Supporting information to

Continuous-flow Production of Perfluorocarbonloaded Polymeric Nanoparticles: from the Bench towards the Clinic

Esmee Hoogendijk¹, Edyta Swider^{1,8}, Alexander H. J. Staal^{1,8}, Paul B. White², N. Koen van Riessen¹, Gunnar Glaßer³, Ingo Lieberwirth³, Anna Musyanovych,⁴ Christophe A. Serra⁵, Mangala Srinivas^{1,8,*}, Olga Koshkina^{1,3,*}

¹Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA, Nijmegen, The Netherlands

²Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands

³Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

⁴Fraunhofer IMM, Carl-Zeiss Str. 18-20, 55129 Mainz, Germany

^sUniversité de Strasbourg, CNRS, Institut Charles Sadron, 23 rue du Loess, F- 67083 Strasbourg, France

Corresponding Author

*koshkina@mpip-mainz.mpg.de

*mangala.srinivas@radboudumc.nl

Content

1. Effe	ect of different parameters of synthesis on nanoparticle characteristics	3
1.1.	Impact of ratio PFCE / organic phase	3
1.2.	Impact of ratio mixture 1 / aqueous phase	3
1.3.	Impact of total flowrate	4
1.4.	Impact of type of perfluorocarbon on PFC-PLGA nanoparticles	5
1.5.	Impact of type of solvent	6
1.6.	Continuous large-scale production of nanoparticles	7
2. Add	litional cell and imaging data	9
2.1.	Characteristics of nanoparticles used for MTT assay	9
2.2.	Characterization of nanoparticles loaded with Atto-647 for confocal imaging	9
2.3.	Confocal microscopy of cells after nanoparticle uptake	10
2.4.	¹⁹ F MRI and Ultrasound in vitro	12
2.5.	¹⁹ F MRI <i>in vivo</i> at different timepoints	14

1. Effect of different parameters of synthesis on nanoparticle characteristics

1.1.Impact of ratio PFCE / organic phase

Sample	Q _{PFC} (mL/min)	Q _{PLGA} (mL/min)	Q _{PVA} (mL/min)	\mathbf{Q}_{PFC} / \mathbf{Q}_{0}	\mathbf{R}_{h} (nm)	PDI	PFCE content (wt%)
PFCE6	0.83	4.17	20	0.2	174	0.16	22
PFCE3	1.15	3.85	20	0.3	180	0.17	28
PFCE7	1.43	3.57	20	0.4	166	0.24	23
PFCE8	1.87	3.13	20	0.6	179	0.21	22
PFCE9	2.5	2.5	20	1	171	0.23	26

Table S1. Flow rates and characterization of PFCE-PLGA nanoparticles (DCM as a solvent) with NMR and DLS ($Q_{ss} = 25 \text{ ml min}^4$).

1.2.Impact of ratio mixture 1 / aqueous phase

Table S2. Flow rates and characterization of PFCE-PLGA nanoparticles (DCM as a solvent) with NMR and DLS (Q_{bul} = 25 mL min⁴, $Q_{\text{PK}}/Q_{\text{RGA}}$ = 0.3).

Samula	Q _{pfc}	\mathbf{Q}_{plga}	$\mathbf{Q}_{_{\mathrm{PVA}}}$	0./0	D (nm)	DDI	PFCE content
Sample	(mL/min)	(mL/min)	(mL/min)		K _h (IIII)	PDI	(wt%)
PFCE1	0.64	2.14	22.22	0.125	181	0.19	26
PFCE2	0.82	2.75	21.43	0.167	188	0.19	28
PFCE3	1.15	3.85	20	0.25	180	0.17	28
PFCE4	1.44	4.81	18.75	0.33	167	0.21	21
PFCE5	1.92	6.42	16.66	0.50	168	0.19	19

1.3.Impact of total flowrate

Sampla	Q _{pfc}	Q _{plga}	Q _{pva}	D (nm)	DDI	PFCE content
Sample	(mL/min)	(mL/min)	(mL/min)		r Di	(wt%)
PFCE10	0.29	0.97	5	171	0.17	16
PFCE11	0.29	0.97	5	164	0.2	20
PFCE12	0.58	1.93	10	190	0.12	23
PFCE13	0.58	1.93	10	167	0.23	29
PFCE14	0.87	2.9	15	191	0.16	35
PFCE15	0.87	2.9	15	194	0.18	31
PFCE16	1.15	3.85	20	193	0.13	30
PFCE3	1.15	3.85	20	180	0.17	28
PFCE17	1.44	4.81	25	172	0.2	30
PFCE18	1.44	4.81	25	169	0.2	25
PFCE19	1.73	5.78	30	152	0.17	27
PFCE20	1.73	5.78	30	141	0.18	28

Table S3. Flow rates and characterization of PFCE-PLGA nanoparticles made with DCM as solvent (Figure 1b; $Q_{\text{PFC}}/Q_{\text{PFGA}} = 0.3$, $Q_{\text{M}}/Q_{\text{PFA}} = 0.25$).

1.4.Impact of type of perfluorocarbon on PFC-PLGA nanoparticles

Sample	Q _{PFC} (mL/min)	Q _{FIGA} (mL/min)	Q _{PVA} (mL/min)	R _h (nm)	PDI	PFOB content (wt%)
PFOB1	0.58	1.93	10	194	0.31	42
PFOB2	0.58	1.93	10	199	0.36	38
PFOB3	0.87	2.9	15	183	0.31	54
PFOB4	0.87	2.9	15	189	0.31	44
PFOB5	1.15	3.85	20	191	0.27	52
PFOB6	1.15	3.85	20	166	0.25	49
PFOB7	1.44	4.81	25	163	0.21	61
PFOB8	1.44	4.81	25	157	0.27	55
PFOB9	1.73	5.78	30	130	0.2	52
PFOB10	1.73	5.78	30	143	0.2	52

Table S4. Flow rates and characterization of PFOB-PLGA nanoparticles made with DCM as solvent (in Figure 1c and Figure 5).

Figure S1. PDI of PFOB-PLGA nanoparticles. An increase of flow rates results in a smaller PDI. All batches are repeated once

1.5.Impact of type of solvent

Sample	Organic solvent	Q _{PFC} (mL/min)	Q _{PLGA} (mL/min)	Q _{PVA} (mL/min)	R _* (nm)	PDI	PFCE content (wt%)
PFCE13	DCM	0.58	1.93	10	167	0.23	29
PFCE3	DCM	1.15	3.85	20	180	0.17	28
PFCE20	DCM	1.73	5.78	30	141	0.18	28
PFCE21	Chloroform	0.58	1.93	10	168	0.25	35
PFCE22	Chloroform	1.15	3.85	20	162	0.2	42
PFCE23	Chloroform	1.73	5.78	30	136	0.12	36
PFCE24	DCM/MeCN	0.58	1.93	10	139	0.18	9
PFCE25	DCM/MeCN	1.15	3.85	20	126	0.14	10
PFCE26	DCM/MeCN	1.73	5.78	30	112	0.11	9
PFCE27	AcOEt	0.58	1.93	10	114	0.23	9
PFCE28	AcOEt	1.15	3.85	20	96	0.08	3
PFCE29	AcOEt	1.73	5.78	30	87	0.11	2

 Table S5. Flow rates and characterization of PFCE-PLGA nanoparticles from Figure 2.

1.6.Continuous large-scale production of nanoparticles

Fraction	Q _{PFC} (mL/min)	Q _{PLGA} (mL/min)	Q _{PVA} (mL/min)	R _* (nm)	PDI	PFCE content (wt%)
PFCE30A	1.15	3.85	20	172	0.21	33
PFCE30B	1.15	3.85	20	176	0.20	30
PFCE30C	1.15	3.85	20	169	0.18	31
PFCE30D	1.15	3.85	20	174	0.17	31
PFCE30E	1.15	3.85	20	172	0.21	30
Average				173	0.19	31
Std. deviation (%)				1.3	8.5	3.6

Table S6. Flow rates and characterization of PFCE-PLGA nanoparticles (DCM as solvent) produced during longer run.

Table S7. Flow rates and characterization of different fractions of PFCE-PLGA nanoparticles (chloroform as a solvent) from longer run.

Fraction	Q _{PFC} (mL/min)	Q _{PIGA} (mL/min)	Q _{PVA} (mL/min)	R ₅ (nm)	PDI	PFCE content (wt%)
PFCE31A	1.44	4.81	25	187	0.30	45
PFCE31B	1.44	4.81	25	188	0.33	44
PFCE31C	1.44	4.81	25	179	0.28	45
Average				185	0.30	45
Std. deviation (%)				2.2	6.8	1.1

Operation stability over longer period of time

Figure S2. Operation of the set-up for one hour tested with PFOB as cargo at flowrates $Q_{PVA} = 20$ mL min⁻¹, $Q_{PLGA} = 3.85$ mL min⁻¹, $Q_{PFOB} = 1.15$ mL min⁻¹. The PDI values were between 0.2 and 0.3 similar, as in a shorter run. Nanoparticles were isolated by centrifugation and freeze-dried prior analysis.

We accessed the performance of the set up over a longer period of time for the production of PFOB-PLGA nanoparticles. The set up was operated for one hour, and the fractions were collected for purification and analysis every 10 minutes. The standard deviation of radius was 18% and the standard deviation of PFOB content was 15%. This deviation is comparable to the batch production. It shows that the implementation of quality control mechanisms is necessary prior the use of the set up for the production of larger amounts of nanoparticles. Ideally, the set up should be extended with online detection and online purification methods for the large-scale process. All fractions had PFOB content above 30 wt.-% showing that they are suitable for "F MRI applications. Thus, even with the given variation between the fractions the continuous method is less work intensive than the batch method and allows to obtain higher yields in a shorter time.

2. Additional cell and imaging data

2.1. Characteristics of nanoparticles used for MTT assay

ID in Figure 4a or S2	Sample	Organic solvent	Q _{PFC} (mL/min)	Q _{PLGA} (mL/min)	Q _{PVA} (mL/min)	R _h (nm)	PDI	PFCE content (wt%)
DCM 1	PFCE12	DCM	0.58	1.93	10	190	0.12	23
DCM 2	PFCE16	DCM	1.15	3.85	20	193	0.13	30
DCM 3	PFCE19	DCM	1.73	5.78	30	152	0.17	27
CHCL ₃ 1	PFCE32	Chloroform	0.58	1.93	10	157	0.31	34
CHCL ₃ 2	PFCE33	Chloroform	1.15	3.85	20	171	0.26	46
CHCL ₃ 3	PFCE34	Chloroform	1.73	5.78	30	150	0.23	40

Table S8. Flow rates and characterization of PFCE-PLGA nanoparticles in Figure 4a and S2

Figure S3. Cell viability assay after incubation with PFCE-PLGA chloroform nanoparticles for 24 hours.

2.2. Characterization of nanoparticles loaded with Atto-647 for confocal imaging

Table S9. Flow rates and characterization of DCM PFCE-PLGA nanoparticles used for cellular uptake studies (Figure 4b and S3 and S4)

Sampla	Q _{pfc}	Qplga	$\mathbf{Q}_{\mathbf{PVA}}$	R	זחם	PFCE content
Sample	(mL/min)	(mL/min)	(mL/min)	(nm)	FDI	(wt%)
PFCE35 ^a	1.15	3.85	20	163	0.27	38
PFCE36	1.44	4.81	25	162	0.30	42
PFCE37	1.73	5.78	30	128	0.17	39

^a used in Figure 4b

2.3.Confocal microscopy of cells after nanoparticle uptake

Figure S4. Confocal microscopy images with EEA1 staining. Scale bar: 25 μ m. Images are processed with ImageJ.

Figure S5. Confocal microscopy images with LAMP1 staining. Scale bar 25 μ m. Images are processed with ImageJ.

2.4.¹⁹F MRI and Ultrasound in vitro

Nr. in Figure	Sample	Organic solvent	Q _{PFC} (mL/min)	Q _{PLGA} (mL/min)	Q _{PVA} (mL/min)	R₅ (nm)	PDI	PFC content (wt%)
1	PFCE21	Chloroform	0.58	1.93	10	168	0.25	35
2	PFCE22	Chloroform	1.15	3.85	20	162	0.20	42
3	PFCE23	Chloroform	1.73	5.78	30	136	0.12	36
4	PFOB1	DCM	0.58	1.93	10	194	0.31	42
5	PFOB5	DCM	1.15	3.85	20	191	0.27	52
6	PFOB9	DCM	1.73	5.78	30	140	0.20	52
7	PFCE12	DCM	0.58	1.93	10	190	0.12	23
8	PFCE16	DCM	1.15	3.85	20	193	0.13	30
9	PFCE19	DCM	1.73	5.78	30	152	0.17	27

Table S10. Characteristics of PFC-PLGA nanoparticles used for 19F MRI imaging in Figure 4d and S6.

PFCE12

Figure S6. Ultrasound images showing the signal of various nanoparticle suspensions. Nanoparticles in suspension placed in a gel phantom show acoustic contrast to the surrounding gel. Nanoparticles presented here were produced with DCM. Water was used as a negative control. c(NP) = 10 mg mL⁴

Figure S7. »F MRI images of aqueous dispersions of PFCE-nanoparticles produced either with chloroform (first row) or DCM (third row) and PFOB nanoparticles (mid row). c(NP) = 10 mg mL⁴, 11.7 T, 3D RARE sequence.

# in Figure 6A	NP name	Solvent	SNR	Average SNR
1	PFCE21	Chloroform	10.1	
2	PFCE22	Chloroform	9.7	10.2
3	PFCE23	Chloroform	10.7	
4	PFOB1	DCM	2.9	
5	PFOB5	DCM	2.6	2.6
6	PFOB9	DCM	2.4	
7	PFCE12	DCM	6.3	
8	PFCE16	DCM	6.4	6.2
9	PFCE19	DCM	6.0	
10	Control – water	-	0.9	

Table S11. Signal-to-noise ratio "F MRI.

The differences in signal intensity can be attributed to a different encapsulation of PFC. Since PFOB displays several NMR signals, only some of the "F nuclei of PFOB can be imaged with conventional sequence without chemical shift artifacts. Therefore, the images of PFOB nanoparticles have lower signal intensity than the PFCE nanoparticles, despite the fact that they

have higher PFC encapsulation. Furthermore, with the PFCE-PLGA nanoparticles made with chloroform, an average signal-to-noise ratio of 10 could be obtained in just 45 seconds of imaging, which is comparable to PFCE-PLGA nanoparticles made with the conventional batch method (Table S12). Both concentration and imaging time used here are applicable for the imaging *in vivo*.

2.5.¹⁹F MRI in vivo at different timepoints

Figure S8. In vivo "F MRI images of liver and spleen. Liver and spleen were imaged at different time points to check for the presence of "F signal.