

Expanded View Figures

Figure EV1. Loss of Ews induces hypersensitivity to DNA-damaging agents.

- A Relative cell viability was measured in wild-type (WT) and Ews-KO mBA cells after treatment with various DNA-damaging agents. MMS: Methyl methane sulfonate, H₂O₂: Hydrogen peroxide, Cis: Cisplatin, UV: Ultraviolet, and HU: Hydroxyurea. Error bars represent as mean \pm SEMs, and technical repeats (n = 3). Significance determined by two-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001.
- B, C After 10 days of low dose MMS (B) and H_2O_2 (C) treatment, survived colony were measured using clonogenic assay. Data represented as mean \pm SEMs, n > 3. Significance determined by Student's *t*-test, two-tailed, *P < 0.05.
- D DNA breaks in wild-type (Ews-WT) and Ews-KO mBA cells were measured using Alkaline Comet assay after MMS treatment (0.0015%, 24 h). Error bars represent as mean \pm SEMs, n > 50. Significance determined by ***P < 0.001.
- E Alkaline Comet assay were conducted in Ews-WT and Ews-KO mBA cells after treatment and release of H_2O_2 . Error bars represent \pm SEMs, n > 50. Significance determined by two-way ANOVA, *P < 0.05, **P < 0.01.
- F Upon inactivation of EWS in HEK-293 cells, expression of DNA damage markers (pCHK1 and γH2AX) were measured using Western blotting after MMS (0.02%, 1 h) treatment.

Figure EV2. EWS depletion induces PARP1 expression in mouse embryo and cell lines.

- A, B Quantitative real-time PCR was carried out to investigate the expression level of NAD⁺ salvage pathway genes using E17.5 day embryos liver (A) and cell lines (B). Data represented as mean \pm SEMs, and obtained from three different cell line and embryo liver. Significance determined by Student's *t*-test, two-tailed, **P* < 0.05, ****P* < 0.001.
- C Immunostaining of 17.5 days embryo tissues (mid-brain, heart, liver, and skin) with anti-PARP1-antibody. Insert shows higher magnification. Scale bar indicates 200 μm (left).

Figure EV3. EWS protein is recruited to DNA damage site in a PARP1 dependent manner and regulates PARP1 dissociation from DNA damage sites.

- A Whole cell extract of wild-type and Ews-KO cells following MMS treatment and releasement were subjected to Western blotting.
- B, C (B) Immunofluorescence with anti-PARP1 antibody in wild-type and Ews-KO cells following H_2O_2 treatment. Scale bar indicate 5 μ m. n > 150 (C) PARG expression was measured by Western blot in wild-type and Ews-KO mBA cells.
- D Endogenous interaction between EWS and PARG were analyzed by co-immunoprecipitation followed by Western blot analysis with anti-EWS antibody.
- E After release from MMS treatment, proteins in cells were fractionated into chromatin-bound and soluble forms to measure PARG kinetics in wild-type and Ews-KO mBA cells.
- F, G Chromatin-bound levels of EWS were measured after treatment of MMS (F) or H_2O_2 (G).
- H Wild-type cells were treated with 1 mM H₂O₂ for 20 min with or without PARPi (5 μM Olaparib for 7 h). The kinetics of chromatin-bound EWS was analyzed by Western blot.
- I Localized specific DNA damage was induced in GFP-EWS cell lines with or without Olaparib using micro-irradiation. Scale bar represents 5 μm.
- J DNA damage was induced by micro-irradiation in U2OS and U2OS-PARP1-KO cells with or without Talazoparib (5 μ M, 24 h). Scale bar represents 10 μ m. N > 10.

Source data are available online for this figure.

Figure EV4. RGG domain of Ews interact with PARP1.

A Interaction between EWS and PARP1 was analyzed by Immunoprecipitation assay in Ews-KO cells. Cells were treated with H₂O₂ (1 mM, 10 min) with or without Olaparib (5 μ M, 7 h).

B With or without Benzonase-treated cells were immune-precipitated by anti-FLAG antibody and immunoblotted by anti-PARP1 and FLAG antibody.

Source data are available online for this figure.

Figure EV5. EWS regulates genomic integrity in PARP1-dependent manner.

- A, B Whole cell expressions of PARP1, EWS and CHK1 were measured in Figs 5A (A) and EV5C (B) cells.
- C DNA breaks were measured using the Alkaline Comet assay in WT, EKO, PKO, and DKO cells treated with MMS (0.0015%, 24 h). WT: Wild-type, EKO: Ews-KO, PKO: Parp1-KO and DKO: double KO. Error bars represent ± SEMs, n > 35. Significance determined by two-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001.
 D Relative NAD⁺/NADH ratios were measured in wild-type (Ews-WT) and Ews-KO cells following treatment of NMN (20 µM, 24 h). Error bars represent as
- mean \pm SEMs, and technical repeats (n = 3). Significance determined by two-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001.
- E Relative cell viability was measured in HEK293 WT, EWS-KO and EWS-PARP1 KO (DKO) cell lines upon Olaparib treatment. Error bars represent as mean \pm SEMs, and technical repeats (n = 3). Significance determined by two-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001.
- F NAD⁺/NADH ratios were measured in wild-type (Ews-WT) and Ews-KO cells after treatment of Olaparib (5 μ M 24 h). Error bars represent as mean \pm SEMs, and technical repeats (n = 3). Significance determined by two-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001.
- G Cell death was observed in wild-type (Ews-WT), Ews-KO, Parp1-KO, and DKO embryos mid-brain at E17.5 days using the TUNEL assay. ×100 and ×400 image scale bar represents 100 µm and 20 µm, respectively.