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Supplemental Data Items 
 

 
Figure S1: A visualization of the different components of an antibody that are part of the training set for SciScore. 
Related to Table 1. 
  



Table S1. Individual Classifier Performance for Named-Entities. Training set size is shown as the # of entities, 
which represents the total number of entities tagged by our curators as either positive or negative and # of sentences, 
which represents the total number of sentences containing positive and negative examples as well as some sentences 
without any entities used in both training and testing. Related to Table 1. 

Entity Type 
F1 Precision Recall Training Set Size 

(# of entities/# of 
sentences) Mean ± SD Mean ± SD Mean ± SD 

Rigor Criteria (5 total points) 

Institutional Review Board Statement  81.41 ± 3.62  84.45 ± 5.26 79.57 ± 8.83 340/78,170 

Consent Statement  94.75 ± 1.68  96.29 ± 2.42 93.38 ± 3.63 373/78,170 

Institutional Animal Care and Use 
Committee Statement  

81.30 ± 4.20  89.30 ± 4.60 74.89 ± 6.12 591/78,170 

Randomization of subjects into groups 83.05 ± 3.04  80.25 ± 5.05 86.45 ± 4.64 368/52,945 

Blinding of investigator or analysis 78.96 ± 12.38  77.74 ± 17.16 81.79 ± 10.32 183/52,945 

Power analysis for group size 64.45 ± 29.37  73.74 ± 34.13 59.50 ± 26.91 81/52,945 

Sex as a biological variable 88.32 ± 3.91  87.94 ± 6.03 88.93 ± 3.52 862/52,945 

Cell Line Authentication  54.08 ± 11.88  85.70 ± 10.78 41.15 ± 12.82 155/14,792 

Cell Line Contamination Check  91.70 ± 5.24  93.35 ± 7.15 90.65 ± 7.05 151/14,792 

Key Biological Resources (5 total points) 

Antibody 78.94 ± 2.62  86.89 ± 3.78 72.46 ± 3.20 16,772/53,216 

Organism 66.05 ± 4.70 79.91 ± 6.28 56.64 ± 5.75 4,439/45,500 

Cell Line 70.07 ± 5.95  86.48 ± 3.27 59.34 ± 8.03 1,763/45,500 

Plasmid a 79.62 ± 3.35 92.53 ± 3.80 70.09 ± 4.85 2,568/63,400 

Oligonucleotide a 83.03 ± 9.05 95.28 ± 3.13 74.94 ± 13.90 1,893/63,400 

Software Project/Tool 89.03 ± 0.90 92.49 ± 2.08 85.84 ± 1.10 10,161/19,002 

a. Entity type not used for analysis in the current paper.  

  



Table S2: Rates of false negatives, false positives, and overall agreement based on manual analysis of 250 scored 
papers (SciScore > 0) from our dataset. The curator generated data was considered always correct. Thus a false 
positive is when SciScore finds an item where the human curator did not. Agreement constitutes a much broader 
definition than Table S1. Here, agreement means that both the curator and SciScore found an item in the manuscript. 
If, for example, there are two sentences describing sex of subjects and the tool found one, while the curator found 
another, it would still be considered agreement. When considering key resources like antibodies or cell lines, authors 
tend to describe these in several sentences. Therefore even when the recall from Table S1 is 70%, recall of finding 
either of 2 sentences is over 85%. Related to Table 1. 

Entity Type 
False Positives False Negatives Overall Agreement 

Size (#) Rate (%) Size (#) Rate (%) Size (# 
agreed) 

Rate (%) 

Rigor Criteria 

Institutional Review Board Statement or 
Consent Statement 

11 4.4 3 1.2 236 94.4 

Institutional Animal Care and Use 
Committee Statement 

7 2.8 15 6.0 228 91.2 

Randomization of subjects into groups 16 6.4 8 3.2 226 90.4 

Blinding of investigator or analysis 2 0.8 7 2.8 241 96.4 

Power analysis for group size 12 4.8 6 2.4 232 92.8 

Sex as a biological variable 5 2.0 20 8.0 225 90.0 

Cell Line Authentication or 
Contamination Check 

12 4.8 0 0.0 238 95.2 

Key Biological Resources 

Antibody 2 0.8 3 1.2 245 98.0 

Organism 3 1.2 7 2.8 240 96.0 

Cell Line 6 2.4 4 1.6 240 96.0 

Software Project/Tool 8 3.2 41 16.4 201 80.4 

 
  



Table S3. STAR Key Resources Table 
REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data 

Rigor and Transparency Index This paper https://sciscore.com/rti/ 

Software and Algorithms 

PubMed Central N/A https://www.ncbi.nlm.nih.gov/pmc/ 
RRID:SCR_004166 

SQLite N/A 
https://www.sqlite.org/index.html 
RRID:SCR_017672 

Journal Citation Reports N/A 
https://jcr.clarivate.com/JCRLandingPageAction.actio
n 
RRID:SCR_017656 

Clarivate Analytics N/A 
https://clarivate.com 
RRID:SCR_017657 

Google Sheets N/A 
https://www.google.com/sheets/about/ 
RRID:SCR_017679 

Open Science Chain N/A https://opensciencechain.org 
RRID:SCR_018773 

SciScore This paper https://sciscore.com 
RRID:SCR_016251 

  

https://sciscore.com/rti/
https://www.ncbi.nlm.nih.gov/pmc/
https://www.sqlite.org/index.html
https://jcr.clarivate.com/JCRLandingPageAction.action
https://jcr.clarivate.com/JCRLandingPageAction.action
https://clarivate.com/
https://www.google.com/sheets/about/
https://opensciencechain.org/
https://sciscore.com/


Transparent Methods 
 
Text mining the open access subset of PubMed Central 
For this study, we downloaded and processed all open access literature available through PubMed Central (PMC, 
RRID:SCR_004166) in September of 2019. In total, we obtained data from 1,578,964 articles from 4,686 unique 
journals. The PMC Open Archives Initiative (PMC-OAI) was used to initially download the PMC Open Access 
subset (OA subset) as directories (one per journal named by the journal’s standard abbreviation) allowing for a clear 
differentiation of each journal. Articles only available as PDFs were not included in the OA subset, and were 
therefore excluded from our analysis. In addition, abstract-only articles and articles without a methods section were 
also excluded from our analysis because the reporting criteria are generally included only in the materials and 
methods. We limited our analysis to journals that had published more than 10 papers for any given year available in 
the OA subset.  
 
In order to create the dataset used for our analysis, the OA articles were fed through the named-entity recognition 
classifiers. SciScore currently uses 6 core named-entity recognition classifiers recognizing 15 primary entity types 
(see Table 1). In Table 1, a complete list of the primary entity types detected are shown along with their source(s) 
and a brief description. Criteria were generally chosen based on a variety of factors including our previous work 
(Grethe et al., 2016), feasibility (Can we identify the criteria using NER? How many examples will be needed to 
achieve high F1?), and the criteria’s suspected impact on reproducibility (How many major guidelines/checklists 
does the criterion appear? Are other researchers voicing similar concerns?). It should be noted that SciScore is a 
long-term endeavour, thus the criteria presented here should be viewed as an initial set. 
 
The classifiers (sequence taggers) use conditional random field (CRF) based algorithms to detect a variety of entity 
types (Lafferty et al., 2001). Each of these was validated using precision and recall as well as their harmonic mean, 
F1. The values for each entity type are listed in Table S1. Each classifier component was trained and tested 
separately for precision and recall using human curated data. The curator labeled each entity type within tens of 
thousands of example sentences using the smallest word chunk that was still informative. However, not all classifier 
components are visible in the composite tool result (see paragraph about antibodies below).  
 
If the curator and algorithm did not have complete agreement with regard to the entity in our training dataset, it was 
considered a miss e.g., [anti-5.8S] vs. [anti-5.8S rRNA]. For rigor criteria (e.g. consent statements or cell line 
authentication statements), named entity recognition is used to identify words or word phrases that consistently 
appear in sentences of interest. In these cases, we report sentences rather than the individual entities within, 
although, we calculated F1 rates the same for each entity type where the exact entity had to be detected by SciScore 
with 0 edit distance to be considered a match even if the entity was found in the correct sentence. As a result, the 
classifier performances listed in Table S1 can be considered conservative estimates.  
 
We tested these values using 10-fold cross-validation where 90% of the human curated data was used as training and 
10% was used as the test. The final value comes from a mean of all 10 training trials. If the F1 was determined to be 
below the desired 70% threshold for key resources, we attempted to increase the training dataset size. Training sets 
contain sentences from the complete methods sections of published papers. Annotations were made using a NER 
curation tool (created by B.O.) that inserts XML snippets into XML training files. We did not set a minimum F1 
threshold for our rigor classifiers as training data was far more difficult to locate for certain criteria, e.g., power 
analysis and cell line authentication. Because of the low number of examples, both entity types had highly variable 
F1 scores that were lower than we would have liked. In the future, we plan to create an expanded dataset to improve 
these numbers. However, the simple fact that our curators struggled finding these types of statements in the literature 
shows that these key rigor criteria are severely underreported.  
 



Overall, 11 curators have worked on annotation over the last 4 years ranging from early- to late-career researchers. 
When initially developing SciScore classifiers, an inter-curator agreement (ICA) was calculated between J.M. and 
A.B. to determine the feasibility and difficulty level of the curation tasks (>90%). In cases where there was not 
complete agreement, curators would discuss until an agreement was reached forming the basis for our initial 
curation rules. All new curators were expected to annotate with more than 90% agreement with J.M. For each 
subsequent training file, J.M. (with A.B. advising) would serve as both quality control and as a point of contact for 
other curators to ensure a high ICA was maintained over the course of the training.  
 
Antibodies are composite entities that can use detected antibody metadata to improve recognition of the antibody 
entity. The antibody composite entity identification relies on the presence of some of these features in a short span 
of text (within 3 word-phrases). For example, in Figure S1, the various antibody components are visualized 
mimicking SciScore’s training and entity detection. When an antibody name cannot be found in a sentence, the 
presence of an antibody RRID will trigger a second pass with a reduced threshold for detection as SciScore now has 
reason to suspect an antibody is described within the sentence. In cases where no RRID is mentioned, SciScore 
attempts to use the detected name and metadata to suggest an RRID when possible. We assume that the authors will 
report some but not all antibody features for any given antibody. Treating the antibody name feature as its primary 
tag, the overall F1 score for antibodies is 78.9 with a precision of 86.9 and a recall of 72.5.  
 
While the cell line algorithm has been tested previously to find the total number of cell lines used throughout the 
open access subset of PubMed Central (Babic et al., 2019) and the software/database detector has been previously 
described in detail (as well as its features and data representation) (Ozyurt et al., 2016), the other algorithms had not 
been thoroughly validated before this on complete articles outside of the training set. To validate SciScore’s total 
performance, we tested SciScore against an independent set of human-curated data. This set was created using 250 
papers randomly chosen using the random() function in SQLite (RRID:SCR_017672) from our dataset of 
open-access papers. We did not perform a power analysis to determine if this number was sufficient, but chose a 
round number that was larger than any of our power calculations for individual journals. Each paper was manually 
reviewed by a curator (N.A., an early-career researcher, with oversight from J.M and A.B.) to determine which rigor 
criteria and key resource information had been referenced. For each paper, the methods section was read, and the 
curator noted the presence or absence of each entity type listed in Table S1. For this check, the curator and SciScore 
were considered to be in agreement if both had marked an entity type as either present or absent. We note that this 
criteria is substantially less stringent than what we used to assess F1 rates (shown in Table S1), where the exact 
entity had to be detected by the tool with 0 edit distance to consider the match a “hit”. We assumed that if both the 
curator and SciScore agreed about the presence or absence of an entity type, then the answer was correct and we did 
not look more deeply into these data. If there was a disagreement, it would then be classified as either a false 
negative error or a false positive error with the assumption that the curator is always correct. False negatives were 
defined as cases where the classifier incorrectly noted an entity type as absent when it was in fact present. False 
positives were defined as cases where the classifier noted an entity type as present when it was missing. For 
example, if a paper containing multiple antibodies was noted by the curator as having antibodies present and 
SciScore determined that there were antibodies present as well, then this would be considered an agreement. In that 
example, if SciScore had determined that no antibodies were present, then this would be considered a false negative 
error. Note that the curator did not keep track of exactly which antibodies were used in the paper or how many. For 
this analysis, the curator was blinded to the output of the algorithm while curating papers in this set. For validation, 
this information was then compared against our calculated SciScore classifier performances, listed in Table S1; the 
results of this analysis are in Table S2.  

 
Scoring Framework  
All research papers in the OA subset were scored on a 10-point scale. To calculate the total score for each paper, the 
scoring was broken down into two equally weighted sections: 5 points for rigor adherence (made up of the rigor 



criteria listed in Table 1) and 5 points for key resource identification (consisting of the key biological resource types 
listed in Table 1). In cases where no rigor criteria or key resources were detected, the paper was considered “not 
applicable” and received a score of 0. Papers given a 0 were excluded from the dataset because in cases where the 
algorithms cannot find any criteria to judge, there is no way of determining if a score is appropriate. As SciScore 
was originally intended for biomedical research articles, papers scored as 0 typically fall far outside of its current 
scope (e.g. X-ray crystallography), or are the wrong paper type (e.g. a letter to the editor). Indeed, of the 197,892 not 
applicable (0 scoring) papers, over 30,000 came from the following five journals: Acta crystallographica. Section E, 
Structure reports online (98% of articles scoring 0), Nanoscale research letters (71%), Beilstein journal of organic 
chemistry (78%), Acta crystallographica. Section E, Crystallographic communications (95%), and iScience (100%) 
(Data S6). In order to validate this assumption, a second set of human-curated data was created using 250 papers that 
had received a score of 0. These papers were randomly chosen using the random() function in SQLite. Each paper 
was then manually reviewed by a curator (J.M. with oversight from A.B.) to determine if any rigor criteria had been 
mentioned and which key resources, if any, had been referenced. Similar to our scored paper analysis, any criteria 
found was marked as either present or absent. The curator was not blinded to the output of the algorithm for this set, 
which may introduce an element of bias for this portion of the analysis.  
 
Of the 250 “not applicable” papers, 81.2% were found to have been correctly scored (n = 203). Of these 203 papers, 
5 were found to be using supplementary methods sections, so a human might be able to look at these, but these 
sections are invisible to our algorithm, so we did not consider these a miss; 6 had their experimental procedures 
broken up across different sections of their papers, while 6 did not contain a clear methods sections at all. 47, or 
18.8%, of the “not applicable” papers were found to have been incorrectly scored, that is, they were within scope, 
but the algorithm did not detect any relevant entity. Of these 47 incorrectly scored papers, 45 were found to contain 
at least one software tool that was not detected by SciScore. This was by far the most missed entity in this set of 
papers. Blinding and sex as a biological variable were each missed by SciScore in 3 papers, while IRB/Consent, 
IACUC, blinding, and organism entity types were each found to only have been missed in one paper. These values 
all fall in line with what was expected based on our calculated rates for false negatives (shown through the recall rate 
in Table S1). The relatively low agreement rate for software tools seems reasonable as new software tools are often 
created with a specific use in mind and, as a result, are sometimes only used a handful of times. Because of this, 
there is a high number of uncommon software tools with which SciScore has very little tool specific training data. 
This leads to a higher rate of false negatives for those types of software. However, this issue only impacts 
uncommonly used or recently created software. As a result of these analyses, we did not seek to tune parameters 
further for SciScore. 
 
We note that when creating the manually checked datasets, we grouped IRB and consent as well as cell line 
authentication and contamination statements so the coding would be consistent with the output of the automated 
pipeline. This means that we counted the presence of one of these entity types as sufficient for both. Of these entity 
types though, all can be considered conditional and are therefore not entirely independent; e.g., studies that require 
IRB approval usually require a statement of consent; studies using cell lines normally require both an authentication 
statement and a contamination statement. Because of this, we feel that it is not unreasonable to group these criteria 
together in these instances.  
 
Again, SciScore scores papers using a 10-point scale broken into two equally weighted sections: rigor adherence (5 
total points) and key resource identification (5 total points). In general the rigor section score increases for each 
criterion that is detected. In certain cases, a particular criterion may be deemed irrelevant and is not expected (or 
scored), such as the cell line authentication statement, which would not be required in papers that do not use cell 
lines. Currently, we weigh ethical approval sentences (which could be of the following types: IRB, IACUC, or 
consent statement) as two criteria even if only 1 criteria (i.e. IACUC approval) is found because this tool is intended 
for manuscripts in preparation and not having a statement on ethics can have serious legal ramifications. In short, 
simply comparing the total number of found, relevant criteria to the total number of expected, relevant criteria, one 



could roughly calculate the score for the rigor section. In short, the rigor section score can be estimated by using the 
following formula: 

detected, relevant criteria
expected, relevant criteria × 5 (Eq. 1) 

 
This presents a positive bias in scores towards vertebrate animal and human subjects papers that include the ethical 
approval statement, and a negative bias against cell line and invertebrate papers, as ethical approval is not required 
in those cases. The current version of the tool does not score cell line authentication if no cell line is detected, but 
does not yet have the ability to distinguish whether ethical approval is necessary. 
 
The key resources section is scored altogether as one block and takes into consideration the total number of 
resources found using a similar found:expected ratio scoring system. In brief, all detected resources are categorized 
into two scoring groups: detected but not uniquely identifiable (no points), and uniquely identifiable (full points). 
We define a resource as “uniquely identifiable” if the entity can be linked to a single resource based on the metadata 
provided. For example in the sentence “We used the mouse monoclonal GFAP antibody from Sigma”, the algorithm 
is likely to detect a single antibody and vendor, but the catalog number or research resource identifier (RRID) would 
not be found. For this sentence, this resource would not contribute any points towards the “found'' total because the 
resource is not uniquely identifiable. It would, however, still contribute towards the expected resources count, so if 
this was the only resource detected, the author would receive a 0 of 5 for this section. If the author were to provide a 
catalog number, the algorithm may suggest a RRID given that it is able to estimate with a high level of confidence a 
single RRID entity with matching metadata (suggestions are granted points for the identifiable section), a valid 
matching RRID also guarantees the point. We then calculate the key resource section’s score using a similar formula 
as the rigor section where the numerator is the number of identifiable resources and the denominator is the total 
number of resources detected. When the algorithm fails to recognize a resource, that is considered a false negative, 
occuring at rates outlined in Table S1. We note that the values reported in Table S1 are for individual entities. When 
an entity is discussed several times, the probability should be additive. Papers tend to discuss resources several times 
in the methods section; for cell lines, each cell line was mentioned twice on average, improving the rate of resource 
identification in the paper. Because of this, we expect that our SciScore to curator agreement scores should be at or 
above the raw values. Final scores are rounded to the nearest integer. 
 
Impact Factor Comparison 
All journals contained in the OA subset were initially considered for our analysis. In order to ensure that the average 
score calculated for each journal was representative of their true average, we limited our analysis to journals with 
sample sizes larger than the minimum required sample size calculated for each journal. Journals that did not meet 
this minimum were excluded from our analysis. We then searched the Journal Citation Reports (JCR, 
RRID:SCR_017656) database (operated by Clarivate Analytics; RRID:SCR_017657) to obtain the journal impact 
factor (JIF) and average JIF percentile for each journal’s 2018 scores. These values are the most recent obtainable 
scores as new JIF information is usually released ~6 months after the end of the year (e.g. JIF values for 2019 will 
be released around June of 2020). Searches were performed in November of 2019. Journals that did not have their 
information listed in the JCR were excluded from our analysis. JIF is “calculated by dividing the number of current 
year citations to the source items published in that journal during the previous two years” according to Clarivate 
Analytics, the official source for JIFs. For JIFs in 2018, this roughly translates to the following equation (Eq. 2): 
 

Articles  + Articles2017 2016

Citations  + CitationsArticles 2017 Articles 2016                 (Eq. 2) 

 
Because of this, when we calculated the average score for each journal, we only included scores from 2016 and 
2017, so that the SciScores and JIFs would theoretically be representative of roughly the same papers. We say 
“roughly” because JIF is calculated using “citable items”, a vague term sometimes made up of a variety of article 



types (original research, commentaries, opinions, etc.),43 while SciScore is currently intended for use on original 
research only. The average JIF percentile is calculated using the rank of each journal’s impact factor grouped by the 
field in which the journal is indexed. This calculation accounts for citation variations between different scientific 
fields as the JIF percentile only compares journals within a specific category (cell biology journal vs. cell biology 
journal). As a result, any difference in citation counts between fields (e.g. physical chemistry vs. immunology) will 
be mitigated, allowing for a better comparison across all biomedical research. SciScore percentile was calculated 
based on the average SciScore of all 490 journals used in our impact factor comparison. In order to evaluate the 
correlations between JIF vs. SciScore and JIF percentile vs. SciScore percentile, we used Sheets (Google Sheets; 
RRID:SCR_017679) to calculate Spearman's rank-order correlation for each. Spearman’s correlation was chosen 
over Pearson’s because we did not assume bivariate normality. Some potential sources of biases affecting this 
analysis are the FUTON (full text on the Net) bias and the NAA (no abstract available) bias, which in both cases can 
positively impact citation counts for open-access research, while negatively impacting the number of citations for 
research not freely available on the web (Mueller et al., 2006; Murali et al., 2004; Wentz, 2002). We feel though that 
any impact associated with these biases would be mitigated because a vast majority of the journals analyzed here 
were at least partially open-access and all cases where abstracts were not available were universally excluded. 
 
Statistics 
To determine if a journal sampling was representative of its population in our impact factor analysis, we calculated 
the minimum sample sizes (n) required for each journal using the following equation (Eq. 3) for the sample size 
estimation of a finite population: 
 

n = ε2
z ·p(1 − p)2 ︿ ︿

1 + 
ε ·N2

z ·p(1 − p)2 ︿ ︿                (Eq. 3) 

 
where z is the z score, is the sample proportion, ε is the confidence interval, and N is the population. We used ap︿  
confidence level of 95%, a confidence interval of 5%, and a sample proportion of ~0.875, which was the proportion 
of papers in our dataset that received a score above 0. Population sizes varied, but were determined by performing 
searches on PubMed restricted by publication type [journal article] and journal name. The minimum sample size was 
also calculated for each year to determine how far back our analysis should consider. For those calculations, the 
population was determined by the number of journal articles published in PubMed for a given year. These 
calculations were performed in Sheets. For each manually curated test set, a set size of 250 was chosen arbitrarily as 
a round number that was larger than the minimum sample size calculated using equation 3.  For all other analyses, 
journals were only included if more than 10 papers were scored per year unless stated otherwise. For the antibody 
identification analysis, we only included journals that had more than 10 scored papers containing at least one 
antibody in a given year. 
 
For SciScore named-entity classifiers, we used the standard measures used to quantify performance: recall (R), 
precision (P), and the harmonic mean of R and P (F1). These were determined by the following formulae: 
 

 R =  True Positives
T rue Positives + False Negatives        (Eq. 4) 

 
   P =  True Positives

T rue Positives + False Positives          (Eq. 5) 

 
1 F =  (2·P ·R)

(P  + R)        (Eq. 6) 
 



In this case, false negatives are criteria that were missed by SciScore but were labeled by a human curator, and false 
positives were incorrectly identified text labeled by SciScore. 
 
We did not obtain an institutional review board approval to conduct this study as we did not utilize any human or 
animal subjects, making this study exempt.  
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