP439 in the HPLC traces refers to compound 20 in the manuscript. KGP440 in the 

HPLC traces refers to compound 22 in the manuscript. 
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Note: KGP440 in the HPLC traces refers to compound 22 in the manuscript. 
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NOTE:  KGP441 in the HPLC traces refers to compound 23 in the manuscript. 
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NOTE:  KGP441 in the HPLC traces refers to compound 23 in the manuscript. KGP442 in the 

HPLC traces refers to compound 24 in the manuscript. 
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NOTE:  KGP442 in the HPLC traces refers to compound 24 in the manuscript. 
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NOTE:  KGP443 in the HPLC traces refers to compound 25 in the manuscript. 
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NOTE:  KGP443 in the HPLC traces refers to compound 25 in the manuscript. KGP444 in the 

HPLC traces refers to compound 26 in the manuscript. 
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NOTE:  KGP444 in the HPLC traces refers to compound 26 in the manuscript. 
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NOTE:  KGP445 in the HPLC traces refers to compound 35 in the manuscript. 

 



S200 
 

 

NOTE:  KGP445 in the HPLC traces refers to compound 35 in the manuscript. KGP446 in the 

HPLC traces refers to compound 36 in the manuscript. 
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NOTE:  KGP446 in the HPLC traces refers to compound 36 in the manuscript. 
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NOTE:  KGP454 in the HPLC traces refers to compound 39 in the manuscript. KGP445 in the 

HPLC traces refers to compound 35 in the manuscript. 
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NOTE:  KGP454 in the HPLC traces refers to compound 39 in the manuscript. KGP445 in the 

HPLC traces refers to compound 35 in the manuscript. 
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NOTE:  KGP455 in the HPLC traces refers to compound 37 in the manuscript. KGP445 in the 

HPLC traces refers to compound 35 in the manuscript. 
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NOTE:  KGP456 in the HPLC traces refers to compound 40 in the manuscript. KGP446 in the 

HPLC traces refers to compound 36 in the manuscript. 

 



S206 
 

 

NOTE:  KGP456 in the HPLC traces refers to compound 40 in the manuscript. KGP446 in the 

HPLC traces refers to compound 36 in the manuscript. KGP457 in the HPLC traces refers to 

compound 38 in the manuscript.  
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NOTE: KGP446 in the HPLC traces refers to compound 36 in the manuscript. KGP457 in the 

HPLC traces refers to compound 38 in the manuscript. KGP461 in the HPLC traces refers to 

compound 41 in the manuscript. 
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NOTE: KGP461 in the HPLC traces refers to compound 41 in the manuscript. 
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NOE Spectra Analysis for Compounds 37, 38 and 41 

To determine the regioselectivity of the TBS deprotection step, Mitsunabu reactions to 

install trigger (nitrothiophene group) in the TBS deprotected compounds (Scheme 4), we did 

NOE study of three final compounds 37, 38 and 41 (Scheme 6) to determine the connectivity of 

the trigger to the molecules and regioselctivity of the reactions. 

NOE spectra of compound 37: Structure of compound 37 (established after NOE study) 

with important NOE interaction has been shown in page 202. We were looking for positive NOE  

bridge alkene protons A2 and benzylic protons B1 (protons are assigned arbitrarily with A, B, T 

etc) and between benzylic protons B1 and methoxy M2 protons. Positive NOE and negative or 

no NOE have been shown in blue and red colors duble headed arrows respectively. Theoratically 

if the nitrothiphene trigger is connected to hydroxyl group next to methoxy group (M2), in NOE 

spectra there should be positive NOE between B1 protons and M2 proteons. Similaryly positive 

NOE should be observed between A2 and B1 protons if the trigger is connected to hydroxyl 

group close to bridge alkene protons A2. In the actual NOE study when M2 protons was 

irrradiated, only one positive NOE was observed for P proton (red color spectra in page 202). No 

positive NOEs were observed for B1 or T1 protons. But when B1 protons were irradiated, 

positive NOEs were observed only for A2 protons and T1 proton (blue spectra in page 202). 

Therefore, this NOE study confirm the structure of 37.  

NOE spectra of compound 38: NOE spectra of compound 38 has been shown in page 

203. When  compound 38, G1 protons were irradiated, positive NOE were observed for A1 

protons, B and T protons (red spectra). On irradiation of B proton positive NOE were observed 

for A1, G1 and T protons (green spectra). This NOE spectra thus clearly established the structure 

of compound 38.    
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NOE Spectra of Compound 41: NOE spectra of compound 41 has been shown in page 

204. Irradiation of both A protons produced positive NOE for G protons (purple and green 

spectra). But when M protons was irradiated no positive NOE was observed for G protons. This 

clearly indicated that nitrophenyl trigger is connected to the hydroxyl group closer to the bridge 

alkene protons (or second from the methoxy group). 
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NOE Spectra for Compound 37 
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NOE for Compound 38 
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NOE spectra of Compound 41 
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Preliminary Pharmacokinetic (PK) Study 

LC-ESI MS Analysis: Samples were analyzed on an Accela liquid chromatograph 

coupled to an LTQ Orbitrap Discovery mass spectrometer (Thermo Electron, Bremen, Germany) 

using positive electrospray ionization (+ESI).  Samples were diluted tenfold into mobile phase 

and were injected (10 µL) onto the LC system consisting of a 15 cm x 2.1 mm (5 µm, 80 Å) 

Extended-C18 column (Agilent Technologies).  A binary mobile phase gradient containing 0.1 % 

(v/v) formic acid (Fisher) in water (A) and acetonitrile (B) was applied as follows: 45 % A / 55 

% B for 0.5 min, ramp to 2 % A / 98 % B over 3.50 min, held for 1.50 min at 2% A/ 98% B, 

return to 45 % A/ 55 % B in 0.1 min, and equilibrated for 1.40 min at 45 % A/ 55 % 

B.  Additional chromatographic parameters were as follows: column temperature, 30 °C; flow 

rate, 350 µL/min.  Full-scan accurate mass spectra (m/z range: 50-700) of eluting compounds 

were obtained at high resolution (30,000 FWHM) on the Orbitrap mass analyzer using internal 

calibration (accuracy of measurements < 2 ppm) and processed using Xcalibur v.2.0.7 

software.  Electrospray source conditions were: sheath and auxiliary gas flow 50 and 5 arbitrary 

units (a.u.), respectively; heated capillary temperature 300 °C; electrospray voltage 4.5 kV; 

capillary voltage 43 V; tube lens voltage 205 V. The MS spectra were analyzed at exact masses 

for KGP18 [the internal standard (IS)] at m/z 357.1684-357.1720 [M+H]; BAPC 45 at m/z 

508.1375-508.1425 [M+Na], and CA4 at m/z 317.1368-317.1400 [M+H] for peaks at the 

respective elution times. 

Standard Curves: Multiple replicates (n >3) of standard curves for CA4 and 45 were 

obtained from 8-point serial dilutions (spiked with IS KGP18) of stock solutions using the 

following concentrations (Table S5). 
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Table 
S5. 

BAPC 45 
(KGP372) CA4 KGP18   

Standard 
Conc.  
(ppb) Conc. (ppb) Conc. (ppb)  

8 1.14 1.17 1.27   
7 2.28 2.34 2.54   
6 5.68 5.86 6.36   
5 11.36 11.73 12.73   
4 14.20 14.66 15.91   
3 28.41 29.32 31.82   
2 56.82 58.64 63.64   
1 113.64 117.27 127.27   

 

After analysis by LC/MS, these standard curves were determined to be linear. The limit 

of quantification (LOQ) is represented by the lowest point [1.14 ppb KGP372 (BAPC 45); 1.17 

ppb CA4; 1.27 ppb KGP18 (IS)] on each standard curve (Figure S4A, B).  

   

Figure S4. Representative standard curves for LC-MS. (A) BAPC 45 (KGP372); (B) CA4; (C) 

BAPC 45 (KGP372) standard curve normalized to internal standard KGP18 (IS); (D) CA4 

standard curve normalized to internal standard KGP18 (IS). 
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Figure S5.  Standard curve for internal standard (IS) KGP18. 

  

 

Figure S6. Elution of standards from LC, detection by exact molecular ion mass by MS. 

Retention times: trans-CA4 (0.76 min), CA4 (1.63 min), internal standard KGP18 (2.39 min), 

and KGP372 (BAPC 45, 3.35 min). 
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 In Vivo Mouse Dosing:  A dose of 150 mg/kg BAPC 45 in DPS vehicle (120-135 µL 

depending on mouse weight) was administered IP using a 29 G insulin syringe to three adult 

female BALB/C mice (24-27.2 g, UTSW breeding colony) and samples (50 µL) were drawn at 

various times (30 min, 1 h, 2 h, 4 h, 8 h and 24 h)  by retro-orbital bleed with heparin (~5 µL) 

and kept chilled at 4° C until frozen at -80° C.  

Sample Preparation:  Blood samples (50 µL) were diluted with 50 µL of water (Fisher) 

and proteins were precipitated by the addition of acetonitrile (Fisher).  Samples were eluted from 

0.3 mL supported liquid extraction Chem-Elut columns (Agilent) with acetonitrile, concentrated 

to dryness under nitrogen and reconstituted with 500 µL acetonitrile. Samples were filtered 

through a 0.20 µm syringe filter (Millex), and spiked with an internal standard (IS, KGP18).S26 

Extraction recoveries from spiked samples of blood from untreated mice were 94% for CA4, and 

53% for BAPC 45.  

 

Results: All components separated upon analysis by LC/MS as described above for standards. 

None of these compounds (CA4, BAPC 45, (KGP372), or KGP18 (IS) were detected in 

extracted, untreated mouse blood (data not shown). Quality control standards consisted of 

solutions spiked with known amounts of KGP18 internal standard and were run every 12 

samples throughout the assay. BAPC 45 was measurable in all post injection samples, with 

increases at the 4 and 8 h time points. By the 24 h time point, blood concentrations of BAPC 45 

had decreased (see Table S6 and Figures S7-S8). The release of CA4 was observed in blood 

levels at 4 h, which increased at 8 and 24 h (refer to Figure S7-S8 and Table S6). The mechanism 

for CA4 release was undetermined. In vitro (control) experiments with BAPC 45 in pH 7.4 

phosphate buffer demonstrated minimal cleavage (0.69%) during a 48 h timeframe. 
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Figure S7. BAPC 45 (KGP372) detected in three individual mice dosed at 150 mg/kg of BAPC 

45 (KGP372) in a vehicle of 10%DMSO / 55% sesame oil / 35% PEG400 at designated time 

points (30 min, 1 h, 2 h, 4 h, 8 h, and 24 h) post-treatment. (left) KGP372 (BAPC 45) 

concentrations; (right) CA4 concentrations.  

   
Figure S8. Combined data from Figure S7 and Table S6. BAPC 45 (KGP372) detected in three 

individual female mice dosed at 150 mg/kg of BAPC 45 (KGP372) in a vehicle of 10%DMSO / 

55% sesame oil / 35% PEG400 at designated time points (30 min, 1 h, 2 h, 4 h, 8 h, and 24 h) 

post-treatment.   
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Table S6. Mean values (µM + SEM) for BAPC 45 and CA4 concentrations in blood samples 

from mice treated with BAPC 45 (See Figures S7 and S8). 

 

 

 
 

 

 

                                  



S220 
 

Hypoxia Cytotoxicity Ratio (HCR) Determined in A549 Lung Cancer Cell Line 

Since the parent agents, CA4 and CA1, released from their corresponding BAPCs in 

hypoxic conditions are diffusable antimitotic agents, the hypoxia cytotoxicity assay was 

modified to eliminate drug removal after the 4 h hypoxic (or normoxic) treatment.  With these 

conditions, the HCR for tirapazamine was much lower than reported in the literature (Table 3).  

For experiments in which the drug was washed out after the 4 h hypoxic (or normoxic) 

treatment, the HCR value was much higher and comparable to literature values (Table S7).   

Table S7. In Vitro Potency and Hypoxia Cytotoxicity Ratio (HCR) of Tirapazamine and 

RB6145 in the A549 Human Cancer Cell Line  
 

Compound GI50 [oxic]a 

(μM)±SEM 

GI50 [anoxic]a 

(μM)±SEM  

HCR 

RB6145 

 

Tirapazamine 

>130  

>203 

36±6.4 

3.3±1.3  

>3.6 

>62 

a Average of n ≥ 3 independent determinations 

 

 

 

 

 

                                  



 

S221 
 

Additional Histology Related to BAPC 45 
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Figure S9. Histology revealing hemorrhage in 4T1 tumors following vascular damage. 

H&E stained sections of the four 4T1 tumors shown in Figure 5 (main manuscript) with 

magnified inserts to reveal vascular damage. All tumors showed extensive necrosis. A) 

M2 tumor responsive to BAPC 45. I) whole mount section; ii- iv) magnified insets 
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showing congested and hemorrhagic blood vessels. B)  M0 tumor unresponsive to BAPC 

showing substantial necrosis but largely intact blood vessels. C)  Tumor M1 following 

CA4P showing extensive hemorrhage particularly at the interface of viable and necrotic 

tissue. D) M4 receiving vehicle only showing intact blood vessels and classic viable 

tumor tissue chords, but no obvious hemorrhage despite extensive inherent necrosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S10. Hypoxia in control untreated orthotopic 4T1 tumors. Based on standard 

procedures,S27 two 4T1 tumor-bearing mice received intravenous infusion of 

pimonidazole (60 mg/kg; HypoxyprobeTM-1 Plus Kit; Hypoxyprobe Inc., Burlington, 

MA, USA). Sixty minutes later mice were anesthetized and the tumors excised and 

rapidly immersed in 4% paraformaldehyde with overnight fixation followed by a series of 

hydrations within 24 hr., before they were submitted for routine paraffin embedding, 

sectioning, and H&E staining (Histo Pathology Core, UT Southwestern). Pimonidazole 

was stained in 5 µm paraffin sections using a HypoxyprobeTM-1 Plus Kit according to the 

manufacturer’s protocol for paraffin-embedded tissue. Whole mount images were 

obtained using a Zeiss Axio Scan.Z1 (Zeiss, Peabody, MA, USA). Both tumors were 

similar volume about 0.44 cm3. A and B show sections from respective tumors exhibiting 

very different levels of hypoxia. B and D show the corresponding H&E slides indicating 

some necrosis in each tumor. 


