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Materials   and   Methods  
GTEx   data   
All   human   donors   were   deceased,   and   informed   consent   was   obtained   via   next-of-kin   consent  
for   the   collection   and   banking   of   deidentified   tissue   samples   for   scientific   research.   The  
research   protocol   was   reviewed   by   Chesapeake   Research   Review   Inc.,   Roswell   Park   Cancer  
Institute’s   Office   of   Research   Subject   Protection,   and   the   institutional   review   board   of   the  
University   of   Pennsylvania.   We   used   the   RNA-sequencing,   allele-specific   expression,   and  
whole-genome   sequencing   (WGS)   data   from   the   v8   release   of   the   GTEx   project   and   assessed  
expression   data   across   the   49   biological   tissues   with   at   least   70   samples.   Sample   size   varied  
across   tissues,   with   average   missingness   of   ~50%.   Self-reported   ancestry   for   these   individuals  
spanned   three   of   the   major   continental   populations   with   the   majority   (n=714   with   WGS)  
comprising   individuals   of   predominantly   European   ancestry,   121   individuals   with   African  
ancestry,   11   with   Asian   ancestry,   and   12   unknown   or   other.   The   generation   of   these   data   are  
described   in   the    supplementary   information    of    ( 18 ) .  

Rare   variant   annotations  
We   retained   all   SNVs   and   indels   that   passed   quality   control   in   the   GTEx   VCF,   variant   calling  
described   in    ( 18 ) ,   using   the   hg38   genome   build.   Structural   variants   were   called   according   to  
( 65 )    on   the   subset   of   individuals   available   from   V7   with   GenomeSTRiP    ( 66 )    
GSCNQUAL   set   to  limit   the   false   discovery   rate   (FDR)   for   each   variant   type.   Genome   
STRiP’s  IntensityRankSumAnnotator   was   used   to   evaluate   FDR   based   on   available   
Illumina   Human  Omni   5M   gene   expression   array   data.   GSCNQUAL   was   limited   to   ≥   1   
for   GenomeSTRiP  deletions   and   ≥   8   for   multi-allelic   copy   number   variants,   
corresponding   to   an   FDR   of   10%.   The  GSCNQUAL   cutoff   for   GenomeSTRiP   
duplications   was   set   at   ≥   17,   the   point   where   the   FDR  plateaued   at   15.1%   and   did   
not   fluctuate   more   than   ±1%   for   over   50   steps   in   increasing  GSCNQUAL   score.   
Additionally,   the   Mobile   Element   Locator   Tool   (MELT)   version   2.1.4    ( 67 )    was  run   using   
MELT-SPLIT   to   identify   ALU,   SVA,   and   LINE1   insertions   into   the   test   genomes.   MELT  
calls   that   were   categorized   as   “PASS”   in   the   VCF   info   field,   had   an   ASSESS   score   ≥   
3,   and   SR  count   ≥   3   were   retained.   Structural   variant   (SV)   calls   were   then   lifted   to   the   
hg38   genome   build  using   liftOver   from   the   Genome   Browser    ( 68         ) .  

We   defined   rare   variants   as   those   with   <   1%   MAF   within   GTEx   and,   for   SNVs   and   indels,   also  
occurring   at   <   1%   frequency   in   non-Finnish   Europeans   within   gnomAD    ( 21 ) .   Novel   variants   
were  those   that   occurred   in   GTEx   but   were   not   found   in   gnomAD.   GTEx   singletons   had   an   
average  allele   frequency   of   0.0030   in   gnomAD   and   doubletons   had   an   average   frequency   of   
0.0096.  

Annotation   of   protein-coding   regions   and   transcription   factor   binding   site   motifs   was   generated  
by   running   Ensembl   VEP   (version   88).   Loss   of   function   (LoF)   annotation   was   generated   using  
loftee.   Conservation   scores   (Gerp,   PhyloP,   PhastCons)   were   downloaded   from   UCSC   genome  
browser   and   CADD   scores   were   extracted   from   a   pre-compiled   annotation   file  
( https://cadd.gs.washington.edu/download )   using   variant   scores   from   the   hg38   genome   build.   
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Expression   outlier   calling  
Within   each   tissue,   we   log2-transformed   the   expression   values   (log 2 (TPM + 2)),   where   TPM   is  
the   number   of   transcripts   per   million   mapped   reads,   generated   by   RNA-SeQC    ( 69 )    using   the  
GENCODE   v26   gene   annotation,   available   through   the   GTEx   portal.   We   subsetted   to   autosomal  
lincRNA   and   protein-coding   genes   and   restricted   to   genes   with   at   least   6   reads   and   TPM   >   0.1  
in   at   least   20%   of   individuals.   We   scaled   the   expression   of   each   gene   to   mean   of   0   and  
standard   deviation   of   1   to   avoid   the   deflation   of   outlier   values   caused   by   quantile   normalization.  
As   we   expected   unmeasured   technical   confounders   to   impact   expression,   for   each   tissue   we  
estimated   hidden   factors   for   the   transformed   expression   matrix   using   PEER    ( 52 ) .   The   number   of  
PEER   factors   retained   was   based   on   sample   size   and   matched   the   values   chosen   in   the   GTEx  
eQTL   analyses    ( 18 ) ,   which   were   15   for   sample   sizes   less   than   or   equal   to   150,   30   for   less   than  
250,   45   for   less   than   350,   and   60   otherwise.   We   obtained   expression   residuals   by   regressing  
out   PEER   factors,   the   top   three   genotype   principal   components,   sex,   and   the   genotype   of   the  
strongest   cis-eQTL   per   gene   in   each   tissue   using   the   following   linear   model:  

μ   P   G   γ S  δ Q  εY g =   g +   ∑
N

n=1
αg,n n + ∑

3

k=1
βg,k k +   g +   g +   g

where     is   the   transformed   expression   of   gene   ,   μ g    is   the   mean   expression   level   for   the Y g g  
gene,     is   the   nth   PEER   factor,     are   the   top   k   genotype   principal   components,     is   the   sexPn Gk S
covariate,   and     is   the   genotype   of   the   strongest   cis-eQTL   for   gene   .   We   then   re-scaled   the Q g  
expression   residuals   ε g    for   each   gene,   to   obtain   corrected   expression   Z-scores   for   each  
individual   per   gene   per   tissue.  

For   each   gene,   we   calculated   an   individual’s   median   Z-score   across   all   tissues   for   which   data  
were   available,   restricting   to   individuals   with   measurements   in   at   least   five   tissues.   To   account  
for   situations   where   widespread   extreme   expression   might   occur   in   an   individual   due   to  
non-genetic   influences,   we   excluded   39   individuals   where   the   proportion   of   tested   genes   that  
were   multi-tissue   outliers   at   a   threshold   of   |median   Z-score|   >   3   exceeded   1.5   times   the  
interquartile   range   of   the   distribution   of   proportion   outlier   genes   across   all   individuals.   We   then  
use   the   median   Z-scores   per   individual   across   tissues   to   determine   eOutliers   and   used   a  
threshold   of   |median   Z|   >   3   or   an   equivalent   median   p-value   of   0.0027   for   aseOutliers   and  
sOutliers   to   determine   the   outlier   set   of   genes.   This   threshold   was   chosen   to   balance   the  
number   of   outliers   identified   with   increases   in   nearby   rare   variant   enrichments,   though   the  
conclusions   are   robust   to   threshold   choice   (Fig   S1D,   Fig   S7).   Controls   were   defined   as   any  
individual   with   a   |median   Z-score|   of   less   than   3   (or   another   threshold   as   indicated)   for   the   same  
set   of   genes   as   those   with   any   outlier   individual.   We   allowed   a   gene   to   have   multiple   outlier  
individuals   and   an   individual   could   be   an   outlier   for   multiple   genes.   Code   for   generating   eOutlier  
calls   was   modified   from   scripts   available   at    https://github.com/joed3/GTExV6PRareVariation .  

ASE   outlier   calling  
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Allelic   expression   (ASE)   data   was   produced   as   described   in    ( 70 ) .   We   used   the   Analysis   of  
Expression   VAriation   Dosage   Outlier   Test   (ANEVA-DOT;    ( 17 ) )   to   identify   genes   in   each  
individual   that   showed   an   excessive   imbalance   of   ASE,   relative   to   the   population.    Briefly,  
ANEVA-DOT   relies   on   tissue-specific   estimates   of   genetic   variation   in   gene   dosage,   V G ,   derived  
by   Analysis   of   Expression   VAriation   (ANEVA)   on   a   reference   population   ASE   data   to   identify  
genes   in   individual   test   samples   that   are   likely   affected   by   rare   variants   with   unusually   large  
regulatory   effects.    We   calculated   reference   V G    estimates   from   GTEx   v8   data   fro m   15,201  
RN A-seq   samples   spanning   49   tissues   and   838   individuals   with   WGS   data   ( 17).   Across   all  
analyzed   tissues   we   estimated   V G    a   total   of   2,727,867   times   using   all   available   autosomal  
aeSNPs   (variants   used   to   assess   allelic   expression)   with   at   least   30   reads   in   6   individuals.  
These   estimates   are   publicly   available   at   https://doi.org/10.5281/zenodo.3897759,   version   2.31.  
We   used   the   ANEVA-DOT   tool   R   packag e                                 (60)  to   calculate a p-value for every gene-individual
pair   with   allelic   expression   data   and   a   corresponding   V G  estimate   (Fig   S3).   The   p-value   can   be   
interpreted   as   the   result   of   a   binomial   test   of   allelic  imbalance,   that   is   overdispersed   for   each   
gene   individually   according   to   its   expected   dosage  variation   in   a   given   tissue   in   the   population.   
Genes   with   significant   ANEVA-DOT   p-values   are  referred   to   as   aseOutliers   in   this   text.   We   
tested   all   tissues   available   for   each   GTEx   v8  individual,   using   only   genes   with   a   minimum   
coverage   of   8   reads   spanning   an   aeSNP   and   with  V G    estimates   available   (49   tissues,   median   
genes   per   tissue   =   4899,   Fig   S2).   For   each   gene  expressed   we   considered   the   aeSNP   with   the   
highest   coverage   in   an   individual.   

For   all   single-tissue   analyses,   we   removed   global   outlier   genes   and   individuals   from   each   tissue  
group   independently.   Global   outlier   genes   are   likely   to   be   ASE   outliers   at   5%   FDR   in   more   than  
1%   of   tested   individuals   per   tissue,   as   has   been   previously   described   in    ( 17 ) .   These   genes   are  
likely   to   have   poor   V G    estimates   due   to   the   presence   of   different   ASE   patterns   within   the   gene   or  
other   global   biological   factors.   Outlier   individuals   were   also   defined   as   in   ( 17  ),   and   were  
removed   from   downstream   single   tissue   analysis.   These   samples   contain   an   unusually   high  
number   of   outliers   ( n    >   Q3+1.5*IQR)   at   5%   FDR,   and   are   likely   to   be   caused   by   technical   errors.  
Tissue   specific   lists   of   global   outlier   genes   and   individuals   for   outlier   threshold   of   5%   FDR   are 
here:       (59).   In   all   other   analyses   unless   otherwise  specified,   we   did   not   apply   an   FDR   control   
procedure   and   instead   imposed   a   higher   threshold  for   declaring   significance,   to   be   consistent   
with   expression   and   splicing   outliers.   For   cross-tissue  analyses,   we   calculated   median   ANEVA-
DOT   p-values   for   genes   which   were   expressed   in   more  than   5   tissues,   without   removing   known   
global   outliers   first.   Therefore,   to   account   for   genes   with  poor   V G ,   we   applied   the   filtering   steps   
described   in    ( 17 )    on   the   resulting   individual-level   median  p-values.   Briefly,   we   removed   
individuals   with   too   few   genes   tested   ( n    <   Q1-1.5*IQR),   removed individuals   with   too   many   
outliers   ( n    >   Q3+1.5*IQR),   and   removed   genes   which   appeared   as outliers   too   many   times   
across   individuals   with   a   score   available   (genes   that   are   likely   to   be called   as   outliers   in   more   
than   1%   of   cases,   Fig   S2).   To   define   multi-tissue   outliers,   we   used   a threshold   of   median   p-value   
<   0.0027,   equivalent   to   |median   Z|   >   3,   to   determine   outlier   status.

Split   read   count   quantification   and   processing  
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LeafCutter    ( 35 )    provided   an   annotation-free   approach   for   RNA   splicing   quantification   allowing   us  
to   capture   split   reads   overlapping   rare   exon-exon   junctions.   Junctions   were   extracted   from  
WASP-corrected   BAM   files   with   a   modified   version   of   the   “bam2junc.sh”   script   from   LeafCutter  
that   only   retained   reads   that   passed   WASP   filters    ( 18 ) .   Next   in   each   tissue   separately,   junction  
reads   were   clustered   using   the   “leafcutter_cluster.py”   script   from   LeafCutter,   with   the   options  
“--maxintronlen   500000”   and   “mincluratio   0”.   LeafCutter   assigns   exon-exon   junctions   into  
mutually   exclusive   sets,   termed   clusters.   Each   exon-exon   junction   in   a   cluster   had   to   share   a  
splice   site   with   at   least   one   other   exon-exon   junction   in   that   cluster,   but   could   not   share   a   splice  
site   with   an   exon-exon   junction   from   another   cluster.   A   cluster   had   to   contain   at   least   two  
exon-exon   junctions.   

Next,   in   each   tissue   separately,   we   applied   the   following   series   of   custom   filters   to   the  
LeafCutter   results   in   order   to   remove   exon-exon   junctions   with   low   expression   while   retaining  
rare   exon-exon   junctions:  

1. Removed   exon-exon   junctions   where   no   sample   has   >=   15   split   reads
2. Re-defined   LeafCutter   cluster   assignments   after   removal   of   exon-exon   junctions

(according   to   the   above   filter)   and   removed   exon-exon   junctions   that   no   longer   shared   a
splice   site   with   any   other   exon-exon   junction.

3. Removed   all   exon-exon   junctions   belonging   to   a   LeafCutter   cluster   where   more   than
10%   of   the   samples   had   less   than   3   reads   summed   across   all   exon-exon   junctions
assigned   to   that   LeafCutter   cluster.

Next,   we   merged   LeafCutter   cluster   assignments   across   all   49   tissues   to   make   a   specific  
LeafCutter   cluster   comparable   across   multiple   tissues.   For   this,   we   re-defined   LeafCutter   cluster  
assignments   using   the   union   of   all   exon-exon   junctions   that   passed   the   above   filters   across   49  
tissues.   Lastly,   we   mapped   our   LeafCutter   clusters   to   genes   by   intersecting   splice   sites,   defining  
a   Leafcutter   cluster   with   splice   sites   of   annotated   exons.   We   limited   to   genes   used   in   expression  
outlier   calling   (described   in   “Expression   outlier   calling”   section).    If   an   annotated   splice   site   was  
in   a   LeafCutter   cluster,   we   considered   the   LeafCutter   cluster   mapped   to   the   gene.   It   was  
therefore   possible   for   a   LeafCutter   cluster   to   map   to   multiple   genes.   We   filtered   LeafCutter  
clusters,   and   their   corresponding   exon-exon   junctions,   to   those   that   were   mapped   to   at   least  
one   gene.   Finally,   we   removed   any   LeafCutter   clusters   with   more   than   20   exon-exon   junctions  
due   to   computational   limitations   of   SPOT.   

SPOT:   Overview  
sOutliers   were   identified   separately   for   each   LeafCutter   cluster   in   each   tissue   using   Splicing  
Outlier   deTection   (SPOT).   For   a   given   LeafCutter   cluster   in   a   given   tissue,   we   defined   a   matrix,  

  (dim   NxJ),   where   each   row   corresponds   to   one   of     samples,   each   column   corresponding   to X N  
one   of     exon-exon   junctions,   and   each   element   was   the   number   of   raw   split   read   counts J  
corresponding   to   that   row’s   sample   and   that   column’s   exon-exon   junction.   We   were   able   to  
compute   a   p-value   representing   how   abnormal   a   given   sample’s   splicing   patterns   were   for   the  
given   LeafCutter   cluster   as   follows:  
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1. Fitted   parameters   of   Dirichlet-Multinomial   distribution   based   on   observed   data     inX
order   to   capture   the   distribution   of   split   read   counts   mapping   to   this   LeafCutter   cluster

2. Used   fitted   Dichlet-Multinomial   distribution   to   compute   the   Mahalanobis   distance   for
each   of   the   N   samples

3. Computed   Mahalanobis   distance   for   1,000,000   samples   simulated   from   the   fitted
Dirichlet-Multinomial   and   use   these   1,000,000   Mahalanobis   distances   as   an   empirical
distribution   to   assess   the   significance   of   the     real   Mahalanobis   distancesN

SPOT:   Dirichlet-Multinomial   parameter   estimation  
We   defined   a   Dirichlet-Multinomial   (DM)   probability   distribution   based   on   data   from     samples N  
to   capture   the   probability   that   a   split   read   would   map   to   each   of   the     junctions   in   the   Leafcutter J  
cluster:  
Let   be   the   raw   number   of   split   reads   mapped   to   the   j th    junction   in   the   n th    sample   andxnj 

be   the   total   number   of   split   reads   mapped   to   any   junction   in   this   LeafCutter   cluster   in tn = ∑
J

j=1 
xnj  

the   nth   sample.    Then   
~      where   , ..., x  | t  xn1     nJ n M (t , α p , ... , α p )D n   1 1     J J pj =  

exp(c )j

xp(c )∑
J

k=1
e k

We   used   the   following   non-informative   Gamma   prior   distribution   to   stabilize   optimization:  
~   αj amma(1  1e , 1e )G +   4   4

We   then   performed   maximum   likelihood   estimation   (via   LBFGS   as   implemented   in   STAN)   to  
learn   the   optimal   parameter   settings   of   and   ( and   )   from, ... , αα1     J , ... , cc1     J , ... , αα1 ˆ     Ĵ , ... , cc1̂     Ĵ

the   N   samples.   We   were   able   to   also   deterministically   compute   the   optimal   values   of   each     (pj
)   from   each   .pj ˆ cĵ

SPOT:   Mahalanobis   distance  
The   Mahalanobis   distance   is   the   multivariate   generalization   of   how   many   standard   deviations   a  
point   is   from   the   mean   taking   into   account   the   covariance   structure.   After   learning   the  
parameters   of   the   Dirichlet-Multinomial   distribution   for   a   specific   LeafCutter   cluster   (ie  

and   ;   see   “SPOT:   Dirichlet-Multinomial   parameter   estimation”),   we   were, ... , αα1 ˆ     Ĵ , ... , cc1̂     Ĵ

able   to    compute   the   mean   vector   ( )   and   covariance   matrix   ( )   for   a   specific   sample   ,μn Σn n
according   to   the   Dirichlet-Multinomial.   Using   and   we   were   able   to    compute   theμn Σn

Mahalanobis   distance   of   sample     ( .   The   covariance   matrix   of   the   Dirichlet-Multinomial   (n D )M n

)   is   of   rank     because   one   of   the   dimensions   is   always   a   linear   combination   of   the   otherΣn  J 1
  dimensions.   As   such,   we   approximated   with   the   pseudo-inverse   of   when J 1  Σn

1 Σn

computing   the   Mahalanobis   distance.  

SPOT:   Empirical   distribution   to   assess   significance  
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For   a   given   LeafCutter   cluster,   we   have   already   computed   the   Mahalanobis   distance   of   each   of  
the     samples   according   to   the   fitted   Dirichlet-Multinomial   distribution   for   that   LeafCutter N  
cluster.   However,   the   Mahalanobis   distance   is   biased   by   the   dimensionality   of   the   space   (i.e.   the  
number   of   junctions   assigned   to   the   LeafCutter   cluster).   In   order   to   convert   the   Mahalanobis  
distance   to   a   test   statistic   that   was   not   biased   by   dimensionality,   we   simulated   an   empirical  
distribution   of   Mahalanobis   distances   for   each   LeafCutter   cluster.   Specifically,   for   one   LeafCutter  
cluster   we   drew   1,000,000   random   samples   from   the   fitted   Dirichlet-Multinomial   distribution  
assuming   each   of   these   random   samples   has   20,000   reads   mapped   to   the   LeafCutter   cluster  

.   We   then   computed   the   Mahalanobis   distance   of   each   of   these   1,000,000   samplest 0000)( n = 2
and   used   the   1,000,000   Mahalanobis   distances   as   an   empirical   distribution   that   converted   our   N  
Mahalanobis   distances   (from   the   real   data)   into   p-values.   

SPOT:   Gene   level   correction  
To   compute   a   splicing   outlier   p-value   for   a   gene   associated   with     LeafCutter   clusters,   we   first C  
computed   minimum   p-value   across   all     clusters   for   the   gene.   However,   the   minimum   of   a   list C  
of   p-values   is   not   a   valid   p-value.   To   address   this,   we   computed   the   probability   of   observing   a  
minimum   p-value   according   to   a   probability   density   function   defining   the   minimum   across   C
independent   uniform   random   variables   between   0   and   1:  

(min(pvalue , ... , pvalue )  = z)  1  (1 )p 1     C <   =     z C

This   approach   made   the   conservative,   simplifying   assumption   that   all   clusters   mapped   to   a  
gene   were   independent   of   one   another.  

We   excluded   individuals   (global   outliers)   where   the   proportion   of   tested   genes   that   were  
multi-tissue   outliers   (at   a   threshold   of   median   p-value   <   .0027)   exceeded   1.5   times   the  
interquartile   range   of   the   distribution   of   proportion   outlier   genes   across   all   individuals.  

SPOT:   Robustness   to   hyperparameter   choice  
SPOT,   under   default   settings,   makes   the   assumption   that   each   random   sample,   used   in  
generating   an   empirical   distribution   for   each   LeafCutter   cluster,   has   20,000   total   reads   mapped  
to   that   cluster   (see   “SPOT:    Empirical   distribution   to   access   significance”).   To   understand   if   our  
sOutlier   p-values   were   sensitive   to   the   choice   of   20,000   total   reads,   we   re-computed   sOutlier  
calls   in   Muscle-Skeletal   tissue   using   SPOT   with   10,000   total   reads   and   100,000   total   reads   (Fig  
S6).   sOutlier   p-values   generated   from   SPOT   under   default   settings   (20,000   reads)   are   highly  
correlated   to   sOutlier   p-values   generated   from   SPOT   using   10,000   reads   (Spearman’s   ⍴   =   .997)  
and   100,000   reads   (Spearman’s   ⍴   =   .997).   Only   .052%   and   .046%   of   sample-LeafCutter   cluster  
pairs   had   a   -log10(p-value)   change   greater   than   1   between   SPOT   under   default   settings  
compared   to   SPOT   run   with   10,000   and   100,000   reads,   respectively.   All   of   the  
sample-LeafCutter   cluster   pairs   that   had   a   -log10(p-value)   change   greater   than   1   correspond   to  
LeafCutter   clusters   where   more   than   95%   of   the   total   observed   reads   mapping   to   the   cluster,  
summed   across   samples,   map   to   a   single   exon-exon   junction.   These   rare   instances   of  
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divergence   in   sOutlier   p-values   between   SPOT   under   different   hyperparameter   settings   are  
caused   by   numerical   instability   in   computing   the   pseudo-inverse   (See   “SPOT:   Mahalanobis  
distance”)   when   distributions   are   heavily   skewed   towards   a   particular   junction.  

SPOT,   under   default   settings,   uses   a   Gamma   prior   (on   each   )   when   fitting   aαj

Dirichlet-Multinomial   distribution   to   each   LeafCutter   cluster   (See   “SPOT:   Dirichlet-Multinomial  
parameter   estimation”).   This   prior   is   intended   to   stabilize   the   LBFGS-based   optimization   routine,  
while   having   minimal   consequences   on   parameter   estimates.   To   see   if   the   prior   had   minimal  
impact   on   parameter   estimates,   we   re-computed   sOutlier   calls   in   Muscle-Skeletal   tissue   using   a  
version   of   SPOT   where   no   prior   was   used   (Fig   S6).   To   encourage   SPOT   with   no   prior   to  
converge   to   a   reasonable   estimate,   we   performed   Dirichlet-Multinomial   parameter   estimation   10  
times   (with   10   random   initializations)   and   selected   the   Dirichlet-Multinomial   parameter   estimate  
whose   expected   value   had   the   smallest   Euclidean   norm   with   expected   value   of   the   maximum  
likelihood   estimate   of   a   Multinomial   distribution   fitted   to   the   same   data.    sOutlier   p-values  
generated   from   SPOT   using   default   settings   (ie.   with   the   prior)   are   highly   correlated   to   sOutlier  
p-values   generated   from   SPOT   when   no   prior   is   used   (Spearman’s   ⍴   =   .997)   .Only   .049%   of
sample-LeafCutter   cluster   pairs   had   a   -log10(p-value)   change   greater   than   1   between   SPOT
under   default   settings   compared   to   SPOT   with   no   prior.   Similar   to   the   above   comparison   of
SPOT   using   variable   number   of   simulated   reads,   these   rare   instances   of   divergence   in   sOutlier
p-values   between   SPOT   with   and   without   a   prior   are   caused   by   numerical   instability   in
computing   the   pseudo-inverse   when   distributions   are   heavily   skewed   towards   a   particular
junction.

Outlier   sharing   across   single   tissues  
Among   all   individual-gene   outliers   across   all   methods   in   a   discovery   tissue,   we   calculated   the  
percentage   of   times   the   same   individual-gene   pair   was   detected   as   an   outlier   (nominal   p-value   <  
0.0027)   in   a   test   tissue,   limiting   to   tissues   where   both   genes   are   expressed.   We   then  
aggregated   this   calculation   across   all   individuals   and   genes   (Figs   3A,   S21).   We   assess   this   both  
when   limiting   to   only   the   genes   tested   in   both   tissues,   to   answer   the   biological   question   of   how  
consistent   the   outlier   status   is   across   tissues   that   co-express   a   gene,   and   when   considering   a  
missing   datapoint   as   a   non-shared   outlier   instance,   addressing   the   utility   of   each   method   in  
diagnosing   expression   outlier   status   in   a   tissue   of   interest   using   a   different   tissue   as   a   proxy.   

For   each   of   three   clinically   accessible   tissues,   whole   blood,   fibroblasts   and   lymphoblastoid   cells  
(LCLs),   we   assessed   the   proportion   of   single   tissue   outliers   (|Z|   >   3,   SPOT   p-value   <   0.0027   or  
ANEVA-DOT   p-value   <   0.0027)   that   replicate   at   the   same   threshold   in   each   of   the   other   46  
tissues,   restricting   to   genes   expressed   in   both   tissues   (Fig   S22).   We   also   restricted   to   outliers   of  
each   type   that   were   seen   in   more   than   1   of   the   three   clinically   accessible   tissues,   at   the   same  
thresholds,   and   assessed   the   proportion   that   replicate   in   each   of   the   other   tissues,   again   filtering  
each   time   to   genes   that   are   also   measured   in   the   replication   tissue.  

Enrichment   calculations  
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We   calculated   relative   risk   enrichments   as   the   proportion   of   outliers   with   a   given   variant   type  
nearby   the   outlier   gene   over   the   proportion   of   non-outlier   individuals   with   the   given   variant   type  
nearby   the   same   set   of   genes.   We   included   95%   confidence   intervals   estimated   via   a   normal  
approximation.   When   assessing   rare   variant   enrichments   overall   and   by   category,   we   used   a  
10kb   +/-   window   around   the   gene   body.   When   considering   variant   categories   per   outlier,   if   more  
than   one   rare   variant   was   present   nearby   the   outlier   gene,   we   assigned   each   gene-individual   to  
a   single   variant   category   based   on   the   following   ordering:   duplications   (DUP),   copy   number  
variations   (CNV),   deletions   (DEL),   breakend   (BND),   inversions   (INV),   transposable   elements  
(TE),   splice,   frameshift,   stop,   transcription   start   site   (TSS),   conserved   non-coding,   coding,   or  
other   non-coding,   and   subsetted   to   the   527   individuals   with   structural   variant   calls.   Unless  
otherwise   specified,   we   used   a   threshold   of   median   p-value   <   0.0027   (chosen   to   match   |median  
Z-score|   >   3)   to   define   multi-tissue   outliers,   though   provide   results   over   a   range   of   thresholds
(Fig   S1).   A   categorical   model   of   outlier   status   was   used   as   opposed   to   a   continuous   model
because   small   changes   in   continuous   outlier   p-values   do   not   reliably   reflect   true   biological
effects   due   to   technical   variation   from   RNA-sequencing,   as   well   as   to   demonstrate   the   impact   of
thresholding   choices   for   downstream   applications.   Additionally,   this   allows   for   matching   the
genes   included   in   both   the   outlier   and   control   category,   defining   an   appropriate   background
distribution   for   statistical   hypothesis   testing   so   that   we   are   not   simply   identifying   differences
between   genomic   regions   rather   than   individual   genetic   effects   on   a   given   gene’s   expression.
When   considering   variants   in   different   windows   upstream   from   the   gene,   we   constructed
exclusive   distance   ranges   from   each   gene,   beginning   with   the   gene   body   +   10kb   window   used
previously,   and   then   we   intersected   rare   variants   with   windows   1bp-200kb,   200kb-400kb,
400kb-600kb,   600kb-800kb,   and   800kb-1Mb   upstream   from   the   set   of   outlier   genes.

Alternative   splicing   enrichment   calculations  
We   performed   several   enrichment   analyses   specific   to   splicing   outliers   to   better   characterize   the  
variants   underlying   splicing   outliers.   For   all   of   these   analyses,   we   used   sOutlier   calls   at   the  
LeafCutter   cluster   level   (instead   of   the   gene   level)   in   order   to   get   more   accurate   enrichments.  
We   excluded   individuals   identified   as   global   outliers   at   the   gene   level   (see   “SPOT:   gene   level  
correction”).   We   limited   enrichment   analysis   to   SNVs.   We   used   a   stringent   median   p-value  
threshold   of   1   x   10 -5    in   order   to   isolate   the   highest   confidence   instances   of   outlier   splicing,  
according   to   SPOT.   In   Fig   S17A,   we   show   the   relative   risk   of   rare   variants   nearby   splice   sites   is  
robust   to   a   range   of   median   p-value   thresholds   and   becomes   more   enriched   at   more   stringent  
p-value   thresholds.   .

1. Relative   risk   of   rare   variant   in   window   around   splice   site .   We   computed   the   relative
risk   of   rare   variants   being   located   at   various   windows   around   splice   sites   for   outlier
clusters   relative   to   non-outlier   clusters.   For   example,   if   the   window   was   [0,2],   we   mapped
a   variant   to   a   cluster   if   that   variant   were   less   than   or   equal   to   two   base   pairs   away   from
observed   donor   and   acceptor   splice   sites   ([D-2,   D+2]   and   [A-2,   A+2]   based   on   notation
in   Fig   2C)   for   that   cluster.   Relative   risk   was   then   calculated   as   the   proportion   of   outlier
(LeafCutter   cluster,   individual)   pairs   with   a   mapped   rare   variant   over   the   proportion
non-outlier   (LeafCutter   cluster,   individual)   pairs   with   a   mapped   rare   variant,   while   limiting
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analysis   to   LeafCutter   clusters   with   at   least   one   outlier   individual.   We   included   95%  
confidence   intervals   estimated   via   a   normal   approximation.  

2. Relative   risk   of   rare   variant   at   position   relative   to   splice   site.    We   first   mapped   rare
variants   to   clusters   if   the   rare   variants   were   less   than   or   equal   to   1000   base   pairs   from
an   observed   donor   or   acceptor   splice   site   ([A-1000,   A+1000]   and   [D-1000,   D+1000]
based   on   notation   in   Fig   2C).   We   then   mapped   each   variant   to   its   nearest   splice   site   in
that   cluster   and   calculated   its   position   relative   to   that   splice   site.   Then,   to   compute   the
positional   relative   risk   at   position   D-1   (for   example),   we   computed   the   fraction   of   outlier
variants   mapped   to   a   donor   splice   site   that   were   at   position   D-1   over   the   fraction   of
non-outlier   variants   mapped   to   a   donor   splice   site   that   were   at   position   D-1.   We   added   a
constant   of   1   to   all   counts   in   the   contingency   table   to   stabilize   enrichments.   We   included
95%   confidence   intervals   estimated   via   a   normal   approximation.

3. Junction   Usage   for   splicing   median   p-value   outliers .   We   used   the   “junction   usage”
statistic   to   quantify   whether   an   individual   used   a   splice   site   more   or   less   than   the
background   population.   A   positive   junction   usage   value   intuitively   means   the   individual
uses   the   splice   site   more   than   the   background   population,   while   a   negative   junction
value   means   an   individual   uses   a   splice   site   less   than   the   background   population.   More
concretely   to   compute   the   junction   usage   for   an   individual     and   junction   j,   we   firsti
computed   the   following   ratio   in   each   tissue   (in   which   that   individual     is   expressed)i

separately: Fraction of  reads in cluster mapping to junction j for individual i
F raction of  reads in cluster  mapping to junction j for non outliers individuals

We   added   a   constant   of   1   to   the   above   contingency   table   to   stabilize   enrichments.   The
“junction   usage”   statistic   is   simply   the   natural   logarithm   of   the   median   of   the   above
statistic   across   all   tissues   in   which    individual     is   expressed.i

Enrichment   of   outlier   pairs   within   a   given   window  
To   test   if   nearby   genes   were   more   likely   to   share   outlier   status,   we   counted   how   many   times   two  
consecutive   genes   within   a   given   genomic   distance   (defined   based   on   the   gene   start   position)   in  
a   given   individual   were   both   reported   outliers.   We   considered   multi-tissue   outliers   and   analyzed  
each   class   of   outliers   independently.   To   derive   the   expected   number   of   such   occurrences,   for  
each   individual   we   used   sampling   without   substitution   to   produce   a   random   set   of   genes   of   the  
same   size.   Samples   were   drawn   from   a   list   of   all   genes   that   had   been   reported   as   an   outlier   at  
least   once   across   all   methods   to   avoid   skewing   the   statistic   by   genes   never   reported   as   outliers.  
The   expected   value   for   each   given   window   size   was   derived   by   averaging   over   all   individuals.  
To   ensure   the   stability   of   enrichment   estimates   at   each   window   size,   the   sampling   process   was  
repeated   until   Monte   Carlo   error   dropped   below   10%   of   the   expected   number   of   outlier  
co-occurrences.   For   sOutliers   this   procedure   was   repeated   once   with   all   outlier   genes   included  
and   once   after   removing   80   genes   sharing   a   cluster   with   another   outlier   gene,   see   “Split   read  
count   quantification   and   processing”.  

We   annotated   all   outliers   occurring   in   a   given   window   with   the   set   of   nearby   rare   variants   for  
each   gene   in   the   pair.   For   each   included   variant   category,   defined   above,   we   calculated   a  
relative   risk   by   taking   the   proportion   of   outlier   pairs   within   the   window   for   which   one   or   both  
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genes   had   a   rare   variant   in   that   category   near   the   gene   over   the   proportion   of   control   individuals  
for   which   the   same   was   true   for   the   same   gene,   restricting   to   individuals   with   genetic   data  
available.   We   included   95%   confidence   intervals   estimated   via   a   normal   approximation,   and   we  
defined   controls   as   individuals   who   were   outliers   for   only   one   of   the   genes   in   the   outlier   pair.   

Visualizing   structural   variants   affecting   multiple   genes  
To   visualize   rare,   outlier-associated   SVs   as   in   Fig   S15,   we   use   the   Integrative   Genomics   Viewer  
(IGV)   tool    ( 71 ,   72 ) .   Because   the   SV   calls   were   processed   on   the   GTEx   v7   release   in   hg19,   we  
used   RefSeq   genes   in   hg19   coordinates   and   overlaid   the   SV   start   and   end   position   to   visualize  
the   impacted   genomic   regions.   To   generate   the   plots   in   Fig   S16,   we   used   SAMtools    ( 73 )  to  
subset   the   RNA-sequencing   bam   files   to   reads   from   the   region   spanning   the   two   genes   involved  
in   the   fusion   for   the   individual   carrying   the   rare   deletion   in   two   tissues,   nerve   tibial   and   lung,  
selected   at   random   from   the   set   of   tissues   with   outlier   signal   in   both   genes,   and   two   control  
individuals   without   the   deletion,   one   for   each   tissue.   After   uploading   the   subsetted   bam   files   to  
IGV,   we   selected   “Sashimi   plot”   from   the   junctions   track   pop-up   menu   to   display   the   reads  
spanning   all   junctions   in   the   region   of   the   rare   deletion   for   both   the   outlier   and   control  
individuals.   We   only   display   read   counts   for   the   fusion   transcript,   but   the   line   thickness  
correlates   with   read   count   for   all   other   junctions.  

Single-tissue   rare   variant   enrichment  
We   tested   for   enrichment   of   rare   variants   near   single-tissue   gene   expression   outliers   using   the  
same   variant   list   and   relative   risk   enrichment   definition   as   for   cross-tissue   outliers   and   with   all  
individuals   with   both   an   expression   outlier   score   and   genotype   information   available.   Under   this  
definition   of   an   eOutlier,   a   gene   is   only   considered   in   one   tissue   at   a   time,   i.e.   without  
aggregating   the   gene's   score   across   all   tissues   in   an   individual   where   it   is   expressed.   Among  
ASE   and   splicing   outliers,   we   removed   tissue-specific   global   outlier   genes   prior   to   performing  
enrichment   analysis.   We   converted   expression   Z-scores   to   a   two-tailed   z-test   p-value   for   direct  
comparison   to   the   other   outlier   methods.   We   tested   for   enrichment   of   rare   variants   at   multiple,  
increasingly   stringent   significance   thresholds   for   each   individual   tissue   to   ensure   conclusions  
are   not   threshold   dependent,   and   then   reported   the   range   of   enrichment   scores   across   all  
tissues,   separated   by   outlier   type   and   significance   threshold.   When   assessing   single-tissue  
outlier   enrichments   split   by   variant   type,   we   use   a   more   stringent   threshold   than   with   multi-tissue  
outliers   of   |Z|   >   4   (p-value   <   0.000063)   as   we   do   not   have   repeat   measurements   per  
individual-gene   in   this   case.  

Correlation   tissue-specific   expression   outlier   calling  
We   subsetted   to   a   set   of   individuals   and   tissues   with   <   75%   missingness,   leading   to   762  
individuals   and   29   tissues.   We   imputed   missing   expression   values   to   improve   our   estimate   of  
the   tissue-by-tissue   covariance   matrix   per   gene   that   would   be   used   in   outlier   calling.   We   used  
K-nearest   neighbors   in   the   impute   R   package    ( 53 )    with   k   =   200   to   impute   values   for   missing 
tissues   per   individual   on   a   gene   by   gene   basis.   We   chose   the   value   of   k   by   comparing 
reconstruction   error   across   k   =   [1,   5,   10,   15,   20,   25,   30,   35,   40,   45,   50,   55,   60,   65,   70,   80,   90, 
100,   200,   300]   on   a   set   of   1000   randomly   selected   genes   with   5%   of   individuals   held-out   for
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evaluation.   We   tested   several   other   potential   imputation   methods   and   saw   similar   performance  
(Fig   S26),   which   included   a   multivariate   normal   expectation-maximization   (EM),    mean  
imputation   (MEAN),   soft   thresholded   iterated   SVD   imputation   (SVD),   and   penalized   matrix  
decomposition   (PMD).   For   these   additional   imputation   methods,   we   used   the   following  
parameters,   determined   in   the   same   way   as   described   above:   EM   -   max   iterations   =   3   and  
tolerance   =   1   x   10 -6 ,   SVD   -   lambda   =   20   and   rank   =   20,   and   PMD   -   lambda   =   1   and   rank   =   5.   

From   the   imputed   matrix,   we   estimated   the   tissue   covariance   matrix,   ,   for   each   gene.   We Σ
︿

 
calculated   the   Mahalanobis   distance   for   each   individual-gene   pair   as   follows:  

Σ x , dd2  = xgT
︿
g
1

g   2 ~ χ2p

Where   xg  is   the   vector   of   observed   expression   values   for   gene   g  across   tissues,   
︿
Σg  is   the  

estimated   covariance   matrix   for   gene   g.  We   assigned   a   p-value   to   each   gene-individual   from 
the   chi-squared   distribution   with   degrees   of   freedom   p  equal   to   the   number   of   tissues   available  
for   that   individual.   We   used   a   two   step   correction   procedure,   first   correcting   via   Bonferroni   for   all  
genes   tested   within   an   individual   and   then   applying   Benjamini-Hochberg   correction   across   all  
tests   with   p   <   0.0027.   When   assessing   nearby   rare   variant   enrichments,   we   removed   genes   that  
had   an   extreme   number   of   outlier   individuals,   based   on   3*IQR,   as   compared   to   the   total   set   of  
tested   genes.   For   the   set   of   tissue-specific   correlation   outliers,   we   subsetted   to   outliers   driven  
by   a   single   tissue,   requiring   remaining   available   tissues   for   that   individual   to   have   a   |Z-score|   <   2  
for   the   outlier   gene.  

Tissue-specific   enhancer   enrichments  
We   obtained   tissue-specific   enhancer   annotations   for   12   tissues   from   Epigenomics   Roadmap  
( 7 4)  and   mapped   to   GTEx   tissues   (Table   S2).   We   subsetted   to   the   tissue-specific   correlation  
outliers   that   occurred   in   one   of   the   12   mapped   tissues.   To   calculate   the   relative   risk   of   a   rare  
variant,   including   both   SNVs   and   indels,   in   a   tissue-matched   enhancer,   we   took   controls   as   all  
individual-gene   pairs   that   were   not   correlation   outliers   and   randomly   assigned   them   to   the   same  
set   of   tissues   as   in   the   outlier   group,   matched   by   gene.   We   used   any   enhancer   region  
annotated   to   a   given   tissue   within   a   500kb   window   around   the   outlier   gene   to   capture   the  
majority   of   potential   enhancers,   which   can   act   at   longer   distances    ( 19 ) .   We   calculated   matched  
enhancer   enrichments   as   the   proportion   of   tissue-specific   outliers   for   which   a   rare   variant   fell  
within   a   nearby   tissue-matched   enhancer   over   the   proportion   of   control   individuals   for   which   the  
same   was   true.   For   unmatched   enhancer   enrichments,   we   calculated   the   proportion   of  
tissue-specific   outliers   with   a   rare   variant   falling   in   any   tissue-specific   enhancer   region   across  
the   12   tissues   considered,   without   regard   to   the   tissue   driving   the   outlier   call,   within   a   500kb  
window   in   either   direction   from   the   gene   over   the   proportion   of   controls   with   a   rare   variant   in   any  
enhancer   region   within   the   same   window   of   the   same   gene   set.  

Gene   Ontology   enrichment   analysis  
The   list   of   genes   with   no   outliers   in   any   tissue   was   generated   by   taking   the   intersection   of   genes  
in   each   tissue   that   have   no   eOutlier,   aseOutlier   or   sOutlier   individuals,   resulting   in   261,   11,573  
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and   9,548   genes   respectively.   For   the   set   of   genes   with   extreme   multi-tissue   outliers,   we   take  
any   genes   with   an   individual   having   an   absolute   median   Z-score   exceeding   7   for   eOutliers,   or  
with   an   aseOutlier   or   sOutlier   p-value   <   2.56e-12,   resulting   in   127,   261   and   389   genes  
respectively.   This   threshold   was   chosen   to   retain   enough   outlier   examples   per   outlier   type   to  
assess   enrichments   while   focusing   on   the   extremes   of   the   distributions.   For   enrichments,   we  
assess   all   Gene   Ontology   biological   process   terms  (75,   76) and   use   as   background   the  
complete   set   of   24,719   lincRNA   and   protein-coding   genes   used   across   outlier   analyses.  
Significance   was   determined   per   gene   set   using   FDR-corrected   p-values   from   a   Fisher’s   Exact  
test   using   PANTHER  (77).   We   include   the   top   ten   terms   by   p-value   in   Fig   S10   per   gene   set   of  
interest   without   any   filtering   or   combining   of   similar   terms.  

Watershed   model   overview  
Watershed   is   a   hierarchical   Bayesian   model   that   predicts   regulatory   effects   of   rare   variants   on   a  
specific   outlier   signal   based   on   the   integration   of   multiple   transcriptomic   signals   along   with  
genomic   annotations   describing   the   rare   variants.   Watershed   models   instances   of   (gene,  
individual)   pairs   to   predict   the   regulatory   effects   of   rare   variants   nearby   the   gene.   The  
Watershed   model   for   a   particular   (gene,   individual)   pair,   assuming   K  outlier   signals,   consists   of  
three   layers   (Fig   4a):  

1. A   set   of   variables    G   representing   the   P   observed   genomic   annotationsG , ..., G=   1     P

aggregated   over   all   rare   variants   in   the   individual   that   are   nearby   the   gene.
2. A   set   of   binary   latent   variables    Z    =   representing   the   unobserved   functional, .., ZZ1 .   K

regulatory   status   of   the   rare   variants   on   each   of   the   K   outlier   signals.   Let   be   the   set   ofZs

all   possible   values   that    Z    can   take   on.   The   size   of   is   .ZS 2K

3. A   set   of   categorical   nodes    E    =   that   represents   the   observed   outlier   status   of, .., EE1 .   K

the   gene   for   each   of   the   K   outlier   signals.   We   allow   for   missingness   in    E .
A   fully   connected   conditional   random   field   (CRF)    ( 78 )    is   defined   over   variables   Z  given   G ,  
where   we   let   W   represent   the   set   edges   among   .   Variables   E i   are   each   connected   only   to   the Z  
corresponding   latent   variable   Z i .    Specifically,   the   following   conditional   distributions   together  
define   the   full   Watershed   model:  

A.  | G Z CRF (α, β , ..., β , θ)~     1     k  
B. Categorical | Z  Ek k ~ ϕ )   k ( k K
C. Dirichlet  ϕk ~ C, .., )( . C
D. Normal βk  ~ 0, )(   λ

1

where,  
● are   the   parameters   defining   the   contribution   of   the   genomic   annotations k   βk RP   K

to   the   CRF   for   each   outlier   signal   ( )k
● are   the   parameters   defining   the   intercept   of   the   CRF   for   each   outlier   signal   ( ) α RK k
● are   the   parameters   defining   the   edge   weights   between   pairs   of   outlierR  θ   (Kchoose2) 

signals   (Notational   note:   )θθtq =   qt
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● are   the   parameters   defining   the   categorical   distributions   of   each   outlier   signal  k   ϕk K   
● and   are   hyper-parameters   of   the   modelC λ

Explicitly,   our   CRF   probability   distribution   is   defined   as:  

)(Z | G, β , .., β , α, θ)  exp( Z   θ Z Z G Z   A(G, θ, β , .., β )P   1 .   K     =   ∑
 

k K
αk k +   ∑

 

(t,q) W
  tq t q + ∑

 

k K
βk k       1 .   K

where   (G, θ, β , .., β )  log( xp ( Z   θ Z Z G Z ))A     1 .   K =   ∑
 

Z ZS
e ∑

 

k K
αk k

  +   ∑
 

(t,q) W
  tq t q + ∑

 

k K
βk k

Because    Z    is   unobserved,   the   Watershed   log-likelihood   objective   over   instances   :, ..,n = 1 . N

og (E , G , Z  | β , ..., β , α, θ, ϕ , ..., ϕ )∑
N

n=1
l ∑

Z  Z 
S
P n   n     1     K       1     K

is   non-convex.   We   therefore   optimize   model   parameters   using   Expectation-Maximization   (EM)  
as   described   in   the   following   sections.  

Watershed   exact   inference   optimization   routine  
When   the   number   of   outlier   signals   ( )   is   small   (an   approximate   rule   being   4   or   less), K  
Watershed   parameters   can   be   optimized   using   exact   inference   updates   within   EM   as   follows:  

In   the   E-step   for   instances   :   we   compute   posterior   distributions   over   the   latent, ..,n = 1 . N
variables   ( ),   conditioned   on   the   current   model   parameters   ( )   and Z(n)  , ..., β , α, θ, ϕ , ..., ϕβ1     K       1     K  
the   observed   data   ( and   ).    For   example,   the   joint   posterior   probability   of     for G(n)

  E(n) ZZ(n) =    
the   nth   instance   can   be   computed   as:  

(Z   Z)  exp( (α Z G Z   (E )log(P (E | Z ))  θ Z Zω(n) (n) =   =   ∑
 

k K
k

 
k + βk

(n)  
k
 
+ I k

(n)
k
(n)

k
  + ∑

 

(t,q) W
  tq t q

)A(G , E , θ, β, α, θ, ϕ  (n)   (n)          

(G , E , θ, β, α, ϕ)  log( xp ( (α Z G Z   (E )log(P (E | Z ) )A (n)   (n)         =   ∑
 

Z ZS
e ∑

 

k K
k k + βk

(n)
k + I k

(n)
k
(n)

k
   

θ Z Z ))+ ∑
 

(t,q) W
  tq t q

where,  
  is   an   indicator   function   for   whether   is   observed.   Given   the   joint   posterior   probability (E )I k

(n) Ek
(n)  

distribution,   we   can   marginalize   (sum   over)   specific   dimensions   (outlier   signals)   to   obtain:  
1. Marginal   posterior   distributions   for   each   dimension     (where   is   the   set   of   all   possiblei ZW

values   that    Z    can   take   on   excluding   dimension   ):i

(Z )  (Z )ω(n)
single i = ∑

 

Z ZW
ω(n)
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2. Pairwise   marginal   posterior   distributions   for   each   pair   of   dimensions     (where   is,i j ZW

the   set   of   all   possible   values   that    Z    can   take   on   (excluding   dimension     and   dimension   i j
)):

(Z , Z )   (Z )ω(n)
pair i   j = ∑

 

Z ZW
ω(n)

Both   the   marginal   posterior   distributions   and   the   pairwise   marginal   posterior   distributions   are  
used   in   the   M-step   as   follows.   We   update   ,   ,   and   by   optimizing   the   conditional   randomβ α θ
field   as   follows:  

rgmax og(P (Z  | G , β , α, θ))a β, α, θ ∑
N

n=1
∑

Z ZS
l (n)         (Z )  ||β||   ||θ||ω(n)   2

λ
2   2

λ
2

Here     is   an   L2   penalty   hyper-parameter   derived   from   the   Gaussian   priors   on   and   .   Weλ β θ
optimized   this   objective   function   by   running   L-BFGS   on   the   closed-form   gradient   updates.  

In   the   second   part   of   the   M-step,   we   update   as   follows: k   ϕk K

(s, t)  (E t) ω (Z s)  Cϕk   =   ∑
N

n=1
I k

(n) =   (n)
single k

(n) =   +

where,   
  is   an   indicator   operator,   is   the   categorical   value   of   expression   ,   is   the   possible   binaryI t Ek

(n) s
values   of   ,   and     is   the   hyperparameter   based   on   the   Dirichlet   prior   on   .Zk

(n) C ϕ

Once   the   EM   algorithm   has   converged,   we   use   the   marginal   posterior   distributions   for   each  
dimension     in   each   instance     ( )   as   estimates   of   probability   that   the   nth   (gene,i n (Z )ω(n)

single i = 1
individual)   pair   has   a   nearby   variant   that   has   a   functional   effect   on   the   gene   (with   respect   to  
outlier   dimension   i).  

Watershed   approximate   inference   optimization   routine  
When   the   number   of   outlier   signals   ( )   is   large   (an   approximate   rule   being   5   or   more),   it K  
becomes   computationally   intractable   to   optimize   Watershed   parameters   using   exact   inference  
updates,   so   we   use   approximate   inference   updates   within   EM   as   follows:  

For   the   E-step,   we   wish   to   compute   approximate   estimates   of   the   following   posterior   probability  
distribution:  

(Z )  exp( (α Z G Z   (E )log(P (E | Z ))  θ Z Zω(n) (n) = Z =   ∑
 

k K
k

 
k + βk

(n)  
k
 
+ I k

(n)
k
(n)

k
  + ∑

 

(t,q) W
  tq t q

)A(G , E , θ, β, α, θ, ϕ  (n)   (n)          

(G , E , θ, β, α, ϕ)  log( xp ( (α Z G Z   (E )log(P (E | Z ) )A (n)   (n)         =   ∑
 

Z ZS
e ∑

 

k K
k k + βk

(n)
k + I k

(n)
k
(n)

k
   

15



θ Z Z ))+ ∑
(t,q) W

tq t q

To   approximate   this   function   ,   we   use   the   Mean-Field   Approximation   (a   subclass   of(Z )ω(n) (n)

Variational   Inference)    ( 73 )    and   optimize     to   minimize   the   KL-divergence   between(Z )q(n) (n)

  and   (Z ) q(n) (n) (Z )ω(n) (n)

where,   

where(Z )  (Z )q(n) (n) =   ∏
 

k K
qk

(n)
  k

(n) (Z ) ) (1 )qk
(n)

  k
(n) = (μk

(n) zk(n) μk
(n) (1 z )k

(n)

To   minimize   the   KL-divergence   for   a   given   sample   ,   we   perform   coordinate   descent   on   each n  
while   holding   all   other   dimensions   (values   of )   constant.   Given   that represents   the μk (n) μj (n) (k)N  

set   of   all   nodes   that   share   an   edge   with   node   ,   the   variational   update   for   each   is   then:k μk (n)

  whereμk
(n)(update) = exp(a  + I(E )log(P (E  | Z =1)))k k

(n)
k
(n)

k

exp (I(E )log(P (E | Z =0)) + exp(a  + I(E )log(P (E  | Z =1)))k
(n)

k
(n)

k k k
(n)

k
(n)

k

G μak = αk + βk
(n) + ∑

 

j N (k)
θkj j

(n)

More   specifically,   for   one   instance   ,   we   iteratively   do   the   following   until   convergence: n  
1. Loop   through   all     dimensions   in   a   random   order,   and   update   each   given   the   mostK μk (n)

recent   values   of   .   Since   coordinate   ascent   is   not   guaranteed   to   reach   the j (k)   μj (n) N

global   optimum,   we   used   damped   updates   for   each   in   order   to   decreaseμk (n)  k     K
the   chance   of   getting   stuck   at   a   local   optimum:  

a. (1 )   (η)μk (n)(iter i+1) = η μk
(n)(iter i) + μk (n)(update)

b. We   use   a   damping   value   ( )   of   0.8.η
2. Compute   the   average   difference,   across   all     dimensions,   between   the   values   of   K μk (n)

from   the   current   iteration   and   values   of     from   the   previous   iteration.   Converge   if   theμk (n)

average   difference   is   less   than   1x   10 -8 .
Using   the   same   notation   as   in   “Watershed   exact   inference   optimization   routine”,   Mean   Field  
allows   us   to   approximate   the   following   expectations   using   converged   estimates   of   :μk (n)

1. (Z ) ω(n) (n)   ∏
 

k K
) (1 )(μk

(n) zk(n) μk
(n) (1 z )k

(n)

2. (Z , Z ) ) (1 ) (μ ) (1 )ω(n)
pair i

(n)   j
(n) (μi

(n) zi
(n)

μi(n)
(1 z )i

(n)

j
(n) zj

(n)
μj (n)

(1 z )j
(n)

3. (Z )  ω(n)
single i

(n) ) (1 )(μi
(n) zi

(n)
μi(n)

(1 z )i
(n)

We   use   both   the   approximate   marginal   posterior   distributions   and   the   approximate   pairwise  
marginal   posterior   distributions   in   the   M-step.   However,   when   the   number   of   dimensions   ( K )   is  
large,   optimization   of   the   parameters   ( β ,   α ,   and   θ )   defining   the   conditional   random   field 
becomes   intractable.   Therefore,   we   approximated   the   CRF   objective   function   with   the  
Pseudolikelihood    ( 80 )    of   the   CRF.   Given   variational   estimates   of   μi(n)(Z i

(n))  for   all   
values   of dimensions   ( i )   and   all   samples   ( n ),   the   (log)   Pseudolikelihood   objective   
function   (including  priors   on   coefficients)   is   given   by:  
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)   (α μ G μ μ μ   A(k, n, θ, β, α)∑
N

n=1
∑
k K

k k
(n) + βk

(n)
k
(n) +   ∑

 

j N (k)
θkj k

(n)
j
(n)         ||β||   ||θ||  2

λ
2   2

λ
2

(k, n, θ, β, α)  log( xp(α z  G z   z μ ))A         =   ∑
1

z=0
e k + βk

(n) +   ∑
 

j N (k)
θkj j

(n)

We   computed   closed   form   gradient   updates   of   the   above   objective   function   and   then   optimized  
it   using   L-BFGS.  

In   the   second   part   of   the   M-step,   we   update   as   follows: k   ϕk K

(s, t) (E t) ω (Z s)  Cϕk   =   ∑
N

n=1
I k

(n) = (n)
single k

(n) =   +

Where     is   an   indicator   operator,   is   the   categorical   value   of   expression   ,   is   the   possibleI t Ek
(n) s

binary   values   of   ,   and     is   the   hyperparameter   based   on   the   Dirichlet   prior   on   .Zk
(n) C ϕ

Once   the   EM   algorithm   has   converged,   we   use   marginal   posterior   distributions   for   each  
dimension   i,   in   each   instance   n   ( )   as   estimates   of   probability   that   the   nth   (gene,(Z )ω(n)

single i = 1
individual)   pair   has   a   nearby   variant   that   has   a   functional   effect   on   the   gene   (with   respect   to  
outlier   dimension   ). i  

GAM   and   RIVER  
The   genomic   annotation   model   (GAM)   is   L2-regularized   logistic   regression   using   genomic  
annotations   ( G )   as   features   and   the   binary   outlier   status   of   a   specific   outlier   signal   as   the  
response   variable.   One   GAM   model   was   trained   for   each   outlier   signal.  

The   only   difference   between   Watershed   and   RIVER   is   that   in   RIVER   is   fixed   to   be   a   vector   ofθ
zeros.   This   allows   RIVER   to   be   optimized   precisely   as   described   in   “Watershed   exact   inference  
optimization   routine”   assuming   is   fixed   to   be   zero.   It   is   important   to   note   that   RIVER   hasθ
changed   slightly   since   its   initial   development    ( 15 )    in   the   following   way:   we   now   use   a   categorical  
distribution   ( )   with   three   categories   instead   of   two   to   model   .   This   change   in   RIVER   was ϕ  | ZE  
made   in   order   to   make   it   directly   comparable   to   Watershed.  

Applying   Watershed   to   jointly   model   ASE,   splicing,   and   expression   
We   first   applied   Watershed   to   the   GTEx   v8   data   using   3   outlier   signals:   median   ASE,   splicing,  
and   expression.   Recall,   Watershed   requires   a   set   of   genomic   annotations   ( G )   and   a  
corresponding   set   of   categorical   outlier   signals   ( E )   over   (gene,   individual)   instances.   We   first  
limited   to   a   set   of   (gene,   individual)   pairs   with   a   rare   variant   that   fell   within   the   gene   body   or   +/-  
10kb   of   each   gene   and   that   passed   the   following   set   of   filters   in   all   3   outlier   signals:  

1. The   individual   was   not   a   global   outlier
2. The   gene   has   measured   outlier   signal   for   the   corresponding   individual
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3. The   gene   has   at   least   one   individual   that   is   an   outlier   (median   p-value   <   .01)
This   yielded   a   set   of   36,702   (gene,   individual)   pairs   that   we   used   for   training   and   evaluating   the  
Watershed   framework.   

To   generate   the   genomic   annotations   ( G )   for   each   (gene,   individual)   pair,   we   limited   to   SNVs  
that   fell   within   the   gene   body   or   +/-   10kb   of   each   of   the   gene   and   then   extracted   47   genomic  
annotations   (Table   S3)   describing   each   of   the   SNVs   including   regulatory   element   annotations,  
conservation   scores,   and   derived   genomic   scores   from   other   models   such   as   CADD.   If   a   (gene,  
individual)   pair   had   more   than   one   SNV   mapped   to   the   gene,   the   genomic   annotations   were  
aggregated   across   the   SNVs   with   simple   transformations   to   generate   gene-level   genomic  
annotations   (Table   S3).   The   resulting   gene-level   genomic   annotations   were   standardized   
(mean  0   and   standard   deviation   1)   before   running   Watershed.  

We   generated   the   categorical   outlier   signals   ( E )   for   each   (gene,   individual)   pair   using   3  
categories   per   outlier   signal.   It   is   important   to   note   that   because   of   the   filters   described   above  
there   is   no   missingness   in    E .   For   aseOutliers   and   sOutliers,   we   assigned   a   gene   with   median  
p-value   ( )   to:p

1. Category   1   if   og (p  10 )  1l 10 +   6 <  
2. Category   2   if     = og (p  10 )  41 <   l 10 +   6 <  
3. Category   3   if   og (p  10 )  = 4l 10 +   6 >  

For   eOutliers,   we   assigned   a   gene   with   median   p-value   ( )   and   median   Z-score   (z)   to: p  
1. Category   1   if   and   z   <   0og (p  10 )   l 10 +   6 > 1
2. Category   2   if   og (p  10 )  = 1l 10 +   6 <  
3. Category   3   if   and   z   >   0og (p  10 )   l 10 +   6 > 1

We   note   that   these   thresholds   are   arbitrary,   but   were   selected   to   distinguish   non-outliers,  
moderate   outliers,   and   extreme   outliers   for   aseOutliers   and   sOutliers,   and   distinguish  
non-outliers,   under-expression   outliers,   and   over-expression   outliers   for   eOutliers.   

To   train   and   evaluate   Watershed,   we   identified   the   3,411   cases   where   two   or   more   individuals  
had   the   same   rare   SNV(s)   near   a   particular   gene.   We   held   out   those   instances   and   trained  
Watershed   on   the   remaining   instances.   For   training,   we   set   the   hyperparameter     equal   to   30, C  
motivated   by   the   number   of   training   instances.   To   select   the   hyperparameter   ,   we   trained   andλ
evaluated   GAM   on   the   training   data   for   each   outlier   signal   independently(assigning   a   sample   an  
outlier   label   if   outlier   p-value   <   .01)   with   5-fold   cross   validation   while   running   a   gridsearch   on    λ
=.1,.01,.001.   We   selected   the     with   the   largest   median   area   under   the   precision   recall   curveλ
(AUPRC)   across   the   5   folds.   Each   precision   recall   curve   aggregated   predictions   across   the  
three   outlier   signals.   The   optimal   was   found   to   be   0.001.   Before   running   Watershed,   weλ
initialized   and   to   be   the   intercept   and   slope   parameters,   respectively,   of   GAM   (whenαk βk

)   trained   on   the   full   training   data   for   outlier   signal   .   was   initialized   to   all   zeros.   .001λ = 0 k θ  ϕk
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was   initialized   using   the   MAP   updates   described   in   “Watershed   exact   inference   optimization  
routine”,   except   we   used   the   GAM   (when   )   posterior   probabilities   to   approximate.001λ = 0

.(Z s)ω(n)
single k

(n) =

We   evaluated   various   trained   models   (Watershed,   RIVER,   GAM,   CADD)   using   the   3,411   cases  
where   two   individuals   had   the   same   rare   SNV(s)   near   a   particular   gene   (we   will   refer   to   these  
instances   as   N2   pairs).   Specifically,   we   estimated   the   posterior   probability   of   a   functional   rare  
variant   (according   to   each   of   the   models)   in   the   first   individual   from   the   pair,   allowing   Watershed  
to   use   all   data   available   for   that   individual.    We   then   used   the   outlier   status   of   the   second  
individual   as   a   ‘label’   for   evaluation.   In   order   to   make   the   fraction   of   outlier   instances  
comparable   between   different   outlier   signals,   we   defined   a   (gene,   individual)   pair   to   be   an   outlier  
for   a   specific   outlier   signal   if   its   outlier   p-value   was   ranked   amongst   the   1%   most   significant  
p-values   for   that   outlier   signal   (across   training   and   N2   pair   instances).    For   an   N2   pair,   we   did
this   evaluation   in   both   directions:   predict   on   the   first   individual   and   evaluate   on   the   second,   as
well   as   predict   on   the   second   individual   and   evaluate   on   the   first.    Importantly,   none   of   the   N2
pairs   were   used   in   training   any   of   the   models.

Watershed   with   data   generated   using   various   filters  
Recall   from   the   previous   section   (“Applying   Watershed   to   jointly   model   ASE,   splicing,   and  
expression”),   Watershed   training   data   was   generated   through   the   following   approach:   we   limited  
to   a   set   of   (gene,   individual)   pairs   with   a   rare   variant   that   fell   within   the   gene   body   or   +/-   10kb   of  
each   gene   and   that   passed   the   following   set   of   filters   in   all   3   outlier   signals:  

1. The   individual   was   not   a   global   outlier
2. The   gene   has   measured   outlier   signal   for   the   corresponding   individual
3. The   gene   has   at   least   one   individual   that   is   an   outlier   (median   p-value   <   0.01)

These   strict   thresholds   were   set   in   order   to   reduce   the   imbalance   between   outliers   and  
non-outliers   in   the   training   data   set.   We   next   assessed   how   sensitive   Watershed   was   to   these  
filters   by   training   Watershed   with   three   different   training   data   sets   generated   by   relaxing   the  
above   third   filter   as   follows:  

● All   3   outlier   signals   have   at   least   one   individual   that   is   an   outlier   (median   p-value   <   0.05)
● All   3   outlier   signals   have   at   least   one   individual   that   is   an   outlier   (median   p-value   <   0.1)
● At   least   1   outlier   signal   has   at   least   one   individual   that   is   an   outlier   (median   p-value   <

0.01)
We   evaluated   various   trained   models   (Watershed,   RIVER,   GAM)   using   held   out   pairs   of  
individuals   generated   under   the   default   filtering   in   order   to   make   precision-recall   curves  
comparable   to   those   in   Fig   4D   (Fig   S28A-C,   Table   S4).   We   found   the   improvements   of  
Watershed   over   RIVER   decreased   when   using   training   data   generated   under   more   relaxed  
thresholds,   while   the   improvements   of   Watershed   and   RIVER   relative   to   GAM   remained.   The  
increased   class   imbalance   (resulting   from   the   relaxed   thresholds)   caused   the   fraction   of   positive  
training   instances   to   decrease.   This   further   imbalance   resulted   in   Watershed   learning  
considerably   smaller   magnitude   edge   weights,   increasing   the   similarity   of   the   Watershed   model  
with   the   RIVER   model.   
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We   therefore   recommend   using   training   data   generated   through   our   default   filtering   approach  
when   running   Watershed.  

We   further   accessed   sensitivity   of   our   analysis   to   these   filters   by   training   Watershed   with  
training   data   generated   through   our   default   filtering   approach,   while   evaluating   Watershed   on  
three   different   sets   of   held   out   pairs   of   individuals   generated   by   relaxing   the   above   third   filter   as  
follows:  

● All   3   outlier   signals   have   at   least   one   individual   that   is   an   outlier   (median   p-value   <   0.05)
● All   3   outlier   signals   have   at   least   one   individual   that   is   an   outlier   (median   p-value   <   0.1)
● At   least   1   outlier   signal   has   at   least   one   individual   that   is   an   outlier   (median   p-value   <

0.01)

Importantly,   improvements   of   Watershed   over   both   RIVER   and   GAM   were   robust   to   relaxing  
these   thresholds   .   Specifically,   the   difference   in   AUPRC   between   Watershed   and   RIVER,   when  
evaluating   performance   on   default   held   out   pairs   of   individuals,   is   strictly   bounded   above   zero  
for   splicing,   but   for   other   phenotypes   there   is   some   overlap.   But   the   difference   in   AUPRC  
between   Watershed   and   RIVER    is   strictly   bounded   above   zero   for   all   phenotypes   when  
evaluating   on   a   larger   set   of   held   out   pairs   of   individuals   selected   with   less   stringent   filters  
(Table   S4,   Fig   S28).  

Applying   Watershed   to   jointly   model   outlier   signals   from   each   tissue   (tissue-Watershed)  
Next,   we   trained   three   independent   tissue-Watershed   models   (one   each   for   ASE,   splicing,   and  
expression)   where   each   model   considered   effects   in   all   tissues,   giving   49   phenotypes,  
corresponding   to   49   Z   and   E   variables   each.   In   order   for   these   models   to   be   comparable   to   the  
model   described   in   “Applying   Watershed   to   jointly   model   three   outlier   types”,   we   used   the   same  
set   of   (gene,   individual)   pairs.   We   therefore   used   the   same   extracted   and   processed   genomic  
annotations   ( G ).   

We   generated   the   categorical   outlier   signals   ( E )   for   each   (gene,   individual)   pair   in   a   particular  
tissue   (for   a   particular   outlier   signal)   using   3   categories.   It   is   important   to   note   that,   unlike   the  
first   application   of   Watershed   to   three   median   signals,   there   is   now   missingness   in    E    as   a   (gene,  
individual)   pair   does   not   have   measured   outlier   signal   across   all   49   tissues   in   GTEx.   For   ASE  
and   splicing   outliers,   for   a   particular   tissue,   we   assigned   a   gene   with   p-value   ( )   to: p  

1. Category   1   if   og (p  10 )  1l 10 +   6 <  
2. Category   2   if     = og (p  10 )  41 <   l 10 +   6 <  
3. Category   3   if   og (p  10 )  = 4l 10 +   6 >  

For   expression,   outliers,   for   a   particular   tissue,   we   assigned   a   gene   with   p-value   ( )   and p  
Z-score   (z)   to:

1. Category   1   if   and   z   <   0og (p  10 )   l 10 +   6 > 1
2. Category   2   if   og (p  10 )  = 1l 10 +   6 <  
3. Category   3   if   and   z   >   0og (p  10 )   l 10 +   6 > 1
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To   train   and   evaluate   tissue-   Watershed,   we   identified   the   3,411   cases   where   two   individuals  
had   the   same   rare   SNV(s)   near   a   particular   gene.   We   held   out   those   instances   and   trained  
Watershed   on   the   remaining   instances.   For   training,   we   set   the   hyperparameter     equal   to   10, C  
motivated   by   the   number   of   training   instances   with   observed   outlier   calls.   We   selected   .001λ = 0
based   on   cross-validation   in   “applying   Watershed   to   jointly   model   three   outlier   types”.   We  
initialized   and   to   be   the   intercept   and   slope   parameters,   respectively,   of   GAM   (whenαt βt

)   trained   on   the   full   training   data   from   tissue    t .   was   initialized   to   all   zeros.   was.001λ = 0 θ  ϕt
initialized   using   the   MAP   updates   described   in   “Watershed   exact   inference   optimization   routine”,  
except   we   used   the   GAM   (when   )   posteriors   to   approximate   ..001λ = 0 (Z   s)ω(n)

single k
(n) =  

We   took   a   very   similar   approach   as   described   in   “Applying   Watershed   to   jointly   model   ASE,  
splicing   and   expression”   to   evaluate   various   trained   models   (tissue-Watershed,   tissue-RIVER,  
tissue-GAM).   In   this   setting   however,   both   model   predictions   and   outlier   labels   were   in   a   single  
tissue   as   opposed   to   the   median   across   tissues.   As    E    contains   missingness   in   this   setting,   we  
required   both   individuals   in   the   N2   pair   to   have   observed   outlier   signal   for   the   gene   of   interest   in  
the   corresponding   tissue.  

Non-parametric   bootstrapping   of   change   in   area   under   precision   recall   curves  
We   utilize   non-parametric   bootstrapping   to   assess   the   significance   of   the   difference   in   area  
under   a   precision   recall   curve   for   two   different   models   (assume   the   two   models   are   called  
“model   1”   and   “model   2”,   respectively).   Assume   there   are   observations   involved   in   generating N  
the   precision-recall   curves,   meaning   there   exist   predictions   from   model   1,   predictions   from N N  
model   2,   and   binary   labels.   We   can   then   compute   the   area   under   the   precision   recall   curve N  
for   model   1   and   model   2   ( and   ,   respectively),   as   well   as   the   difference   betweenuprca 1  uprca 2

the   areas   ( ).   Next,   we   generate   non-parametric   bootstrappedauprc)  auprc uprc  Δ =   1 a 2 B
samples   of   .   To   generate   one   non-parametric   bootstrapped   sample   ( )   of     we:auprcΔ b auprcΔ

1. Randomly   sample,   with   replacement   observations   from   the   original     observationsN  N
2. Generate     and according   to   the   sub-sampled   observations. uprca 1

(b) uprca 2
(b)   

3. Compute   -   auprcΔ (b) = uprca 1
(b) uprca 2

(b)

We   can   compute   a   95%   confidence   interval   on     using   the   bootstrapped   samples   byauprcΔ B
first   computing   the   .025   quantile   and   .975   quantile   (across   the   B   bootstrapped   samples)   of  

( and   ,   respectively).   The   95%   confidence   interval   is   thenauprc auprc  Δ (b) Δ δ.025 δ.975
.Δauprc , Δauprc ]  [ δ.975   δ.025

Rare   variant   Watershed   posterior   predictions   with   trained   Watershed   model  
We   used   the   Watershed   model   that   was   previously   trained   on   the   34,837   (gene,   individual)   pairs  
described   in   “Applying   Watershed   to   jointly   model   ASE,   splicing,   and   expression”   to   make  
Watershed   posterior   predictions   on   the   remainder   of   rare   variants   in   GTEx.   To   make   genomic  
annotations   comparable,   the   genomic   annotations   describing   the   SNVs   we   wish   to   predict   on  
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were   standardized   according   to   the   mean   and   standard   deviation   of   the   genomic   annotations  
from   “Applying   Watershed   to   jointly   model   ASE,   splicing,   and   expression”.   It   is   important   to   note  
that   the   Watershed   model   was   trained   across   (gene,   individual)   pairs   and   predictions   were  
made   across   (gene,   SNV,   individual)   triplets.   

Note   on   applying   Watershed   to   new   data   sets  
While   we   are   restricted   here   to   making   predictions   of   variant   effect   on   transcriptomic   signals,  
our   framework,   including   enrichment   analysis   and   Watershed,   could   be   straightforwardly   applied  
to   ribosome   profiling   data   and/or   mass-spectrometry   based   protein   measurements   by  
researchers   using   a   cohort   with   WGS   or   exome   sequencing   to   capture   post-translational   and  
structural   changes.   

Replication   in   ASMAD   Cohort  
As   previously   reported    ( 40 ) ,   394   family   members   were   genotyped   on   Illumina   Omni   2.5   arrays  
and   80   individuals   were   subjected   to   whole   genome   sequencing   by   Complete   Genomics.  
Genotyping   was   performed   at   the   Center   for   Applied   Genomics   and   the   Children's   Hospital   of  
Pennsylvania.   Genotype   based   identity   by   state   metrics   validate   all   familial   relationships   in   the  
pedigree.   All   variants   with   Mendelian   inconsistencies   or   missing   in   more   than   1%   of   individuals  
were   removed.   Haplotypes   were   phased   using   SHAPEIT2   with   duoHMM    ( 81 ) .   Imputation   was  
performed   using   IMPUTE2    ( 82 )    and   the   TopMed   Anabaptist   reference   panel   of   haplotypes.   
LCL  lines   from   100   individuals   of   the   pedigree   were   obtained   from   the   Coriell   Institute.   These  
individuals   represent   the   80   individuals   who   had   been   whole   genome   sequenced,   plus   an  
additional   20   closely   related   individuals.  

Total   RNA   was   extracted   from   LCL   cultures   using   RNAeasy.   Paired   end   RNA   sequencing  
libraries   were   constructed   using   the   Illumina   [TruSeq   stranded   mRNA   library   prep   kit]  
( http://www.illumina.com/products/truseq_stranded_mrna_library_prep_kit.html )   with   100  
independent   index   barcodes.   Paired,   125bp   reads   were   generated   on   an   Illumina   HiSeq2500   at  
the   Next   Generation   Sequencing   Core   Facility   at   the   University   of   Pennsylvania.   Read   level  
quality   was   assessed   using   FastQC    ( 83 ) .   Reads   were   trimmed   to   remove   Illumina   adapters   
and  low   quality   sequence   using   TrimGalore!   ('stringency   5,   length   50,   q   20')    ( 84 ) .   Reads   were  
aligned   to   the   human   genome   (hg38)   with   GENCODE   gene   annotations   (v24)   using   the   STAR  
aligner    ( 57 )    in   2-Pass   mode.   Gene   level   read   counts   were   quantified   using   Feature   Counts.  
After   genotype   and   RNAseq   quality   control,   97   samples   were   included   for   further   analysis.  

To   control   for   reference   mapping   bias   and   remove   reads   derived   from   PCR   duplication,   reads  
aligned   to   the   human   genome   were   processed   using   WASP    ( 85 ) .   At   each   heterozygous   site,  
reference   and   alternate   allele   read   depth   was   quantified   using   PySam.   Overlapping   read   pairs  
were   only   counted   once.   Splicing   clusters   were   identified   within   each   sample   using   Leafcutter  
( 35 ) .  
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aseOutlier   calls   in   the   ASMAD   cohort   were   generated   as   follows.   Allele   specific   read   counts  
were   generated   with   quasar.   ASE   snps   were   annotated   by   overlapping   with   coding   regions   of  
the   genome.   Then,   for   all   ASE   snps   which   overlapped   a   gene,   the   one   with   the   highest   read  
coverage   was   used   to   represent   that   gene’s   ASE   counts.   Mono-allelic   sites   and   sites   with   fewer  
than   5   reads   per   allele   were   discarded.   Genes   which   appeared   as   frequent   outliers   in   GTEx  
LCL   samples   (available   at    (59) )   were   removed   as   well.  ANEVA-DOT   was   then   run   on   all   
available   genes   per   individual,   using   LCL   V G    scores   from  GTEx   as   the   reference.   The   results   
across   all   97   available   samples   were   compared,   and  individuals   with   more   than   61   ASE   
outliers,   after   FDR   correction   (11   in   total),   were   removed  from   downstream   analysis.   On   
average   an   individual   in   the   ASMAD   cohort   had   176   ASE   outlier  genes,   before   FDR   correction.   

We   next   called   sOutliers   in   the   ASMAD   cohort.   As   there   are   relatively   few   ASMAD   RNA-seq  
samples   (n=97),   we   used   Dirichlet-Multinomial   parameter   estimates   for   each   LeafCutter   cluster  
learned   from   GTEx   Cells   EBV-transformed   lymphocyte   samples   and   then   assessed   how  
extreme   each   ASMAD   sample   was   according   that   pre-trained   distribution.   More   specifically,   we  
first   filtered   ASMAD   exon-exon   junction   counts   to   exon-exon   junctions   that   passed   the   filters  
involved   in   processing   GTEx   Cells   EBV-transformed   lymphocytes   (see   “Split   read   count  
quantification   and   processing”).   Then   for   each   Leafcutter   Cluster   tested   with   SPOT   in   the   GTEx  
Cells   EBV-transformed   lymphocytes   tissue,   we:  

1. Retrieved   Dirichlet-Multinomial   parameter   estimates   for   this   LeafCutter   cluster   from
when   SPOT   was   trained   using   GTEx   Cells   EBV-transformed   lymphocytes   samples.

2. Generated   a   junction   count   matrix   for   the   ASMAD   samples.   This   junction   count   matrix
will   be   of   dimension   X   where     is   the   number   of   ASMAD   samples   and     is   theN J N J
number   of   junctions   assigned   to   this   tissue   in   GTEx   Cells   EBV-transformed   lymphocytes.
If   a   particular   junction   in   this   cluster   is   not   expressed   in   the   ASMAD   cohort,   the   column
corresponding   to   this   junction   in   the   matrix   will   be   filled   in   with   zeros.

3. Used   the   GTEx-fitted   Dirichlet-Multinomial   distribution   (from   step   1)   to   compute   the
Mahalanobis   distance   of   each   of   the     ASMAD   samples.N

4. Computed   Mahalanobis   distance   for   1,000,000   samples   simulated   from   the   fitted
Dirichlet-Multinomial   and   used   these   1,000,000   Mahalanobis   distances   as   an   empirical
distribution   to   assess   the    significance   of   the     real   Mahalanobis   distances.N

We   then   converted   from   ASMAD   sOutlier   p-values   at   the   LeafCutter   cluster   level   to   sOutlier  
p-values   at   the   gene   level   using   the   approach   described   in   “SPOT:   Gene   level   correction”.   We
excluded   individuals   (global   outliers)   where   the   proportion   of   tested   genes   that   were   outliers   (at
a   threshold   of   p-value   <   .0027)   exceeded   1.5   times   the   interquartile   range   of   the   distribution   of
proportion   outlier   genes   across   all   individuals.

Finally,   we   called   eOutliers   in   the   ASMAD   cohort.   As   there   are   relatively   few   ASMAD   RNA-seq  
samples   (n=97),   we   concatenated   ASMAD   samples   and   GTEx   Cells   EBV-transformed  
lymphocyte   samples   and   called   eOutliers   across   the   concatenated   samples.   More   specifically,  
we   first   computed   the   TPM   of   each   sample-gene   pair   independently   for   the   ASMAD   samples  
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and   the   GTEx   Cells   EBV-transformed   lymphocyte   samples   (using   transcript   lengths   specific   to  
each   study).   Next   we   concatenated   the   two   TPM   matrices   into   one   large   TPM   matrix   of  
dimension   N X G  where   N is   the   sum   of   the   number   of   samples   in   ASMAD   and   the   number   of  
samples   in   GTEx   Cells   EBV-transformed   lymphocyte   tissue,   and   G  is   the   number   of   genes  
used   in   the   GTEx   Cells   EBV-transformed   lymphocyte   eOutlier   analysis.   We   then   filtered   to  
genes   where   at   least   10%   of   the   total   samples   ( N )   have   greater   than   or   equal   to   6   raw   counts  
and   have   greater   than   .1   TPM.   We   next   log2-transformed   the   expression   values   (log 2 (TPM + 2)).  
We   then   scaled   the   expression   of   each   gene   to   have   mean   0   and   standard   deviation   of   1,  
regressed   out   the   top   30   principal   components,   and   finally   standardized   each   gene,   again,   to  
have   mean   0   and   standard   deviation   1.   We   excluded   individuals   (global   outliers)   where   the  
proportion   of   tested   genes   that   were   outliers   (at   a   threshold   of   |Z-score|   >   3)   exceeded   1.5   times  
the   interquartile   range   of   the   distribution   of   proportion   outlier   genes   across   all   individuals.  

Massively   Parallel   Reporter   Assay   (MPRA)   variant   selection   and   sequence   design  
We   selected   1144   individual-gene   pairs   which   were   called   as   multi-tissue   eOutliers   in   GTEx   v6p  
( 15 ) .   We   removed   any   outliers   with   any   of   the   following:   a   rare   SV   within   200kb   of   the   TSS,   a  
rare   indel   within   10kb   of   the   TSS,   any   rare   coding   SNV.   Then,   we   required   that   all   outliers   have  
at   least   one   rare,   non-coding   SNV   within   10kb   of   the   TSS.   This   procedure   yields   194  
multi-tissue   outlier   individual-gene   pairs.   From   this   set,   we   obtained   all   rare,   non-coding   SNVs  
at   each   outlier   gene   in   its   respective   individual   yielding   a   set   of   284   variants   (with   a   median   of   1  
and   mean   of   1.46   per   individual-gene   pair).  

To   obtain   a   set   of   control   variants,   for   the   same   194   genes   derived   from   the   individual-gene  
pairs   noted   above   we   found   all   individuals-gene   pairs   with   |median   Z|   <   0.5.   This   yields   14303  
individual-gene   pairs   across   the   194   genes.   Then,   we   apply   the   same   filters   as   in   the   outlier  
variant   set,   yielding   3744   control   individual-gene   pairs   across   193   genes.   Finally,   we   obtain   the  
set   of   all   rare   variants   found   in   those   control   individual-gene   pairs   and,   for   each   outlier   variant,  
obtain   only   the   closest   control   variant.   These   steps   yield   271   outlier   and   248   control   variants.  

We   designed   a   set   of   synthetic   DNA   fragments   by   retrieving   the   genomic   sequence  
corresponding   to   a   150bp   window   centered   at   each   variant   of   interest   (and   additional   flanking  
constant   sequences   for   cloning).   For   each   variant   a   reference   and   alternative   sequence   was  
designed,   corresponding   to   each   allele,   and   in   cases   where   multiple   variants   were   in   the   same  
window,   each   possible   combination   was   included   (2^n   sequences   where   n   is   the   number   of  
variants).   This   procedure   yielded   a   set   of   1108   unique   genomic   sequences   which   were   obtained  
as   an   oligonucleotide   library   pool   from   Agilent   Technologies.  

MPRA   plasmid   library   construction  
We   prepared   a   randomly   barcoded   library   broadly   as   described   in    ( 55 ) .   To   summarize,   the  
oligonucleotide   library   was   randomly   barcoded   using   emulsion   PCR   as   described   in    ( 55 ,  86 ) ,  
with   96   reactions   in   100   uL   volume   each   which   were   pooled   prior   to   purification.   The   pMPRA1  
plasmid   was   obtained   from   Addgene   (Plasmid   #49349)   and   digested   with   SfiI   to   obtain   the  
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plasmid   backbone.   The   purified   plasmid   backbone   and   randomly   barcoded   library   were   ligated  
using   Gibson   assembly    ( 87 ) ,   electroporated   into   10-beta    E   coli    in   8   parallel   reactions,   
recovered  overnight,   and   pooled.   The   expanded   plasmid   library   was   isolated   by   Qiagen   
Midiprep   and  prepared   for   sequencing   to   determine   oligo-barcode   mappings.  

To   introduce   a   minimal   reporter-GFP-partial   3’UTR   construct,   we   digested   the   barcoded   oligo  
plasmid   library   with   AsiSI,   cutting   between   the   oligo   sequence   and   barcode.   We   generated   a  
minp-GFP   amplicon   by   PCR   from   the   pGL4.26-SS-136   vector   (Addgene   Plasmid   #68744)   and  
inserted   it   into   the   linearized   plasmid   library   by   Gibson   assembly.   Following   SPRI   purification,  
the   library   was   re-digested   with   AsiSI   and   Exonuclease   V   (to   remove   plasmids   lacking   a  
reporter)   and   electroporated   into   10-beta   cells   in   eight   parallel   reactions.   Cultures   were  
recovered   for   12   hours,   pooled,   and   purified   by   Qiagen   Gigaprep.   The   final   purified   reporter  
library   was   used   for   transfection   and   direct   amplification   to   assess   plasmid-level   oligo  
frequencies.  

MPRA   cell   culture   and   transfection  
GM12878   cells   were   cultured   in   RPMI   supplemented   with   15%   FBS   and   1%  
penicillin/streptomycin   maintaining   a   density   of   0.2-1.0x10^6   cells/mL   at   37C   and   5%   CO2.   For  
each   biological   replicate,   5x10^7   cells   were   collected   by   centrifugation,   washed   with   PBS,   and  
resuspended   in   5   mL   RPMI   containing   60   ug   of   plasmid   library.   Cell   suspensions   were   serially  
electroporated   in   100   uL   volumes   using   a   Lonza   Nucleofector   with   program   T-25   in   2mm  
cuvettes.   Immediately   after   the   pulse,   cells   were   washed   into   50   mL   warm   RPMI   with   15%   FBS  
(without   antibiotics)   and   recovered   for   24   hours   at   37C.   After   visually   verifying   heterogenous  
GFP   expression,   cells   were   collected,   washed,   and   frozen   at   -80C.  

MPRA   reporter   mRNA   isolation   and   normalization  
Total   RNA   was   isolated   using   4   mL   Trizol   per   replicate   following   the   standard   protocol.   DNase  
digestion   was   performed   on   all   recovered   RNA   to   prevent   DNA   contamination   in   the   following  
reaction:   5   uL   Turbo   DNase   +   75   uL   10X   Buffer   for   60   minutes   at   37C,   followed   by   quenching  
with   75   uL   EDTA   and   7.5   uL   10%   SDS   and   then   the   DNase-digested   RNA   was   SPRI   purified.  
The   total   eluent   was   diluted   to   1   mL   in   water   and   used   as   input   for   GFP   mRNA   isolation   via  
solution   hybridization   to   biotinylated   antisense   oligonucleotides   with   the   following   components  
added:   1   mL   20X   SSC,   2   mL   formamide,   and   2   uM   Biotin-anti-GFP   probe.   GFP   mRNA   was  
isolated   on   magnetic   streptavidin   beads   following   the   manufacturer's   protocol,   washed,   and  
subjected   to   a   second   DNase   digestion   under   the   same   conditions   as   the   first.   Following  
another   SPRI   purification,   mRNA   was   reverse   transcribed   using   the   SuperScript   III   enzyme   and  
a   gene-specific   primer   according   to   the   manufacturer’s   instructions,   SPRI   purified,   and  
quantified   using   a   Qubit   fluorometer.   Replicates   of   the   input   plasmid   library   were   diluted   to  
approximately   match   the   concentrations   of   the   GFP   cDNA   samples,   and   all   plasmid   and   cDNA  
samples   were   collectively   quantified   and   normalized   by   qPCR   in   the   following   reaction:   5   uL   Q5  
NEBNext   MasterMix,   1   uL   Sybr   Green   (1:1000),   0.5   uM   forward   and   reverse   primers,   and   1uL  
cDNA   or   plasmid-DNA   sample.   Samples   were   amplified   until   saturation   using   the   following  
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conditions:   95C   for   20   seconds   followed   by   40   cycles   of   95C   for   20s   -   65C   for   20s   -    72C   for  
30s.   Samples   were   normalized   by   dilution   to   the   least   concentrated   measurement.  

MPRA   library   preparation   and   sequencing  
To   prepare   libraries   to   map   oligo-barcode   pairings   by   2x150   sequencing:   we   designed   an  
amplicon   corresponding   to   the   223bp   sequence   covering   the   150bp   genomic   sequence,   the  
intervening   constant   sequence,   and   the   20bp   random   barcode.   This   amplicon   was   generated   by  
PCR   under   the   following   conditions:   95C   for   20   s,   (95C   for   20s,   65C   for   30s,   72C   for   30c)   for   6  
cycles,   and   72C   for   2   min.   After   SPRI   purification,   Illumina   adapters   were   attached   by   PCR,   the  
product   purified   by   SPRI,   and   assessed   by   Nanodrop,   Qubit,   and   Bioanalyzer.   The   final   library  
was   sequenced   on   an   Illumina   NextSeq   instrument   using   a   2x150   high-output   kit.  

To   prepare   libraries   to   quantify   plasmid   (DNA)   and   cDNA   (RNA)   barcodes   and   oligos   by   1x30  
sequencing:   we   performed   PCR   targeting   the   GFP   3’   UTR   including   the   random   barcode   under  
the   same   conditions   as   qPCR   quantification   increasing   reaction   volume   to   50   uL   and   decreasing  
cycles   to   12.   After   SPRI   purification,   each   sample   was   input   into   another   PCR   reaction   to   attach  
Illumina   adapters   and   multiplexing   indices   and   purified   again.   These   final   libraries   were  
assessed   by   Nanodrop,   Qubit,   and   Bioanalyzer   and   pooled   according   to   their   Biolanalyzer  
molarity   estimates.   The   pooled   libraries   were   sequenced   on   an   Illumina   NextSeq   instrument  
using   30   cycles   of   a   1x75   high-output   kit.  

Quantifying   reporter   activity   across   sequences   in   MPRA   results  
To   assemble   oligo-barcode   pairings,   we   merged   all   paired-end   reads   using   FLASH2    ( 56 ) ,  
requiring   a   minimum   10bp   overlap   to   retain   each   pair.   Then,   extracted   the   regions   of   each  
fragment   corresponding   to   the   genomic   sequence,   the   flanking   constant   sequences,   and   the  
random   barcode.   Sequences   corresponding   to   genomic   fragments   were   mapped   using   STAR  
( 57 )    against   a   reference   assembled   using   the   designed   oligo   library   sequences.   We   required  
that   each   sequence   map   uniquely   and   perfectly   to   retain   the   pair,   and   thus   associated   the   20bp  
barcode   with   the   designed   sequence.   We   filtered   out   any   barcode-oligo   pairings   that   were  
mutually   incompatible   (i.e.   the   same   barcode   point   to   two   oligos),   contained   errors,   or   otherwise  
did   not   match   the   expected   fragment   model.  

To   count   reads   per   unique   barcode   sequence,   we   took   raw   single-end   reads,   extracted   the   20bp  
region   corresponding   to   the   random   barcode,   and   counted   the   number   of   reads   per   unique  
sequence   using   fastx_collapser.   We   required   that   all   barcodes   perfectly   match   a   barcode  
detected   in   the   barcode-oligo   pairing   data.   Finally,   to   generate   oligo-level   read   counts,   we  
computed   the   sum   of   all   barcodes   for   each   oligo   (along   with   other   summaries   of   the   counts)  
within   each   sample.  

Modeling   and   inference   of   regulatory   signal   in   MPRA   results  
We   used   negative   binomial   regression   with   an   interaction   term,   implemented   via   DESeq2    ( 58 ) ,  
to   identify   significant   allele-independent   and   allele-dependent   regulatory   effects.   Specifically,   we  
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obtain   twelve   measurements   for   each   variant   position   (three   each   of   DNA-ref,   DNA-alt,   RNA-ref,  
and   RNA-alt)   and   model   the   read   counts   as:  

[count   ~   1   +   material   +   allele   +   material:allele]  

We   apply   the   DESeq2   model   across   the   oligo-level   counts   across   three   plasmid   and   three  
cDNA   replicates,   and   compute   Wald   tests   on   each   coefficient.   A   significant   material   term  
indicates   an   allele-independent   regulatory   effect,   a   significant   allele   term   indicates   a   significant  
(but   irrelevant)   cloning   artifact,   and   a   significant   interaction   term   indicates   an   allele-dependent  
effect.   Thus,   we   are   mostly   interested   in   tests   on   the   third   term,   but   also   the   first.   We   took   as   our  
set   of   “expression   hits”   and   “allelic   hits”   all   variants   which   had   an   adjusted   p-value   <=   0.05   in  
either   the   first   or   third   terms,   respectively.  

Allele   Specific   CRISPR   Assay   for   functional   validation  
To   perform   functional   validation,   we   selected   14   rare   stop-gained   variants   which   were   good  
candidates   for   the   CRISPR   assay   via   (1)   filtering   to   rare   stop-gained   variants   with   expression  
and   ASE   watershed   scores   >   0.9,   (2)   filtering   to   multi-tissue   outlier   status   in   both,   and   (3)  
keeping   4   remaining   candidates   which   lie   in   complex   trait   genes,   and   the   next   10   with   the  
highest   individual   outlier   signal   and   Watershed   score.   Variants   were   tested   using   the   polyclonal  
editing   assay   described   in    ( 41 ) .   Briefly,   inducible-Cas9   293T   cells   were   transfected   with   a   gRNA  
and   single   stranded   homologous   template   specific   to   each   variant.   Nine   days   after   transfection,  
cells   were   harvested   for   mRNA   and   gDNA   which   were   amplified   with   sequencing   adapter  
primers   specific   to   the   variant   locus.   Samples   were   run   in   parallel   on   the   MiSeq   and   the  
proportion   of   alternative   allele   in   both   the   mRNA   and   gDNA   were   calculated   using   EdiTyper  
(88) .   Briefly,   EdiTyper   is   a   command   line   utility   designed   to   process   targeted   sequencing   data  
from   CRISPR   genome   editing   experiments.   It   applies   quality   filtering,   performs   sequence  
alignment   using   RecNW    ( 89 ) ,   a   modified   version   of   the   Needleman-Wunsch   algorithm,   and  
classifies   reads   as   containing   the   alternative   or   reference   allele,   discarding   reads   with   indels  
indicative   of   non-homologous   end   joining.   EdiTyper   code   is   available   at  
https://github.com/LappalainenLab/edityper .  

Effect   size   was   calculated   as   log2((Alt/Ref   in   cDNA)   /   (Alt/Ref   in   gDNA)),   or   allelic   fold   change  
(aFC)    ( 54 ) .   Significance   of   the   effect   size   was   calculated   with   Bonferroni-corrected   p   values  
based   on   z-scores   calculated   from   the   distribution   of   a   set   of   control   variants   which   are   not  
associated   with   expression   of   their   respective   genes   in   GTEx.   Specifically,   the   non-eQTL  
negative   controls   were   common   synonymous   variants   in   GTEx   v8   with   an   eQTL   association   p   >  
0.1   with   the   gene   in   which   they   reside.   Eight   variants   in   total   passed   quality   control   steps.   These  
results   were   combined   with   six   previously   tested   stop-gained   and   six   non-eQTL   control   variants  
for   which   Watershed   posteriors   were   available.   

UKBB   and   MVP   GWAS   integration  
We   assessed   GWAS   summary   statistics   from   the   UK   Biobank   (UKBB)   phase   2,   as   made  
available   by   the   Neale   lab   ( http://www.nealelab.is/uk-biobank/ ) .   We   subsetted   the   variants,  
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either   genotyped   or   imputed,   in   UKBB   phase   2   to   those   SNVs   that   also   appeared   in   any   GTEx  
individuals   and   had   a   frequency   of   <   1%   in   GTEx,   which   resulted   in   45,415   SNVs,   filtered   to  
those   not   flagged   as   low   confidence   due   to   very   low   allele   counts.   Because   we   are   targeting  
rare   variants   occurring   at    frequencies   too   low   to   obtain   a   trait   association   with   genome-wide  
significance,   we   focused   on   the   effect   size   estimates   and   did   not   filter   by   p-value.   We   defined  
outlier   variants   in   this   context   as   any   rare   variant   appearing   near   an   eOutlier,   sOutlier,   or  
aseOutlier   in   GTEx   and   also   appearing   in   UKBB.   We   defined   non-outlier   variants   as   rare   GTEx  
variants   appearing   in   UKBB,   but   not   falling   near   an   outlier   of   any   type,   though   within   10kb   of   a  
gene   for   which   any   individual   was   an   outlier.   We   subsetted   to   34   traits   tested   for   colocalization  
between   the   UKBB   GWAS   and   GTEx   eQTL/sQTL   studies   as   described   in    ( 45 ) .   When   filtering   to  
colocalized   regions,   we   included   as   a   colocalization   event   any   gene   that   had   a   
colocalization  posterior   probability   >   0.5,   for   both   eQTLs   and   sQTLs.   We   combine   both   
enloc    ( 90 )    and   coloc  ( 91 )    results   for   eQTL   colocalization   and   enloc   results   for   sQTL   
colocalization.   This   resulted   in  5,386   gene-trait   pairs   with   significant   co-localizations   
across   34   UKBB   traits   (Table   S9).   We  transformed   the   |effect   sizes|   to   percentiles,   
based   on   all   rare   GTEx   SNVs   that   also   appear   in  any   UKBB   samples   tested   for   the   
included   traits.   When   showing   actual   beta   values   for   binary  traits,   we   scaled   according   
to   the   case-control   ratio   μ  for   the   given   trait,   dividing   the   effect   size estimates   by   μ (1 
μ)  .

We   filtered   the   set   of   GTEx   rare   variants   in   UKBB   to   those   in   colocalized   regions,   
defined   as  being   in   a   colocalized   gene   or   within   10kb,   and   by   the   maximum   
Watershed   posterior   for   that  variant-gene   combination   across   all   data   types   (ASE,   
splicing,   expression)   and   all   tested  individuals.   We   compared   this   to   a   genomic   
annotation   based   metric,   CADD.   We   obtain   an  effect   size   β  for   both   Watershed   
posterior   and   CADD   score   in   predicting   variant   effect   size percentiles   in   co-localized   
regions   using   the   following   model:   P ~ βX   +  ε  ,   where   P  is   a   vector of   variant   effect   
size   percentiles   and   X  is   a   vector   of   either   Watershed   posteriors   or   CADD  scores   for   
the   same   variant   set.  

We   calculated   the   proportion   of   resulting   variants   that   fall   in   the   top   25%   of   effect   sizes   within  
colocalized   regions   for   the   associated   trait   across   a   range   of   posterior   thresholds.   We   compared  
that   proportion   to   the   set   we   would   obtain   if   filtering   by   a   CADD   score   chosen   to   return   an   equal  
number   of   variants,   prior   to   intersecting   with   colocalized   regions.   Additionally,   we   took   1000  
random   samples   from   the   set   of   rare   variants   of   an   equal   number   to   the   actual   number   obtained  
by   filtering   at   each   threshold   and   assessed   the   proportion   of   random   variants   that   fall   in   the   top  
25%   of   effect   sizes   for   each   colocalized   trait.   For   replication   in   the   Million   Veterans   Program  
(MVP)    ( 13 )    and   Jackson   Heart   Study   (JHS)    ( 14 ) ,   we   obtained   summary   statistics   for   a   250kb  
region   on   either   side   of   the   variant   of   interest   for   four   lipid   associated   traits.   We   calculated   the  |
effect   size|   percentile   for   all   rare   variants   (gnomAD   AF   <   0.1%)   in   that   region   and   plot   the  
absolute   effect   sizes   vs   the   gnomAD   allele   frequency.   
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Supplementary   Figures  

Figure   S1.   Outlier   distribution   and   effect   of   expression   data   correction.   (A)    Number   of  
outliers   per   individual   across   each   population   defined   by   self-reported   ethnicity,   at   a   threshold   of  
median   p-value   <   0.0027.    (B)    Number   of   eOutliers   split   by   direction   of   the   expression   effect.    (C)  
Effect   of   different   expression   data   correction   procedures   on   relative   risk   of   an   outlier   having   a  
nearby   rare   variant.   From   left,   rare   (MAF   <   1%)   variant   enrichments   for   eOutliers   identified   from  
uncorrected   data,   data   corrected   for   first   25%   of   PEER   factors   (based   on   sample   size),   first   50%  
of   PEER   factors,   full   PEER   factors   and   known   covariates,   all   PEER   factors   +   strongest  
cis-eQTL   per   gene,   and   all   PEER   factors   learned   with   global   outliers   removed   plus   strongest  
cis-eQTL   per   gene.    (D)    Rare   SNV   and   indel   enrichments,   defined   as   relative   risk,   for   novel   (left),  
rare   (gnomAD   AF   <   1%),   and   low   frequency   (gnomAD   AF   >   1%   and   <   5%)   within   10kb   of   outlier  
genes   across   a   range   of   outlier   thresholds   (x-axis).  
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Figure   S2.   Quality   control   for   ASE   processing.   (A)    Average   number   of   tests   per   individual  
tissue   sample   ±   range.   The   total   number   of   V G    scores   available   per   tissue   is   shown   above   in  
green,   with   the   total   samples   available   per   tissue.    (B)    The   total   number   of   times   a   gene   was  
tested   by   considering   its   median   ANEVA-DOT   p-value   vs   the   number   of   times   it   was   called   as  
an   outlier.   We   call   global   outliers   by   drawing   a   95%   binomial   confidence   interval   around   the  
outlier   frequency   for   each   gene,   and   flagging   all   genes   where   the   interval   contains   1%   or  
greater.   Global   outlier   genes   were   removed   from   downstream   analysis.    (C)    Distribution   of  
median   number   of   scores   available   across   all   three   outlier   methods,   limiting   to   coding   genes  
above,   and   coding   genes   with   a   median   TPM   >   10   across   all   individuals   and   tissues   below.  
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Figure   S3.     ANEVA   estimates   of   genetic   variance   in   gene   expression   (V G ).     (A)    Comparison  
of   V G    estimates   for   an   example   tissue   (Adipose   subcutaneous)   derived   from   GTEx   v8   dataset  
compared   to   that   of    v7.   The   red   line   represents   x=y.    (B)    Distribution   of   the   spearman   correlation  
coefficient   between   V G    estimates   from   v7   and   v8   across   all   GTEx   tissues.   The   lower   and   the  
upper   whiskers   indicate   1.5   interquartile   range   from   the   first   and   the   third   quartile,   respectively.  
(C)   The   number   of   genes   with   V G    estimates   available   across   GTEx   tissues   in   each   version.
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Figure   S4.   sOutlier   split   read   count   processing.    The   number   of   unique    (A)    junctions,    (B)  
LeafCutter   clusters,   and    (C)    genes     that   are   found   in   each   tissue   (rows)   after   split   read   count  
quantification   and   processing.  
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Figure   S5.   SPOT   gene   level   correction.   (A)    Scatterplot   showing   the   (sOutlierog  l 10

p-values+   1x10 -6 )   in   Muscle-Skeletal   tissue   at   the   gene   level   before   the   gene-level   correction
(x-axis)   and   after   the   gene   level   correction   (y-axis)   for   the   number   of   LeafCutter   clusters
mapped   to   each   gene   (color).    (B)    The   distribution   of   sOutlier   p-values   in   Muscle-Skeletal   tissue
at   the   gene   level   before   the   gene   level   correction   (teal)   and   after   the   gene   level   correction
(salmon)   for   the   number   of   LeafCutter   clusters   mapped   to   each   gene.
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Figure   S6.   Robustness   of   SPOT   to   hyperparameter   choice.    Scatterplot   showing   the   ogl 10

(sOutlier   p-values   +    1x10 -6 )   of   sample-LeafCutter   cluster   pairs   in   Muscle-Skeletal   tissue   from  
default   implementation   of   SPOT   (x-axis)   compared   to   implementations   of   SPOT   using   different  
hyperparameter   settings   (y-axis;    A,   B,   C )   colored   by   the   maximum   fraction   of   reads   mapping   to  
a   single   junction   (summed   across   samples)   in   the   corresponding   LeafCutter   cluster.   Any   cluster  
with   a   maximum   fraction   of   reads   mapping   to   a   single   junction   that   is   less   than   or   equal   to   80%  
is   colored   identically   to   better   highlight   differences   above   80%.    ( A,   B )   Comparison   of   sOutlier  
p-values   from   the   default   implementation   of   SPOT   (x-axis)   and   an   implementation   of   SPOT
where   random   samples   used   to   generate   the   empirical   distribution   have   10,000   ( A)    and   100,000
( B )   reads   mapped   to   the   cluster.   (y-axis).   ( C )   Comparison   of   sOutlier   p-values   from   the   default
implementation   of   SPOT   (x-axis)   and   an   implementation   of   SPOT   where   there   is   no   Gamma
prior   placed   on     (y-axis).αj
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Figure   S7.   Association   of   rare   variant   status   and   continuous   outlier   measure.   (A)    Across  
each   outlier   type,   the   beta   coefficient   estimate   and   95%   confidence   interval   (y-axis)   from   a  
linear   model   of   binary   rare   variant   status   as   the   outcome   and   continuous   outlier   measure,  
defined   as   the   -log10(median   p-value),   as   the   predictor.   Outcome   is   1   if   the   gene   has   a   nearby  
SNV   or   indel   that   is   not   found   in   gnomAD,   or   for   SVs   if   it   is   a   singleton   variant   within   GTEx.    (B)  
Beta   coefficient   estimates   from   similar   models   as   in    (A)    but   considering   rare   variant   status  
across   a   range   of   categories   (x-axis).  
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Figure   S8.   Number   of   tissues   supporting   outlier   calls.   (A)    For   all   multi-tissue   outlier   calls,  
the   proportion   of   tested   tissues   with   outlier   signal   at   the   same   threshold   (p-value   <   0.0027   or   |Z|  
>  3).    (B)    For   all   multi-tissue   outlier   calls,   the   number   of   tested   tissues   with   outlier   signal   at   the
same   threshold   (p-value   <   0.0027   or   |Z|   >   3),   restricted   to   individuals   with   data   from   at   least   5
tissues.    (C)    The   impact   of   the   number   of   tissues   supporting   the   outlier   call   on   the   relative   risk   of
outliers   having   a   rare   variant   (MAF   <   1%)   within   10kb.   For   the   >1   and   >2   bins,   this   refers   to   >1
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or   >   2   tissues,   while   the   remaining   bins   are   percentages   of   the   total   number   tested.   For   SVs,  
sOutlier   enrichments   stop   at   the   50%   bin   due   to   small   numbers   at   later   bins.  
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Figure   S9.   Comparing   outliers   across   methods.   (A)    Of   the   set   of   individuals   and   genes  
tested   across   all   data   types,   the   fraction   discovered   via   one   method   that   also   meet   the   outlier  
thresholds   (p   <   0.0027)   in   another   method.   Across   all   data   types,   624   individuals   and   8,722  
genes,   including   2,281,262   unique   combinations,   were   tested   by   all   methods.    (B)    The  
proportion   of   outliers   shared   across   all   methods   assigned   to   the   given   rare   variant   category  
nearby   the   outlier   gene.   Of   the   2,209   aseOutliers,   1,385   sOutliers,   and   624   eOutliers   discovered  
at   this   threshold   among   the   shared   set,   35   individual-gene   pairs   are   found   by   all   three   methods,  
encompassing   31   unique   genes.    (C)    Of   the   set   of   eOutliers   and   aseOutliers   within   this   set,   the  
distribution   of   |median   Z-scores|   for   outliers   in   both   types,   expression   alone,   ASE   alone,   or  
non-outliers   for   the   same   set   of   genes.   Blue   lines   represent   the   50th   percentile.    (D)    The  
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proportion   of   aseOutliers   with   a   nearby   rare   variant   of   a   given   type   split   by   the   corresponding  
median   Z-score   bin   for   the   same   individual-gene   pair.  
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Figure   S10.   Gene   ontology   term   enrichments   for   outlier   and   non-outlier   genes.    The   top  
ten   Gene   Ontology   (GO)   terms   enriched,   by   -log10(FDR-corrected   p-value)   on   the   x-axis,   in   the  
set   of   genes   with   no   outliers   in   any   tissue    (A)    and   those   associated   with   the   most   extreme  
outliers    (B).    Results   are   included   for   eOutliers   on   the   left,   aseOutliers   in   the   center   and   sOutliers  
on   the   right,   with   the   number   of   included   genes   at   the   top   of   each   plot.   Pink   bars   are   significant  
at   an   FDR-corrected   p-value   threshold   of   0.05,   while   the   gray   bars   are   not   significant.   For  
eOutliers   in    (B),    all   terms   had   an   FDR   corrected   p-value   of   1,   and   so   nominal   p-values   are  
presented   instead.  
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Figure   S11.   Comparison   of   variant   class   enrichments   across   methods.     (A)    For   each  
variant   category,   the   relative   risk   enrichment   for   each   outlier   type   over   the   maximum   enrichment  
for   that   category.    (B)    For   each   variant   category,   the   proportion   of   variant   occurrences   leading   to  
an   outlier   across   all   categories,   with   INV   removed   due   to   either   very   low   or   zero   instances.  
Those   marked   ns   indicate   that   in   1000   iterations   permuting   outlier   status,   a   proportion   greater  
than   or   equal   to   the   actual   proportion   was   found   greater   than   5%   of   the   time.   TSS   =  
transcription   start   site,   TE   =   transposable   element,   INV   =   inversion,   BND   =   breakend,   DEL   =  
deletion,   CNV   =   copy   number   variation,   DUP   =   duplication.  
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Figure   S12.   Rare   variant   enrichments   at   distances   downstream   of   outlier   genes   and   in  
promoter   motifs.   (A)    Relative   risk   of   singleton   SNVs,   indels,   and   SVs   at   varying   distances  
downstream   of   outlier   genes   (bins   exclusive)   across   data   types.    (B)    Relative   risk   of   rare   (MAF   <  
1%)   variants   interrupting   promoter   motifs   nearby   over   eOutliers   (blue)   or   under   eOutliers   (green)  
relative   to   controls.   For   data   points   not   included   for   one   direction,   there   were   not   enough  
instances   of   rare   variants   overlapping   a   given   motif   near   outliers   to   estimate   risk.  
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Figure   S13.   Outliers   occurring   together   within   a   given   window.   (A)    At   varying   window   sizes,  
the   number   of   observed   vs   expected   outliers   occurring   together   within   that   window.   Expected  
numbers   were   generated   from   sampling   an   equal   number   of   outlier   genes   from   randomly  
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chosen   individuals.    (B)    The   enrichment,   calculated   as   log2   ratio   of   the   observed   number   of  
outliers   occurring   in   the   same   window   over   expected,   across   different   window   sizes.    (C)    In   A  
and   B,   we   filter   out   any   splicing   gene   pairs   that   share   a   cluster,   see   Supplemental   Methods.  
Here,   we   calculate   the   enrichments   for   sOutliers   including   those   gene   pairs.    (D)    For   eOutlier  
pairs,   the   relative   risk   of   one   or   both   genes   in   the   pairs   found   within   a   100kb   window   having   a  
nearby   rare   CNV,   DUP,   or   TSS   variant   as   compared   to   individuals   who   are   only   outliers   for   one  
of   the   genes   in   the   pair.    
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Figure   S14.   Rare   structural   variants   impacting   expression   per   individual.   (A)    Relative   risk  
of   rare   SVs   within   10kb   of   eOutliers   split   by   whether   the   SV   intersects   the   gene   body   (teal)   or   is  
non-coding   but   within   the   10kb   window   (pink).    (B)    The   number   of   rare   outlier-associated   SVs  
per   individual,   split   by   the   direction   of   the   eOutlier   on   the   x-axis.    (C)    For   a   subset   of   rare   SVs  
associated   with   a   change   in   the   expression   of   >   1   gene   within   the   same   individual,   the   median  
Z-score   of   one   gene   is   plotted   on   the   x-axis   vs   the   other   affected   gene   on   the   y-axis.   The   color  
indicates   the   type   of   SV   and   the   grey   lines   are   at   median   Z   =   [-3,3].   BND   =   breakend,   DEL   =  
deletion,   DUP   =   duplication   
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Figure   S15.   Example   rare   structural   variants   with   expression   effects   on   multiple   genes.  
(A)    A   rare   duplication   (dark   blue   rectangle)   with   observable   increased   expression   effects   on   four  
genes   (red   squares)   PAICS   (median   Z   =   3.83),   PPAT   (median   Z   =   3.11),   AASDH   (median   Z   =  
4.10),   and   SRP72   (median   Z   =   5.19).   The   effect   is   observed   across   14   tissues.   Other   genes   in  
the   region,   KIAA1211   and   HOPX,   show   more   moderate   effects,   with   median   Z   =   1.73   in   both.  
(B)    Three   rare   breakend   mutations   (dark   blue   rectangles)   have   observable   decreased  
expression   effects   on   two   genes   (red   squares),   ARFGAP2   (median   Z   =   -3.81)   and   C11orf49  
(median   Z   =   -6.04).   The   effect   is   observed   in   18   tissues.    (C)    A   rare   duplication   (dark   blue  
rectangle)   with   observable   increased   expression   effects   on   three   genes   (red   squares),  
L3MBTL2   (median   Z   =   5.26),   RANGAP1   (median   Z   =   4.71),   and   ZC3H7B   (median   Z    =   6.00).  
The   effect   occurs   in   19   tissues.    (D)    A   rare   deletion   (dark   blue   rectangle)   with   opposite  
expression   effects   on   two   genes   (red   squares),   SPTBN1   (median   Z   =   -4.67)   and   EML6   (median  
Z   =   8.12).   The   effect   is   observed   across   24   tissues,   with   EML6   expression   Z-scores   exceeding  
15   in   6   tissues.  
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Fig   S16.   Rare   deletion   leading   to   fusion   of   SPTBN1   and   EML6.   (A)    Distribution   of     Z-scores  
across   the   31   measured   tissues   for   the   individual   with   the   rare,   heterozygous   deletion   (shown   in  
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Fig   S15D)   for   EML6   (blue)   and   SPTBN1   (yellow).   Reads   supporting   splice   junctions   found   in  
nerve   tibial    (B)    and   lung    (C)    for   the   individual   with   the   rare   deletion   (red)   and   two   different  
random   non-outlier   control   individuals   (teal),   showing   the   fusion   transcript   is   only   found   in   the  
individual   with   the   deletion.   The   width   of   the   lines   correspond   to   the   number   of   reads   mapped   to  
each   junction.   
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Figure   S17.   Enrichment   of   rare   variants   nearby   splice   sites   in   sOutliers.   (A)    Relative   risk  
(y-axis)   of   rare   variants   within   various   window   sizes   around   splice   sites   (x-axis)   for   sOutlier  
LeafCutter   clusters   relative   to   non-outlier   clusters   at   several   median   LeafCutter   cluster   p-value  
thresholds   (color).    (B)    Junction   usage   of   a   splice   site   is   the   natural   log   of   the   fraction   of   reads   in  
a   LeafCutter   cluster   mapping   to   the   splice   site   of   interest   in   sOutlier   (median   LeafCutter   cluster  
p-value   <   1   x   10 -5 )   samples   relative   to   the   fraction   in   non-outliers   samples   aggregated   across  
tissues   by   taking   the   median.   Junction   usage   (y-axis)   of   the   closest   splice   sites   to   rare   variants  
that   lie   within   the   splicing   consensus   sequence   binned   by   the   type   of   variant   (x-axis).   
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Figure   S18.   sOutlier   variants   in   consensus   sequence   of   splice   sites   with   high   junction  
usage.    Independent   position   weight   matrices   showing   mutation   spectrums   of   sOutlier   (median  
LeafCutter   cluster   p-value   <   1   x   10 -5 )   rare   variants   at   positions   relative   to   splice   sites   with  
positive   junction   usage   (ie.   splice   sites   used   more   in   outlier   individuals   than   in   non-outliers).   
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Figure   S19.   sOutlier   variants   in   consensus   sequence   of   annotated   and   novel   splice   sites.  
Proportion   of   sOutlier   (median   LeafCutter   cluster   p-value   <   1   x   10 -5 )   and   non-outlier   variants,   at  
each   position   in   the   splicing   consensus   sequence,   that   create   the   consensus   sequence   (blue)   or  
destroy   the   consensus   sequence   (red)   where   variants   are   binned   by   whether   the   nearby   splice  
site   is   annotated   or   novel   (rows).   
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Figure   S20.   sOutlier   variant   type   enrichments   in   PPT.    Relative   risk   for   sOutliers   relative   to  
non-outliers   (median   LeafCutter   cluster   p-value   <   1   x   10 -5 )   of   having   a   rare   variant   that   is   located  
in   PPT   (5   to   35   base   pairs   upstream   from   an   acceptor   splice   site)   having   a   specific   mutation  
spectrum   (x-axis).   Relative   risk   calculation   done   separately   for   annotated    (A)    or   novel    (B)    splice  
sites.   
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Figure   S21.   Outlier   status   sharing   across   tissues   detail.   (A)    Percent   sharing   heatmaps  
where   for   all   outlier   individual-gene   pairs   (nominal   p   value   <   .0027)   in   a   discovery   tissue,   we  
measure   the   percentage   of   cases   where   the   same   individual-gene   pair   is   also   an   outlier   in   a   test  
tissue.   In   the   upper   row   of   heatmaps,   we   limit   the   analysis   to   only   the   genes   tested   in   both  
tissues,   to   answer   the   biological   question   of   how   consistent   the   outlier   status   is   across   tissues  
that   co-express   a   gene.   The   lower   row   of   heatmaps   considers   a   missing   datapoint   as   a  
non-shared   outlier   status,   and   addresses   the   utility   of   each   method   in   diagnosing   expression  
outlier   status   in   a   tissue   of   interest   using   a   different   tissue   as   a   proxy.    (B)    Median   percent  
sharing   across   all   tissue-tissue   pairs   ( ±    95%   bootstrap   confidence   interval),   with   and   without  
considering   missing   values   as   “non-shared”.   aseOutliers   are   affected   the   most   by   missing  
values.    (C)    Median   replication   percentage   of   aseOutlier   status   in   one   discovery   tissue   across   all  
test   tissues    (top),   and   median   replication   percentage   of   outlier   status   in   one   test   tissues   across  
all   discovery   tissues   (bottom).   The   black   bars   indicate   the   observed   range   of   values   across   all  
individuals.   Here,   outlier   status   is   declared   when   a   gene   has   a   Benjamini-Hochberg   corrected  
p-value   <   .05.   While   for   consistency   between   the   three   transcriptome   outlier   methods   we   use   a  
high   significance   threshold   on   the   nominal   p-values   in   all   other   analyses,   the   FDR   correction   is  
the   recommended   approach   when   using   ANEVA-DOT   p-values   in   most   applications.   We  
observe   a   considerably   higher   rate   of   outlier   status   sharing,   when   considering   genes   passing  
false   discovery   rate   correction.    (D)    The   GTEx   tissue   color   key.  
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Figure   S22.   Replication   of   outliers   discovered   in   clinically   accessible   tissues.    For   each   of  
three   clinically   accessible   tissues,   the   proportion   of   single   tissue   outliers   (|Z|   >   3,   SPOT   p-value  
<   0.0027   or   ANEVA-DOT   p-value   <   0.0027)   which   are   also   seen   in   each   of   the   other   46   tissues,  
restricting   each   time   to   genes   also   measured   in   the   replication   tissue.   For   the   bottom   right   plot,  
we   restrict   to   outliers   seen   in   more   than   1   of   the   three   clinically   accessible   tissues   and   assess  
the   replication   rate   in   all   other   tissues   (x-axis).  
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Figure   S23.   Relative   risk   of   rare   variants   nearby   single   tissue   outliers   with   FDR-corrected  
p-value   thresholds.   (A)    Relative   risk   point   estimate   for   nearby   rare   SNVs   for   outliers   across   all  
tissues   individually,   using   various   FDR-corrected   p-value   outlier   thresholds.    (B)    Relative   risk  
enrichments   for   likely   gene   disrupting   rare   variants   nearby   single-tissue   outliers   using   an  
FDR-corrected   p-value   threshold   of   0.05,   with   one   point   per   tissue.  
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Figure   S24.   Single   tissue   sOutlier   enrichments.   (A)    Relative   risk,   in   each   tissue  
independently,   of   rare   variants   being   located   in   a   6   base   pair   window   around   splice   sites   for  
sOutlier   LeafCuter   clusters   (per   tissue   LeafCutter   cluster   p-value   <   1   x   10 -5 )    relative   to  
non-outlier   clusters.    (B,   C)    Per   tissue   junction   usage   of   a   splice   site   is   the   natural   log   of   the  
fraction   of   reads   in   a   LeafCutter   cluster   mapping   to   the   splice   site   of   interest   in   sOutlier   (per  
tissue   LeafCutter   cluster   p-value   <   1   x   10 -5 )   samples   relative   to   the   fraction   in   non-outliers  
samples,   in   a   single   tissue.    (B)    Per   tissue   junction   usage   (y-axis)   of   the   closest   splice   sites   to  
rare   variants   that   lie   within   the   splicing   consensus   sequence   binned   by   the   type   of   variant  
(x-axis).    (C)    Per   tissue   junction   usage   (y-axis)   of   the   closest   splice   sites   to   rare   variants   that   lie  
within   a   PPT   ([A-5,   A-35])   binned   by   the   type   of   variant   (x-axis).  
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Figure   S25.   Single   tissue   eOutlier   enrichments   across   thresholds.    Relative   risk   estimates  
for   nearby   rare   SNVs    (A) ,   indels    (B)    and   SVs    (C)    in   single-tissue   outliers   vs   controls   using  
|Z-score|   thresholds   between   Z=1   and   Z=10,   with   each   point   representing   a   single   tissue.   
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Figure   S26.   Comparison   of   imputation   methods   and   correlation   outlier   enrichments.   (A)  
Reconstruction   error   across   genes   when   holding   out   10%   of   known   expression   values   for  
various   imputation   approaches.    (B)    Reconstruction   error   across   genes   for   different   values   of   k  
when   performing   k-nearest   neighbors   imputation   per   gene,   with   the   pink   box   highlighting   the  
value   with   the   lowest   error.    (C)    Relative   risk   of   either   a   rare   SNV   or   indel   or   rare   SV   nearby  
correlation   outliers   called   using   covariance   matrices   estimated   using   KNN-imputed   expression  
data   across   varying   thresholds,   as   compared   to   an   equal   number   of   outliers   called   by   estimating  
the   covariance   matrix   from   complete   entries,   without   imputation.   Many   more   outliers   are  
identified   as   compared   to   the   median   Z-score   approach,   particularly   at   the   less   stringent  
thresholds.   

 

59



 

 
 
Figure   S27.   Precision   recall   curves   for   Watershed   and   CADD.    Precision-recall   curves  
comparing   performance   of   Watershed   and   CADD   (colors)   using   held   out   pairs   of   individuals   for  
all   three   median   outlier   signals.  
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Figure   S28.   Watershed   precision   recall   curves   with   different   training   or   evaluation   data.  
Precision-recall   curves   comparing   performance   of   Watershed,   RIVER,   and   GAM   (colors)   using  
held   out   pairs   of   individuals   for   three   median   outlier   signals   (columns)   when   models   were  
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trained   with   different   training   data   sets   ( A,   B,   C ;   see   Supplementary   methods)   or   when   models  
were   evaluated   with   different   held   out   pairs   of   individuals   (evaluation   data;    D,   E,   F ;   see  
supplementary   methods) .    Training   data   for   Watershed,   RIVER,   and   GAM   filtered   to   only   include  
genes   where    (A)    all   3   outlier   signals   have   at   least   one   individual   that   is   an   outlier   (median  
p-value   <   0.05),    (B)    all   3   outlier   signals   have   at   least   one   individual   that   is   an   outlier   (median  
p-value   <   0.1),    (C)    at   least   1   outlier   signal   has   at   least   one   individual   that   is   an   outlier   (median  
p-value   <   0.01).   Held   out   pairs   of   individuals   (evaluation   data)   used   in    A,   B,   C    were   the   same  
held   out   pairs   of   individuals   used   to   generate   precision-recall   curves   in   Fig   4D.   Held   out   pairs   of  
individuals   used   to   evaluate   Watershed,   RIVER,   and   GAM   filtered   to   only   include   genes   where  
(D)    all   3   outlier   signals   have   at   least   one   individual   that   is   an   outlier   (median   p-value   <   0.05),    (E)  
all   3   outlier   signals   have   at   least   one   individual   that   is   an   outlier   (median   p-value   <   0.1),    (F)    at  
least   1   outlier   signal   has   at   least   one   individual   that   is   an   outlier   (median   p-value   <   0.01).  
Training   data   used   to   train   models   composing    D,   E,   F    was   the   same   training   data   used   to  
generate   models   underlying   precision-recall   curves   in   Fig   4D.  
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Figure   S29.   Watershed   confusion   matrices.    Confusion   matrices   comparing   performance   of  
RIVER   (top),   Watershed   with   parameters   optimized   via   exact   inference   (middle),   and   Watershed  
with   parameters   optimized   via   approximate   inference   (bottom)   in   jointly   predicting   outlier   status  
of   all   three   outlier   signals   (class)   using   held   out   pairs   of   individuals.   The   first   element   of   the  
binary   class   abbreviations   represents   median   splicing   outlier   status,   the   second   element   of   the  
class   abbreviations   represents   median   expression   outlier   status,   and   the   third   element   of   the  
class   abbreviations   represents   ASE   outlier   status.   An   observed   class   of   “1   0   1”   therefor  
corresponds   to   a   sample   that   is   an   outlier   for   splicing   and   ASE,   but   not   expression.   The  
predicted   class   of   a   sample   is   the   class   (out   of   the   8   classes)   that   has   the   largest   posterior  
probability.   Columns   in   each   heatmap   are   normalized   to   sum   to   one.  
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Figure   S30.   Prioritization   of   variants   that   lead   to   outliers   with   Watershed.    The   proportion   of  
rare   variants,   with   Watershed   posterior   probability   greater   than   0.5    (A) ,   0.7    (B) ,   0.9    (C)    (right),  
with   GAM   probability   greater   than   a   threshold   set   to   match   the   number   of   Watershed   variants   for  
each   outlier   signal   (center),   and   with   CADD   score   greater   than   a   threshold   set   to   match   the  
number   of   Watershed   variants   for   each   outlier   signal   (left),   that   lead   to   an   outlier   at   a   median  
p-value   threshold   of   0.0027   across   three   outlier   signals   (colors).   Watershed,   GAM,   and   CADD  
models   evaluated   on   held-out   pairs   of   individuals.  
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Figure   S31.   Comparison   of   exact   and   approximate   inference   in   Watershed.     (A)    Scatterplot  
comparing   Watershed   (applied   to   median   ASE,   splicing,   and   expression   outlier   signals)   genomic  
annotation   coefficients   ( )   when   model   was   optimized   using   exact   inference   (x-axis)   compared β  
to   when   model   was   optimized   using   approximate   inference   (y-axis)   colored   by   which   outlier  
signal   the   coefficient   predicted.    (B)    Precision-recall   curves   comparing   performance   of   RIVER,  
Watershed   optimized   via   exact   inference,   and   Watershed   optimized   via   approximate   inference  
(colors)   using   held   out   pairs   of   individuals   for   all   three   median   outlier   signals.  
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Figure   S32.   Tissue-Watershed   edge   weights.    Learned   tissue-Watershed   edge   weights   ( ) θ  
between   pairs   of   tissue-   outlier   signals   after   training   tissue-Watershed   on   expression   (top),   ASE  
(middle),   and   splicing   (bottom)   outliers   across   single   tissues.  
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Figure   S33.   Area   under   precision   recall   curves   in   single   tissues.    Area   under   precision  
recall   curves   (AUC   (PR);   y-axis)   in   a   single   tissue   (x-axis)   for   tissue-Watershed   (blue)   and  
tissue-RIVER   (red)   when   applied   outliers   across   single   tissues   for   all   3   outlier   types   (rows).  
Precision   recall   curves   in   each   tissue   generated   using   held   out   pairs   of   individuals   where   both  
individuals   share   the   same   rare   variant   and   have   observed   outlier   signal   for   the   gene   of   interest.  
We   limit   to   tissues   that   have   at   least   5   held   out   pairs   of   individuals   that   have   outlier   labels   in  
ASE,   splicing,   and   expression.  
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Figure   S34.   Difference   in   area   under   precision   recall   curves   in   single   tissues.    Difference   in  
the   area   under   the   precision   recall   curves   between   tissue-Watershed   and   tissue-RIVER   (y-axis)  
in   a   single   tissue   (x-axis),   shown   for   expression,   ASE,   and   splicing   outlier   signals   (rows).  
Precision   recall   curves   in   each   tissue   generated   using   held   out   pairs   of   individuals   where   both  
individuals   share   the   same   rare   variant   and   have   observed   outlier   signal   for   the   gene   of   interest.  
We   limit   to   tissues   that   have   at   least   5   held   out   pairs   of   individuals   that   have   outlier   labels   in  
ASE,   splicing,   and   expression.   Error   bars   (95%   confidence   interval)   on   these   statistics  
generated   using   non-parametric   bootstrapping   with   20,000   bootstrapped   samples   (see  
Supplementary   methods).  
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Figure   S35.   Area   under   precision   recall   curves   in   single   tissues.    Area   under   precision  
recall   curves   evaluated   on   outlier   calls   in   a   single   tissue   (x-axis)   for   each   of   the   three   outlier  
types   (rows)   based   on   a   tissue-Watershed   model   trained   across   single   tissues   (blue)   and   a  
RIVER   model   trained   on   the   median   outlier   signal   (green).   Precision   recall   curves   in   each   tissue  
generated   using   held   out   pairs   of   individuals   where   both   individuals   share   the   same   rare   variant  
and   have   observed   outlier   signal   for   the   gene   of   interest.   We   limit   to   tissues   that   have   at   least   5  
held   out   pairs   of   individuals   that   have   outlier   labels   in   ASE,   splicing,   and   expression.   
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Figure   S36.   Difference   in   area   under   precision   recall   curves   in   single   tissues.    Difference   in  
the   area   under   the   precision   recall   curves   between   tissue-Watershed   and   a   RIVER   model  
trained   on   the   median   outlier   signal   (y-axis)   in   a   single   tissue   (x-axis),   shown   for   expression,  
ASE,   and   splicing   outlier   signals   (rows).   Precision   recall   curves   in   each   tissue   generated   using  
held   out   pairs   of   individuals   where   both   individuals   share   the   same   rare   variant   and   have  
observed   outlier   signal   for   the   gene   of   interest.   We   limit   to   tissues   that   have   at   least   5   held   out  
pairs   of   individuals   that   have   outlier   labels   in   ASE,   splicing,   and   expression.   Error   bars   (95%  
confidence   interval)   on   these   statistics   generated   using   non-parametric   bootstrapping   with  
20,000   bootstrapped   samples   (see   Supplementary   methods).  
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Figure   S37.   Replication   in   ASMAD   cohort.    Expression,   ASE,   and   splicing   outlier  
-log 10 (p-value   +   1x10 -6 )   in   ASMAD   cohort   of   genes   nearby   rare   variants   binned   by:   GTEx  
Watershed   posterior   probability   in   the   corresponding   outlier   type   (blue),   and   GTEx   GAM  
posterior   probability   in   the   corresponding   outlier   type   greater   than   a   threshold   set   to   match   the  
number   Watershed   variants   in   the   corresponding   bin   (red).   This   analysis   is   limited   to   GTEx   rare  
variants   present   in   the   ASMAD   cohort.   The   number   of   variant-gene   pairs   in   each   bin   (n)   is  
shown   beneath   the   posterior   threshold   labels   on   the   x-axis.   If   multiple   GTEx   individuals   have  
the   same   rare   variant,   we   report   the   median   posterior   probability   across   individuals.   If   multiple  
ASMAD   individuals   have   the   same   rare   variant,   we   report   the   median   p-value   across  
individuals.   There   are   10   variant-gene   pairs   in   the   GTEx   Watershed   posterior   >   .8   bin   that   have  
ASMAD   splicing   outlier   p-value   exactly   equal   to   0   (or   equivalently   -log 10 (p-value   +   1x10 -6 )   equal  
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to   6).   This   p-value   point   mass   at   0   is   a   result   of   SPOT   calculating   p-values   from   an   empirical  
distribution.    

 

72



 

 
Figure   S38.   MPRA   results.    For   52   high   Watershed   expression   (score   >=   0.5)   rare   variants   and  
98   low   Watershed   expression   (score   <   0.5)   variants   nearby   62   eOutlier   genes,   the   log  
fold-change   in   expression   between   the   reference   and   edited   alleles.   p-value   for   the   difference  
between   Watershed   bins   is   calculated   from   a   one-sided   Wilcoxon   rank   sum   test.  
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Figure   S39.   Experimental   validation   by   editing   20   variants   into   inducible-Cas9   293T   cell  
lines.    14   stop-gained   variants   were   edited   into   cell   lines,   and   their   effect   was   evaluated   using  
allelic   fold   change   (aFC),   shown   on   the   y-axis,   with   the   variant’s   maximum   of   ASE   or   expression  
Watershed   score   along   the   x-axis.   When   compared   to   negative   control   variants,   13   of   the   14  
edited   variants   caused   significant   aFC   of   their   target   genes   (dark   red).   Non-eQTL   control  
variants   shown   here   are   the   6   with   Watershed   scores   available   out   of   the   30   edited   in   total,   and  
are   not   expected   to   induce   an   aFC   effect.  
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Figure   S40.   High   CADD   and   Watershed   variants   in   UKBB.   (A)    Distribution   of   the   maximum  
Watershed   posterior   per   variant   for   the   set   of   variants   in   co-localized   regions   tested   by  
Watershed   and   in   UKBB.    (B)    Distribution   of   CADD   scores   per   variant   for   the   same   set   of  
variants   in   co-localized   regions   tested   by   Watershed   and   in   UKBB.    (C)    The   maximum  
Watershed   posterior   vs.   CADD   score   for   the   tested   variants   in   UKBB.   The   blue   lines   represent  
cut-offs   of   watershed   posterior   >   0.5,   and   the   matching   CADD   threshold,   2.3,   to   obtain   the   same  
number   of   variants.    (D)    Of   the   high   watershed   and   CADD   variants   in   colocalized   regions,   the  
proportion   of   Watershed   variants   belonging   to   a   specific   category   over   the   proportion   of   CADD  
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variants   in   the   same   category.   The   y-axis   is   log-scaled,   so   bars   below   1   indicate   the   category   is  
more   common   in   high   CADD   variants,   and   vice   versa.    (E)    Filtering   by   the   CADD   score   that  
returns   the   same   number   of   variants   as   the   Watershed   posterior   on   the   x-axis,   and   returning   the  
proportion   that   fall   in   the   top   25%   of   effect   sizes   across   traits   in   co-localized   regions   (red),   and  
the   proportion   obtained   by   selecting   a   random   set   of   tested   variants   equal   in   size   (black).   
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Figure   S41.   Distribution   of   rs564796245   effect   sizes   in   MVP.    All   variants   within   a   250kb  
window   of   the   high   Watershed   variant,   in   pink,    rs564796245,    tested     for   four   related   traits   in   the  
MVP   cohort.   The   variant   has   a   minor   allele   count   of   11   in   MVP,   and   for   the   set   of   rare   variants  
tested   in   this   window   with   a   gnomAD   non-Finnish   European   AF   <   0.1%,   it   falls   in   the   99th  
percentile   for   HDL,   95th   for   LDL,   97th   for   Total   Cholesterol,   and   95th   for   Triglycerides.   
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Figure   S42.   Distribution   of   rs564796245   effect   sizes   in   JHS.    All   variants   within   a   250kb  

window   of   the   high   Watershed   variant,   in   pink,    rs564796245,    tested     for   four   related   traits   in   the  

JHS   cohort.   The   variant   has   a   minor   allele   count   of   4   in   JHS,   and   for   the   set   of   rare   variants  

tested   in   this   window   with   a   gnomAD   non-Finnish   European   AF   <   0.1%,   it   falls   in   the   69th  

percentile   for   HDL,   66th   for   LDL,   62nd   for   Total   Cholesterol,   and   72nd   for   Triglycerides.   
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Captions for Table S1 to S3

Table S1. Rare   SVs   impacting   multiple   genes.    Table   listing   all   rare   SVs   that  are   
associated   with   outlier   expression   in   more   than   one   gene   in   the   same   individual,   including  
the   gene,   median   Z-score,   aseOutlier   p-value,   sOutlier   p-value,   SV   type   and   GTEx   allele  
frequency.   This   table   can   be   found   online   as   a   separate   excel   file.  
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Table S 2.  Tissue   mapping   for   Roadmap   to   GTEx.    Table   mapping   tissues  collected   in   
GTEx   to   equivalent   tissues   assayed   in   the   Epigenomics   Roadmap   project.   This  includes   12   
unique   Roadmap   tissues   and   14   unique   GTEx   tissues,   with   some   different   GTEx  tissues   
mapping   to   the   same   Roadmap   tissue.   This   table   can   be   found   online   as   a   separate  excel   
file.  

Table S3. Watershed   genomic   annotations.    Table   summarizing   the   47  genomic   
annotations   used   in   Watershed.   This   includes   a   description   of   each   annotation,   the  source   
of   each   annotation,   the   imputation   value   used   for   each   annotation   (if   the   annotation   was  
undefined   for   a   particular   variant),   and   the   transformation   used   to   aggregate   across   all   
SNVs  mapped   to   (gene,   individual)   pair   for   each   annotation   (only   applicable   if   a   (gene,   
individual)   pair  had   more   than   one   SNV   mapped   to   the   gene).   This   table   can   be   found   
online   as   a   separate  excel   file.  



Watershed   AUC   (PR)   -   RIVER   (AUC)   (PR)   and   corresponding   95%   Confidence   intervals  

Training   and   evaluation  
data  

Expression  ASE  Splicing  

Standard   training   data  
Standard   evaluation   data  

(Fig   4D)  

0.050   
[-0.012,   0.11]  

0.049  
  [-0.045,   0.14]  

0.097  
  [0.034,   0.16]  

Training   data   filter   1  
Standard   evaluation   data  

(Fig   S28A)  

0.056  
  [-0.0011,   0.11]  

0.043   
[-0.046,   0.16]  

0.069  
  [-0.0045,   0.13]  

Training   data   filter   2  
Standard   evaluation   data  

(Fig   S28B)  

0.046   
[-5   x   10 -5 ,   0.087]  

-0.0096  
[-0.087,   0.065]  

0.024  
[0.0037,   0.042]  

Training   data   filter   3  
Standard   evaluation   data  

(Fig   S28C)  

0.045   
[0.00011,   0.085]  

0.0056   
[-0.067,   0.075]  

0.024   
[0.0062,   0.037]  

Evaluation   data   filter   1  
Standard   training   data  

(Fig   S28D)  

0.033   
[0.0031,   0.059]  

0.032   
[0.0015,   0.054]  

0.066   
[0.03,   0.099]  

Evaluation   data   filter   2  
Standard   training   data  

(Fig   S28E)  

0.05   
[0.028,   0.07]  

0.047   
[0.022,   0.068]  

0.066   
[0.039,   0.091]  

Evaluation   data   filter   3  
Standard   training   data  

(Fig   S28F)  

0.066   
[0.043,   0.088]  

0.033   
[0.016,   0.049]  

0.076   
[0.049,   0.1]  

Table S4. Change in  area   under   precision   recall   curves   between   Watershed  and   RIVER.    
Table   summarizing   the   difference   in   area   under   the   precision   recall   curves   (AUC  (PR))   between   
Watershed   and   RIVER   for   each   of   the   three   outlier   types.   95%   confidence  intervals   on   these   
statistics   generated   using   non-parametric   bootstrapping   with   20,000  bootstrapped   samples   (see   
Supplementary   methods).   Results   shown   across   7   different   filters  placed   of   Watershed   training   
training   or   evaluation   data   (rows   of   table;   See   Supplementary  methods)   corresponding   to   7   
precision   recall   curves   described   in   Fig   4D   and   Fig   S28.   Standard  data   corresponds   to   filtering   
to   genes   where   all   3   outlier   signals   have   at   least   one   individual   that  is   an   outlier   (median   p-
value   <   0.01).   Filter   1   corresponds   to   filtering   to   genes   where   all   3   outlier  signals   have   at   least   
one   individual   that   is   an   outlier   (median   p-value   <   0.05).   Filter   2  corresponds   to   filtering   to   
genes   where   all   3   outlier   signals   have   at   least   one   individual   that   is   an  
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outlier   (median   p-value   <   0.1).    Filter   3   corresponds   to   filtering   to   genes   where   at   least   1   outlier  
signals   has   at   least   one   individual   that   is   an   outlier   (median   p-value   <   0.01).  
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Gene:variant   pair  Median   expression  
p-value  

Median   Watershed   expression  
posterior  

P2RX7:  
chr12:g.121133096G>T  

0.0105  0.996  

ZNF350:  
chr19:g.51986869G>A  

0.0619  0.925  

CADM1:  
chr11:g.115500916G>A  

0.779  0.00249  

TSSC1:  
chr2:g.3377790T>C  

0.0323  0.757  

ARMC5:  
chr16:g.31460010C>T  

0.0186  0.973  

Table   S5.   Replication   of   SardiNIA   Project   “candidate   causal   rare   variants”.  The   SardiNIA   
Project    ( 46 )    identified   30   “candidate   causal   rare   variants”   (and   corresponding  regulated   genes).   
The   above   table   shows   5   of   the   30   “candidate   causal   rare   variants”   that   were  also   present   in   an   
individual   in   GTEx   v8,   along   with   corresponding   expression   outlier   p-value  and   Watershed   
expression   posterior   in   GTEx   v8   individuals.   If   multiple   GTEx   v8   individuals  harbor   the   rare   
variant,   we   computed   the   median   expression   outlier   p-value   and   median  Watershed   expression   
posterior   across   those   individuals.   SardiNIA   Project   rare   variant   calls  were   lifted   to   the   hg38   
genome   build   from   the   hg19   genome   build   using   the   Genome   Browser  ( 5 ) .   The   variants   from   
the   SardiNIA   Project   were   prioritized   with   expression   outliers,   followed   by  filtering   based   on   
genomic   annotations.   It   is   important   to   note   that   some   of   the   genomic  annotations   used   as   
input   to   Watershed   were   the   same   genomic   annotations   used   by   the  SardiNIA   Project   to   
generate   their   list   of   “candidate   causal   rare   variants”.  
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Captions for Tables S6 to S11

Table   S6.   MPRA   summary   statistics.     Table   of   summary   statistics   from   the  MPRA   of   150   
variants   shown   in   Fig   S38.   Each   row   includes   the   affected   gene,   variant  chromosome   and   
position,   the   reference   and   alternative   alleles,   the   base   mean   expression,  log2   fold-change   in   
expression,   nominal   and   adjusted   expression   p-values,   the   base   mean  allelic   expression,   log2   
fold-change   in   allelic   expression,   nominal   and   adjusted   allelic   expression  p-values,   eOutlier   and   
aseOutlier   p-values,   Watershed   scores   for   total   expression   and   ASE,   and  the   variant   Watershed   
score   bin.   This   table   can   be   found   online   as   a   separate   excel   file.  
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Table   S7.   CRISPR   summary   statistics.    Table   including   non-eQTL   control  variants   and   rare   
stop-gained   variants   with   resulting   summary   statistics   obtained   from   editing  each   variant   into    
inducible-Cas9   293T    cell   lines.   Columns   include   the   variant   type,  chromosome   and   
position,   allelic   fold-change,   p-value,   Bonferroni   corrected   p-values,   outlier  statistics,   and   
Watershed   scores   for   all   outlier   types.   This   table   can   be   found   online   as   a  separate   excel   
file.  

Table   S8.   Rare   variants   impacting   well-studied   genes.    Table   listing   outliers  and   associated   
rare   variants   for   11   well-studied   genes.   Each   row   is   an   individual-gene-variant  combination   
and   includes   the   gene,   outlier   value   and   type,   Watershed   scores   for   splicing,  expression   and   
ASE,   and   any   nearby   rare   SVs,   if   applicable.   This   table   can   be   found   online   as  a   separate   
excel   file.  

Table   S9.   UKBB   traits   and   colocalizations.    Table   of   the   34   UKBB   traits  included   in   our   
analysis   and   the   number   of   colocalized   genes   and   rare   GTEx   variants  associated   with   
each   trait   that   overlap   those   tested   in   the   UKBB   dataset.   This   table   can   be  found   online   as   
a   separate   excel   file.  

Table   S10.   High   Watershed   variants   with   high   effect   sizes.    Table   of   the   rare  GTEx   variants   
that   had   both   high   Watershed   scores   and   high   trait   effect   sizes   for   the   set   of  UKBB   traits   
tested.   This   includes   the   variant,   gene,   Watershed   score,   trait,   effect   size,   and   the  effect   size   
percentile.   This   table   can   be   found   online   as   a   separate   excel   file.  

 Table   S11.   Asthma   and   cholesterol   variant   information.    Table   including  outlier   values   and   
Watershed   scores   for   the   trait-associated   variants   shown   in   Fig   5D-E.   The  two   asthma   
associated   variants   are   found   in   six   individuals   and   the   high   cholesterol   associated  variant   is   
found   in   one   individual.   The   table   includes   sOutlier,   eOutlier   and   aseOutlier   p-values  and   
Watershed   scores   as   well   as   the   trait   effect   size   and   p-value   for   each   individual-variant  
combination.   This   table   can   be   found   online   as   a   separate   excel   file.  



Study  Trait  MAC  Beta  SE  p-value  

MVP  HDL  11  0.7098  0.4463  0.1118  

MVP  LDL  11  -0.3401   0.4460  0.4457  

MVP  Total   cholesterol  11  -0.4618   0.4460  0.3005  

MVP  Triglycerides  11  -0.3399   0.4464   0.4463  

JHS  HDL  4  0.5394  0.4687  0.2499  

JHS  LDL  4  -0.4973  0.4916  0.3118  

JHS  Total   cholesterol  4  -0.4335  0.4854  0.3719  

JHS  Triglycerides  4  -0.6451  0.4877  0.186  

Table   S12.   Cholesterol   associations   for   rs564796245   in   MVP   and   JHS.    Table  including   
outlier   values   and   Watershed   scores   for   the   trait-associated   variants   shown   in   Fig  5D-E.   The   
two   asthma   associated   variants   are   found   in   six   individuals   and   the   high   cholesterol  associated   
variant   is   found   in   one   individual.   The   table   includes   sOutlier,   eOutlier   and   aseOutlier  p-values   
and   Watershed   scores   as   well   as   the   trait   effect   size   and   p-value   for   each  
individual-variant   combination.   MAC   =   minor   allele   count,   SE   =   standard   error.  
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