
SUPPLEMENTARY INFORMATION 

 

Clinical Concept Normalization with a Hybrid NLP System 

Combining Multi-level Matching and Machine Learning Ranking 

Long Chen1,*, Wenbo Fu1, Yu Gu1, Zhiyong Sun1, Haodan Li1, Enyu Li1, Li Jiang1, Yuan Gao1, Yang 

Huang1,* 

1Med Data Quest, Inc., San Diego, California, USA 

 

*Correspondence to: 

Dr. Yang Huang  

Post address: Med Data Quest, Inc., 10590 West Ocean Air Drive, Suite 220, San Diego, CA 92130, USA 

E-mail address: yanghuang@meddataquest.com 

Telephone number: 858-247-5220 

 

Dr. Long Chen  

Post address: Med Data Quest, Inc., 10590 West Ocean Air Drive, Suite 220, San Diego, CA 92130, USA 

E-mail address: longchen@meddataquest.com 

Telephone number: 858-247-5220 

 

Keywords: clinical natural language processing, concept normalization, attention, CUI, UMLS  



S1. Definitions of the task-specific matching levels 

As mentioned in the main content, each matching level consists of 5 components: Term modification, 

Dictionary, Query, Matching & ranking, and Disambiguation. And for each component, there are several 

options or methods to choose from. For the n2c2 task, we started with a simple matching level defined as the  

match between the given mention and the CUI synonyms. And then error analysis was conducted to tailor the 

existing matching levels or to implement another matching level. This process (error analysis + matching level 

tailoring/implementation) was performed recursively until the remaining errors were mostly due to lacking 

semantic information. Then we developed machine learning ranking systems to deal with the remaining cases. 

Table S1 shows the definition of each matching level we used for the n2c2 task. 

Table S1  Definition of each matching level 

Level Term modification Dictionary Query Matching and ranking  Disambiguation 

1 Lower case Train + UMLS subset Contain all words   Exact match majority class from training data 

2 Lower case +  Stop words 
removal 

Train + UMLS subset Contain all words  Exact match majority class from training data 

3 Lower case + 
Lemmatization 

Train + UMLS subset Contain all words  Exact match majority class from training data 

4 Lower case + Medication 
normalization 

Train + UMLS subset Contain all words  Exact match majority class from training data 

5 Lower case + 
Abbreviation replacement 

Train + UMLS subset Contain all words  Exact match majority class from training data 

6 Lower case UMLS full-set Contain all words Exact match majority class from training data 

7 Lower case + Stop words 
removal 

UMLS full-set Contain all words  Exact match majority class from training data 

8 Lower case + 
Lemmatization 

UMLS full-set Contain all words  Exact match majority class from training data 

9 Lower case + Medication 
normalization 

UMLS full-set Contain all words  Exact match majority class from training data 

10 Lower case + 
Abbreviation replacement 

UMLS full-set Contain all words  Exact match majority class from training data 

11 Lower case + Stop words 
removal 

Train + UMLS subset Contain at least one word  ML ranking similarity scores of other 
synonyms instead of the best 
matching one  UMLS full-set Contain all words  

 

Here in table S1, “Train” in Dictionary referrers to the annotated Term-CUI mappings from the training 

data; “UMLS subset” in Dictionary referrers to the set of synonym-CUI mappings from UMLS that the CUIs 

are included in the training dataset; “UMLS full-set” in Dictionary referrers to the set of synonym-CUI 

mappings from UMLS that the CUIs are not included in the training dataset. “Contain all words” in Query 



stands for the queries requiring the CUI synonyms to contain all words from the mention, while “Contain at 

least one word” queries only require the CUI synonyms to contain at least one word from the mention.  

As established in table S1, level 1-10 correspond to exact match-based matching and level 11 corresponds 

to machine learning ranking-based matching. More specifically, level 1-5 were designed to find the 

corresponding CUI directly from the Dictionary of either the annotated Term-CUI mapping from the training 

data or the UMLS subset (with CUI included in training dataset), regarding different options of Term 

modification. Level 6-10 were designed similar to level 1-5 but targeted at handling the remaining ones that 

cannot be found by level 1-5, by searching in a much bigger Dictionary: UMLS full-set. All the remaining 

ones that cannot be found by exact math (level 1-10) were sent to ML ranking systems (level 11).  

In level 11, all the given mentions were processed with lower case and stop words removal. And then, we 

defined two criteria to fetch the CUI candidates: (1) CUI from the Dictionary containing the annotated Term-

CUI mapping from the training data and the UMLS subset, and its synonym must contain at least one word 

from the given mention; (2) CUI from the UMLS full-set (excluding those in UMLS subset), and its synonym 

must contain all the words from the given mention. Moreover, cosine similarities between mentions and CUI 

synonyms represented by average-pooling of the word embedding were used as the default score to rank and 

to further select CUI candidates. Then the top 15 CUIs from the first criteria (Train + UMLS subset) and top 

15 CUIs from the second criteria (UMLS full-set) were selected as the candidates according to their ranking 

scores (maximum score among all synonyms of each CUI). Then these 30 candidates were sent to ML ranking 

systems for model training (in training phase) or CUI prediction (in testing phase). 

 

S2. Attention layer 

Attention layer provides a trainable weight vector that guides the system to focus on more task-specific 

semantic information. After the attention layer, word-level features from each timestep are converted to the 

phrase-level feature vector. For example, by given a phrase consisting of T words 𝑃 = {𝑥!, 𝑥", … , 𝑥#}. After 

the word embedding, every word xi transforms to the corresponding word embedding vector ei, which is a real-



valued numerical vector with dimension of dwemb (200 in this study). So after word embedding, the phrase 

initially as a sequence of words transforms to a sequence of word embedding vectors: 

𝐸 = {𝑒!, 𝑒, … , 𝑒#}                                                                       (s1) 

The attention layer is a trainable weight vector (w) with the same dimension (dwemb) of the word embedding 

in this study. Then, the pooling weights of each word can be calculated as: 

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤#𝐸)                                                                    (s2) 

Here, a is the vector of the pooling weights with dimension of T. And w is the trainable attention vector, 

and wT is the transpose. Then, the final representation of the phrase can be calculated as the weighted-sum of 

the word embedding vectors: 

𝑟 = 𝐸𝛼#                                                                           (s3) 

Here aT is the transpose of the vector of pooling weights. And r is the final representation of the phrase 

with dimension of dwemb. 

As shown in equation s2, The pooling weight of each word highly depends on the dot product between the 

attention vector and the word embedding (𝑤#𝑒$). As each dimension in word embedding represents a certain 

semantic feature/axis, the attention layer actually serves as a semantic feature selector which helps the system 

to focus more on the words carrying more task-specific semantic information. Further discussion upon the 

effect of the attention layer on the semantic ranking task is included in the Results and Discussion section of 

the main content, where we provide two examples in figure 4, comparing the semantic ranking results by using 

average-pooling or attention-based pooling algorithms. 

 

S3. General clinical NLP system 

The general clinical NLP system (GCNLP) which employs UMLS and UIMA framework contains 5 main 

modules: Text processing, Grammar analysis, Entity and relation, Knowledge reasoning and Concept linking. 



The first 4 modules are the main modules of the system, while the last one is a task-specific module that was 

designed to link the GCNLP extracted entities to the n2c2 annotated mentions. In the Text Processing module, 

all the sub-modules like tokenization, sentence division, section detection use rule/ML hybrid methods and are 

pre-trained with a much larger dataset. More specifically, the sentence boundary detection is based on 

maximum entropy classifier[1,2] and rules considering abbreviations, numerical values, date and time, etc. 

The word tokenization uses a modified Stanford Tokenizer[3] with rules regarding abbreviations. In Grammar 

analysis, spaCy[4], NLTK[5] are used for syntactic analysis, POS tagging, dependency parsing, etc. The 

dataset used for training and rules development contains open-access medical data such as MIMIC III[6], and 

data from previous NLP challenges[7]. 

In Entity and relation module, the entities such as diseases, disorders, symptoms, medications, procedures 

are extracted by using modified Lucene[8] lookup algorithm for corresponding Concept Unique Identifiers 

(CUI) in UMLS. For other entities such as time mentions, lab results, medication dosages, a hybrid NER 

module combining deep learning (e.g. bidirectional LSTM-CRF models[9,10]), regular expression and 

lexical/syntactic rules is used. Knowledge graphs (e.g. CUI-CUI relations in UMLS) and deep learning models 

(e.g. bidirectional LSTM[11]) are employed for relation assignment, including the treatment relations between 

drugs and diseases, time relations between time mentions and medical activities, etc. A disambiguation 

submodule based on PageRank algorithm[12] and vector space model[13] is also employed considering 

context information, semantic type as well as the co-occurrence among concepts. The Knowledge reasoning 

module then validates/corrects these entities and relations (e.g. merge two concepts to one) base on rules 

generated from medical knowledge inputs and error analysis to facilitate accurate data analysis. All the 

machine-learning based models are pre-trained with a much larger medical dataset as mentioned above. 

To hook up with the n2c2 task, we linked the n2c2 annotated mention to the NLP extracted entities by 

calculating their span overlap. For the case one given mention overlapping with multiple entities, the entity 

with maximum overlap was selected. In contrast to the hybrid systems, we intentionally minimized the fine-



tuning with the n2c2 data for this system. Moreover, it only used UMLS full-set as the dictionary for concept 

lookup without considering the annotation preference learned from training data. 
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