EMBO reports Zhichao Wang et al

Expanded View Figures

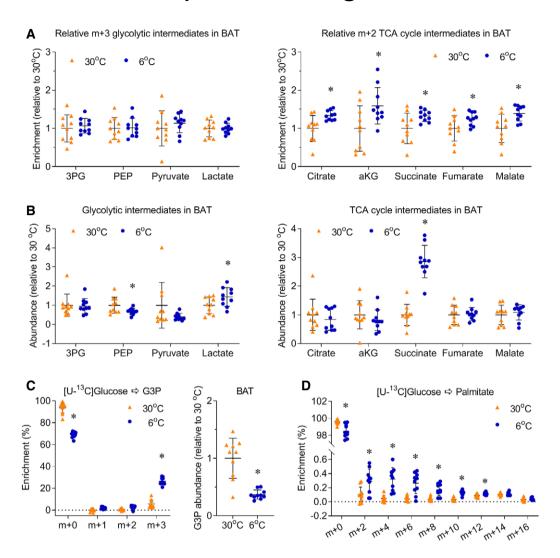


Figure EV1. Chronic cold exposure induces glucose metabolism in BAT.

Mice, housed at 30°C or 6°C for 10 days, were administered with [U-13C]glucose (2 g/kg, IP). 15 minutes after injection, BAT was harvested for metabolic enrichment assay.

- A To directly compare the change of enrichment between different metabolites, the relative metabolic ¹³C enrichments in BAT of male mice are normalized to the average enrichment of each metabolite in 30°C group.
- B Relative abundance of glycolytic and TCA cycle intermediates in BAT.
- C The enrichment and relative abundance of glyceraldehyde 3-phosphate (G3P).
- D The enrichment of palmitate.

EV1

Data information: n=10, data are represented as the mean \pm SD. Statistical analysis was performed using two-tailed Student's t-test, *P < 0.05. Source data are available online for this figure.

EMBO reports 21: e50085 | 2020 The Authors

Zhichao Wang et al EMBO reports

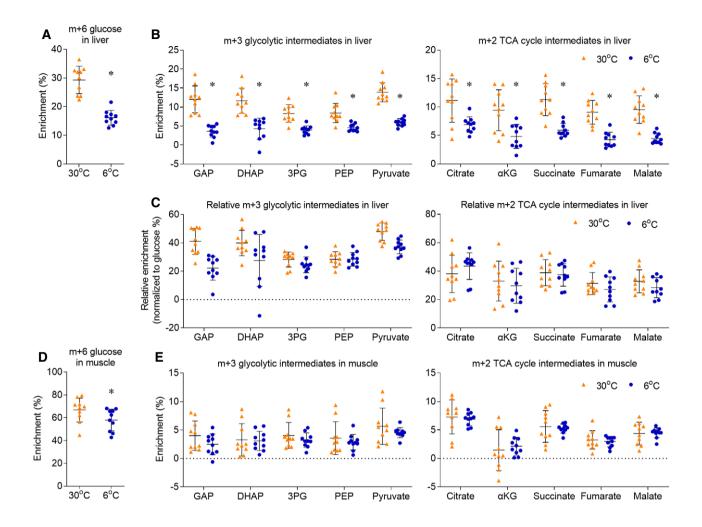


Figure EV2. Chronic cold exposure does not induce oxidative metabolism in liver or muscle.

Mice, housed at 30°C or 6°C for 10 days, were administered with [U-¹³C]glucose (2 g/kg, IP). 15 minutes after injection, liver and muscle were harvested for metabolic enrichment assay.

- A m+6 glucose enrichment in liver.
- B Metabolic ¹³C enrichments in liver are shown as m+3 glycolysis intermediates, m+2 TCA cycle intermediates. GAP, glyceraldehyde 3-phosphate; DHAP, dihydroxyacetone phosphate.
- C After normalizing to the glucose enrichment in the liver of each mouse, the relative metabolic ¹³C enrichments were shown as m+3 glycolysis intermediates and m+2 TCA cycle intermediates.
- D m+6 glucose enrichment in muscle.
- E Metabolic ¹³C enrichments in muscle are shown as m+3 glycolysis intermediates, m+2 TCA cycle intermediates.

Data information: n=10, data are represented as the mean \pm SD. Statistical analysis was performed using two-tailed Student's t-test, *P < 0.05. Source data are available online for this figure.

© 2020 The Authors 21: e50085 | 2020 **EV2**

EMBO reports Zhichao Wang et al

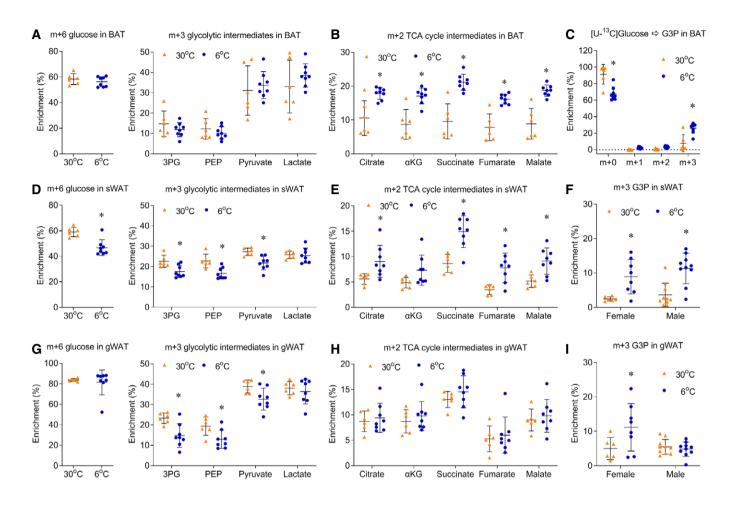


Figure EV3. Chronic cold exposure induces oxidative metabolism in BAT and sWAT of female mice.

Mice, housed at 30 or 6°C for 10 days, were administered with [U-¹³C]glucose (2 g/kg, IP). 15 minutes after injection, BAT, sWAT, and gWAT were harvested for metabolic enrichment assay.

- A—C Metabolic ¹³C enrichments in BAT of female mice are shown as m+6 glucose and m+3 glycolytic intermediates (A), m+2 TCA cycle intermediates (B), and the enrichment of G3P (C).
- D, E Metabolic ¹³C enrichments in sWAT of female mice are shown as m+6 glucose and m+3 glycolysis intermediates (D), m+2 TCA cycle intermediates (E).
- F The m+3 enrichment of G3P in sWAT of both female and male mice.
- G, H Metabolic ¹³C enrichments in gWAT of female mice are shown as m+6 glucose and m+3 glycolysis intermediates (G), m+2 TCA cycle intermediates (H).
- The m+3 enrichment of G3P in gWAT of both female and male mice.

Data information: n = 6-8 female mice, and n = 10 male mice, data are represented as the mean \pm SD. Statistical analysis was performed using two-tailed Student's t-test, *P < 0.05.

Source data are available online for this figure.

EV3

EMBO reports 21: e50085 | 2020 The Authors

Zhichao Wang et al EMBO reports

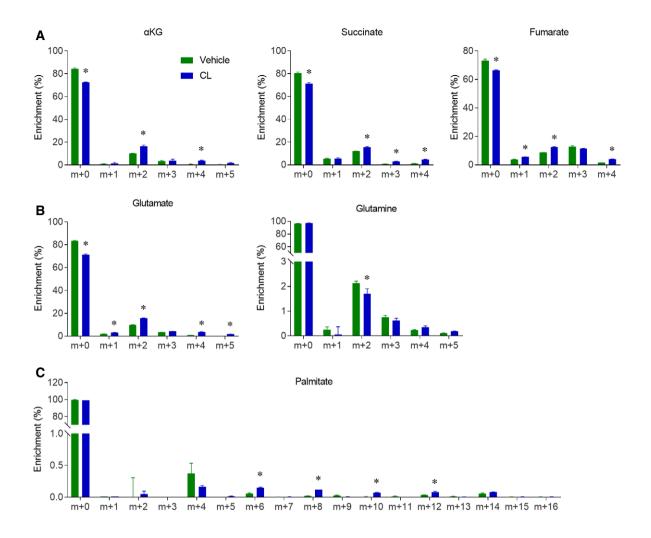


Figure EV4. β3-AR agonist activates glucose oxidation in differentiated primary brown adipocytes.

A–C In the sample [U- 13 C]glucose experiment as shown in Fig 5, the enrichments of other metabolites were used for MFA modeling. n=3 biological repeats, data are represented as the mean \pm SD. Statistical analysis was performed using two-way ANOVA followed by Tukey's multiple comparisons test, *P < 0.05.

Source data are available online for this figure.

© 2020 The Authors 21: e50085 | 2020 **EV4**

EMBO reports Zhichao Wang et al

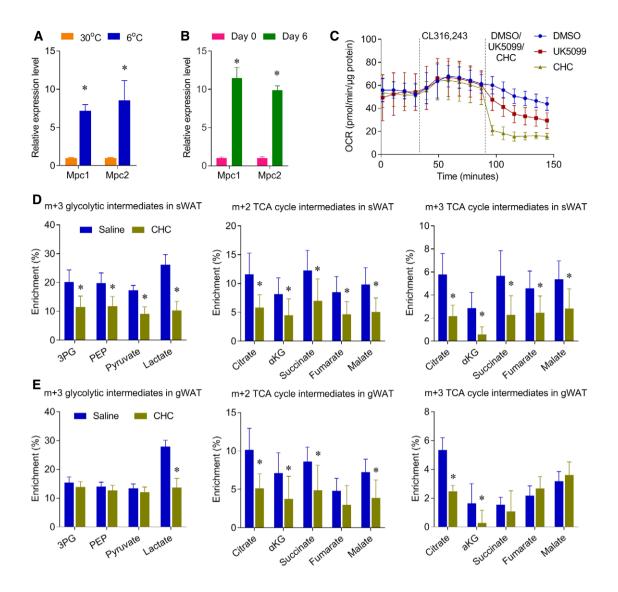


Figure EV5. CHC represses glucose metabolism in multiple adipose tissues.

- A Relative mRNA levels of Mpc1/2 expression were measured by qPCR in BAT of the mice, housed at 30 or 6° C for 10 days. n = 5-6 biological replicates.
- B Relative mRNA levels of Mpc1/2 expression were measured by qPCR in the pre-differentiated day 0 and fully differentiated brown adipocytes day 6. n = 4 biological replicates.
- C Oxygen consumption rate (OCR) of mouse brown adipocytes treated with MPC inhibitor CHC (2 mM) or UK5099 (2 μM), n = 6–7 biological repeats. CL, CL316,243.
- D, E Mice were housed at 6°C for 10 days, and mice were IP injected with PBS or CHC (500 mg/kg). 30 minutes after CHC treatment, mice were administered with [U-13C]glucose (2 g/kg, IP). Metabolic ¹³C enrichments in sWAT (D) and gWAT (E) of male mice are shown as m+2 and m+3 TCA cycle intermediates. n = 7 biological replicates.

Data information:, data are represented as the mean \pm SD, except that (C) is represented as the mean \pm SEM. Statistical analysis was performed using two-tailed Student's *t*-test, *P < 0.05.

Source data are available online for this figure.

EV5