OMTM, Volume 19

Supplemental Information

High Levels of Frataxin Overexpression

Lead to Mitochondrial and Cardiac

Toxicity in Mouse Models

Brahim Belbellaa, Laurence Reutenauer, Nadia Messaddeq, Laurent Monassier, and Hélène Puccio

Figure S1. Extended longitudinal echocardiography evaluation of *Mck* mice treated at 5 weeks of age with **AAVRh.10-CAG-hFXN-HA vector, up to 25 weeks of age.** See also figure 1. (**A-C**) WT mice treated with NaCl (n=7) and *Mck* mice treated at $5x10^{13}$ (n=3) or $2.5x10^{13}$ (n=2) vg/kg and sacrificed at 12 weeks of age for histological and molecular analysis. Data are represented as individual kinetics for treated *Mck* mice. Control WT mice and untreated *Mck* mice are reported as mean \pm SD. For untreated *Mck* mice, historical data were plotted. Statistical analyses are reported in Table S2. Figure adapted from Belbellaa et al 2019 Human Molecular Genetics. (**A**) Left ventricle (LV) end-diastole diameter (LV EDD). (**B**) LV end-systole diameter (LV ESD). (**C**) Body weight. (**D-G**) Cohort of mice treated similarly and followed-up until 25 weeks of age. *Mck* mice treated at $5x10^{13}$ vg/kg (n=5), WT (n=4) and *Mck* (n=3) mice treated with NaCl. Data are reported as mean \pm SD and statistical analyses are reported in Table S3. (**D**) Survival analysis. Log-rank Mantel-Cox statistical test: WT vs *Mck* AAV, p>0.999; WT vs *Mck* NaCl, p=0.0101; *Mck* AAV vs *Mck* NaCl, p=0.0042. (**E**) LV shortening fraction. (**F**) Cardiac blood output measured at the aorta (CO) and normalized to body weight (BW). (**G**) LV mass normalized to BW. (**H**) Body weight.

Figure S2. Comparison of AAVRh.10-CAG-hFXN-HA and AAVRh.10-hFXN vectors expression in the heart of WT and *Mck* mice treated at 7 weeks and sacrificed at 15 weeks. Vector biodistribution and expression were quantified in each individual mouse heart. The tissue concentration in human FXN protein was measured by ELISA assay (expressed as ng of FXN per mg of total protein) and normalized by the average vector DNA copies per diploid genome. WT mice (n=7) injected with the AAVRh.10-CAG-hFXN-HA vector, as well as WT mice (n=3) and *Mck* mice (n=13) injected with the AAVRh.10-hFXN, correspond to mice injected for the present study, see Table S1. *Mck* mice (n=35) injected with the AAVRh.10-CAG-hFXN-HA vector, correspond to historical data from our previous dose response study, where mice were treated at 5 or 7 weeks of age, with doses ranging from $5x10^{13}$ down to $1x10^{12}$ vg/kg, see Belbellaa et al 2019 Human Molecular Genetic. Individual datapoint are reported, with mean and SD. Brown-Forsythe and Welch one-way ANOVA statistical test, p values are reported with n.s. p>0.05.

Colocalization analysis - Low magnification

Figure S3. Extended histological analysis and observation at low-magnification of heart tissue section from wild-type C57/B6J mice treated with AAVRh.10-CAG-FXN-HA vector. See also figures 2 and 3. Representative images from the histological analysis of adjacent heart tissue section collected from WT C57/B6J mice treated at 7-weeks of age with vehicle (n=1) or AAVRh.10-CAG-hFXN-HA vector at the dose of $5x10^{14}$ (n=4) or $5x10^{13}$ (n=3) vg/kg, and then sacrificed at 21 weeks of age. For control, we analyzed heart tissue sections from untreated *Mck* mice collected at 9 weeks of age (Table S1). The two left columns correspond to histological analysis of heart fibrosis following staining with hematoxylin-eosin (HE) or wheat germ agglutin conjugated to Alexa488nm (WGA). The two middle columns represent single tissue section and microscopy field, after co-staining of FXN-HA by immunofluorescence and succinate dehydrogenase (SDH) activity by *in-situ* histoenzymatic assay, in order to assess the colocalization of FXN overexpression hotspots and the impairment of SDH enzymatic activity. The two-right columns correspond to *in-situ* histoenzymatic activity assay for cytochrome c oxidase (COX) and NADH-ubiquinone oxidoreductase (NADH). The corresponding dose, VCN and [hFXN] are reported next to each image series. Scale bar, 1mm. Same time exposure used for each labelling series.

Figure S4. Supplementary longitudinal echocardiography analysis of *Mck* mice treated at 7 weeks of age with AAVRh.10-CAG-hFXN-HA or AAVRh.10-hFXN vector at 2.5×10^{13} vg/kg. See also figure 5. (A) Left ventricle (LV) end-diastole diameter (LV EDD). Data are represented as individual kinetics for treated *Mck* mice with AAVRh.10-CAG-hFXN-HA (n=6) or with AAVRh.10-hFXN (n=8) vector. Control NaCl-injected WT (n=8) and *Mck* mice (n=10) are reported as mean ± SD. Statistical analysis is reported in Table S4. (B) Body weight (BW) are reported as mean ± SD. For untreated *Mck* mice, historical data were plotted.

Mck AAVRh.10-hFXN-HA 2.5x10¹³vg/kg

В

Figure S5. Extended histological analysis of immune cells infiltration in the heart of *Mck* and wild-type mice treated at 7 weeks with AAVRh.10-hFXN or AAVRh.10-CAG-hFXN-HA vector and sacrificed at 15 weeks. See also figure 6. Representative histological analysis on adjacent heart tissue sections from *Mck* mice treated with AAVRh.10-hFXN (n=3) or AAVRh.10-CAG-hFXN-HA (n=3) at 2.5×10^{13} vg/kg , WT mouse injected with AAVRh.10-hFXN (n=1) at 5×10^{12} vg/kg, NaCl-injected WT mice (n=3). For control, 9-weeks old untreated *Mck* mice heart and WT mouse spleen (n=1) were also analyzed. (A) Immunofluorescence labelling of the monocyte cells marker CD14. (B) Immunofluorescence labelling of the leukocyte cells marker CD45. (C) Immunofluorescence labelling of the lymphocyte cells marker CD3.

Mck AAVRh. 10-CAG- hFXN-HA

2.5x10¹³vg/kg VCN=1.25; [hFXN]=924

2mm

А

Figure S6. Extended histological analysis of mitochondrial enzymatic activity and observation at lowmagnification of heart tissue sections from wild-type and *Mck* **mice treated at 7 weeks with AAVRh.10hFXN or AAVRh.10-CAG-hFXN-HA vector at 2.5x10¹³ vg/kg and sacrificed at 15 weeks. See also figure 7. (A) Representative image and histological analysis of adjacent heart tissue sections from** *Mck* **mice (n=3) and WT mice (n=2) treated with AAVRh.10-hFXN vector and NaCl-injected WT mice (n=2). Left and middle columns represent the single tissue sections and microscopy fields, after co-staining of FXN by immunofluorescence and succinate dehydrogenase (SDH) activity by** *in-situ* **histoenzymatic assay, in order to assess the colocalization of FXN overexpression hotspots and the impairment of SDH enzymatic activity. Right-column corresponds to** *insitu* **histoenzymatic activity assay for NADH-ubiquinone oxidoreductase (NADH). (B)** *In situ* **histoenzymatic assay performed on heart tissue section from a** *Mck* **mouse treated with AAVRh.10-CAG-hFXN-HA vector and imaged at low and high magnifications. The respective dose, VCN and [hFXN] are reported above each image series. Same time exposure for each labelling series.** Video S1. Echocardiography parasternal short-axis imaging of the left ventricle performed at 21 weeks of age, in wild-type C57/B6J mice treated with AAVRh.10-CAG-FXN-HA vector at 7 weeks of age.

Table S1. Experimental design: summary of mice age of injection, vector and dose administrated, effective and bioanalytical.

Age of treatment in weeks	Animal groups	Genotype	Treatment/vector	Dose (vg/kg)	Effective	Age of sacrifice in weeks	Bioanalytical	
Untreated	А	<i>Mck</i> mice	None	N/A	6	9*	Histological analysis	
	В				4	8*	Electron microscopy	
	С				10 - historical data†	spontaneous death	Echocardiography Survival	
5 weeks of age	1	<i>Mck</i> mice		5x10 ¹³	3	- 12§	Echocardiography Vector biodistribution/expression Histological analysis	
	2		AAVRh.10-CAG-hFXN-HA	2.5x10 ¹³	2			
	3			5x10 ¹³	5	25+	Eshe condis complex	
	4		NaCl	N/A	3	25+	Echocardiography	
	5	WT mice	NaCl	N/A	7	12§	Echocardiography and histology	
	6			N/A	4	25‡	Echocardiography	
7 weeks of age		7	Maharing	AAVRh.10-CAG-hFXN-HA	2.5x10 ¹³	6	22]	
	8	мск тисе	AAVRh.10-hFXN	2.5×10^{13}	8	22]	Echocardiography vector biodistribution/expression Histology analysis Molecular analysis Electron microscopy	
	9	WT mice	AAVRh.10-CAG-hFXN-HA	5x10 ¹⁴	4	15***		
	10		AAVRh.10-CAG-hFXN-HA	5x10 ¹³	3	15***		
	11		AAVRh.10-hFXN	2.5x10 ¹³	2	15***		
	12		AAVRh.10-hFXN	5x10 ¹²	1	15***		
	13		NaCl	N/A	11	15*** or 22		

Note: *Mck* and WT mice are on 100% C57/B6J genetic background.

Groups A, B and C correspond to untreated Mck mice which were used as controls across the different mice studies.

* untreated Mck mice median survival is around 10 weeks of age, so groups A and B were sacrifice at 8 and 9 weeks of age to generate control tissues.

† *Mck* knock-out mice display a very robust and reproducible phenotype as demonstrated previously across several studies, such as Puccio et al 2001 Nature genetics, Seznec et al 2004 Human Molecular Genetics and Perdomini et al 2014 Nature Medicine. To reduce the number of mice used to follow the three-R ethical rules, historical echocardiography *Mck* mice data were used here.

Groups 1, 2 and 5 corresponds to mice originating from our previous dose response study, where mice were treated at 5 or 7 weeks of age, with doses ranging from 5×10^{13} down to 1×10^{12} vg/kg, see Belbellaa et al 2019 Human Molecular Genetic.

§ Mice sacrificed at 12 weeks of age for histological and molecular analysis. ‡ Mice sacrificed at 25 weeks of age for long term echocardiography follow-up.

** Mice sacrificed at 15 weeks or at 22 weeks of age for histological and molecular analysis.

Table S2. Statistical analysis of echocardiography measurements presented in Figures 1D-F and S1A-C.Mck mice treated at 5 weeks of age with AAVRh.10-CAG-hFXN-HA vector at $5x10^{13}$ or $2.5x10^{13}$ vg/kg and sacrificed at 12 weeks of age. One-way ANOVA analysis, Mixed-effects model (REML), no assumption of sphericity, $\alpha = 0.05$.

Left ventricle shortening fraction				
Fixed effect (type III) <0.0001	F (DFn, DFd) F (1.135, 9.079) = 49.42	Geisser-Greenhouse's	epsilon = 0.3783	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
WT NaCl (n=7) vs. Mck 5x10 ¹³ vg/kg (n=3)	4.250	1.743 to 6.757	0.0044	
WT NaCl (n=7) vs. Mck 2.5x10 ¹³ vg/kg (n=2)	1.869	0.02753 to 3.711	0.0471	
WT NaCl (n=7) vs. Mck untreated (n=10)	18.82	10.45 to 27.19	0.0016	
<i>Mck</i> 5x10 ¹³ vg/kg (n=3) vs. <i>Mck</i> 2.5x10 ¹³ vg/kg (n=2)	-2.381	-4.643 to -0.1192	0.0406	
Mck $5x10^{13}$ vg/kg (n=3) vs. Mck untreated (n=10)	14.57	4.878 to 24.26	0.0123	
$Mck 2.5x10^{13}$ vg/kg (n=2) vs. Mck untreated (n=10)	16.95	7.139 to 26.76	0.0074	
	Cardiac output normalized to body weight			
Fixed effect (type III) <0.0001	F (DFn, DFd) F (1.590, 12.72) = 90.72	Geisser-Greenhouse's	epsilon = 0.5299	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
WT NaCl (n=7) vs. Mck 5x10 ¹³ vg/kg (n=3)	0.09299	-0.4230 to 0.6090	0.9207	
WT NaCl (n=7) vs. Mck 2.5x10 ¹³ vg/kg (n=2)	0.2953	-0.2019 to 0.7926	0.2669	
WT NaCl (n=7) vs. Mck untreated (n=10)	2.727	1.868 to 3.586	0.0003	
<i>Mck</i> 5x10 ¹³ vg/kg (n=3) vs. <i>Mck</i> 2.5x10 ¹³ vg/kg (n=2)	0.2024	-0.08695 to 0.4917	0.1728	
$Mck 5x10^{13}$ vg/kg (n=3) vs. Mck untreated (n=10)	2.634	1.374 to 3.894	0.0036	
Mck 2.5x10 ¹³ vg/kg (n=2) vs. Mck untreated (n=10)	2.432	1.454 to 3.410	0.0019	
Left ventricle mass normalized to body				
Fixed effect (type III) = 0.0014	F (DFn, DFd) F (1.015, 8.123) = 22.10	Geisser-Greenhouse's	epsilon = 0.3385	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
WT NaCl (n=7) vs. <i>Mck</i> 5x10 ^{13w} vg/kg (n=3)	7.256e-005	-2.800e-005 to 0.0001731	0.1575	
WT NaCl (n=7) vs. <i>Mck</i> 2.5x10 ¹³ vg/kg (n=2)	8.208e-005	-2.791e-006 to 0.0001670	0.0571	
WT NaCl (n=7) vs. Mck untreated (n=10)	-0.001551	-0.003006 to -9.562e-005	0.0395	
<i>Mck</i> 5x10 ¹³ vg/kg (n=3) vs. <i>Mck</i> 2.5x10 ¹³ vg/kg (n=2)	9.524e-006	-9.986e-005 to 0.0001189	0.9895	
$Mck 5x10^{13}$ vg/kg (n=3) vs. Mck untreated (n=10)	-0.001624	-0.002941 to -0.0003064	0.0249	
$Mck 2.5x10^{13}$ vg/kg (n=2) vs. Mck untreated (n=10)	-0.001633	-0.003034 to -0.0002318	0.0302	
	Left ventricle end diastole diameter			
Fixed effect (type III) = 0.0023	F (DFn, DFd) F (1.074, 6.086) = 24.40	Geisser-Greenhouse's	epsilon = 0.3580	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
WT NaCl (n=7) vs. <i>Mck</i> 5x10 ¹³ vg/kg (n=3)	0.000	-0.01115 to 0.01115	>0.9999	
WT NaCl (n=7) vs. <i>Mck</i> 2.5x10 ¹³ vg/kg (n=2)	0.01476	0.005639 to 0.02388	0.0056	
WT NaCl (n=7) vs. Mck untreated (n=10)	-0.05041	-0.09929 to -0.001542	0.0446	
<i>Mck</i> 5x10 ¹³ vg/kg (n=3) vs. <i>Mck</i> 2.5x10 ¹³ vg/kg (n=2)	0.01476	-0.0006284 to 0.03015	0.0589	
$Mck 5x10^{13}$ vg/kg (n=3) vs. Mck untreated (n=10)	-0.05041	-0.09703 to -0.003798	0.0387	
$Mck 2.5x10^{13}$ vg/kg (n=2) vs. Mck untreated (n=10)	-0.06518	-0.1239 to -0.006452	0.0355	
Left ventricle end systole diameter				
Fixed effect (type III) = 0.0016	F (DFn, DFd) F (1.010, 5.721) = 31.31	Geisser-Greenhouse's	epsilon = 0.3365	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
WT NaCl (n=7) vs. <i>Mck</i> 5x10 ¹³ vg/kg (n=3)	-0.01839	-0.02474 to -0.01205	0.0002	
WT NaCl (n=7) vs. <i>Mck</i> 2.5x10 ¹³ vg/kg (n=2)	0.001131	-0.008187 to 0.01045	0.9729	
WT NaCl (n=7) vs. Mck untreated (n=10)	-0.1221	-0.2032 to -0.04113	0.0097	
<i>Mck</i> 5x10 ¹³ vg/kg (n=3) vs. <i>Mck</i> 2.5x10 ¹³ vg/kg (n=2)	0.01952	0.008714 to 0.03033	0.0032	
$Mck 5x10^{13}$ vg/kg (n=3) vs. Mck untreated (n=10)	-0.1037	-0.1842 to -0.02330	0.0213	

Table S3. Statistical analysis of echocardiography measurements presented in Figure S1D-H.

Mck mice treated at 5 weeks of age with AAVRh.10-CAG-hFXN-HA vector at 5×10^{13} vg/kg and sacrificed at 25 weeks of age. One-way ANOVA analysis, Mixed-effects model (REML), no assumption of sphericity, $\alpha = 0.05$.

Left ventricle shortening fraction				
Fixed effect (type III) <0.0001	F (1.122, 16.28) = 1093	Geisser-Greenhouse's	epsilon = 0.5612	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
WT NaCl (n=4) vs. Mck AAV 5x10 ¹³ vg/kg (n=5)	0.5254	0.06266 to 0.9881	0.0263	
WT NaCl (n=4) vs. Mck NaCl (n=3)	21.00	18.49 to 23.50	<0.0001	
Mck AAV 5x10 ¹³ vg/kg (n=5) vs. Mck NaCl (n=3)	20.47	17.76 to 23.18	<0.0001	
	Cardiac output normalized to body weight			
Fixed effect (type III) <0.0001	F (0.9670, 14.02) = 107.1	Geisser-Greenhouse's	epsilon = 0.4835	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
WT NaCl (n=4) vs. Mck AAV 5x10 ¹³ vg/kg (n=5)	0.01580	-0.2946 to 0.3262	0.9899	
WT NaCl (n=4) vs. Mck NaCl (n=3)	2.435	1.925 to 2.945	<0.0001	
Mck AAV 5x10 ¹³ vg/kg (n=5) vs. Mck NaCl (n=3)	2.419	1.411 to 3.427	0.0013	
	Left ventricle mass normalized to body			
Fixed effect (type III) <0.0001	F (DFn, DFd) F (1.015, 8.123) = 22.10	Geisser-Greenhouse's	epsilon = 0.3385	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
WT NaCl (n=4) vs. Mck AAV 5x10 ¹³ vg/kg (n=5)	-9.278e-005	-0.0001489 to -3.670e-005	0.0022	
WT NaCl (n=4) vs. Mck NaCl (n=3)	-0.002223	-0.003625 to -0.0008206	0.0083	
Mck AAV 5x10 ¹³ vg/kg (n=5) vs. Mck NaCl (n=3)	-0.002130	-0.003489 to -0.0007711	0.0087	
Body weight				
Fixed effect (type III) = 0.0003	F (1.024, 8.700) = 33.02	Geisser-Greenhouse's	epsilon = 0.5118	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
WT NaCl (n=4) vs. Mck AAV 5x10 ¹³ vg/kg (n=5)	1.456	0.9015 to 2.010	<0.0001	
WT NaCl (n=4) vs. Mck NaCl (n=3)	8.899	3.487 to 14.31	0.0071	
Mck AAV 5x10 ¹³ vg/kg (n=5) vs. Mck NaCl (n=3)	7.443	2.839 to 12.05	0.0076	

Table S4. Statistical analysis of echocardiography measurements presented in Figures 5I-L and S4A-B.

Mck mice treated at 7 weeks of age with AAVRh.10-CAG-hFXN-HA vector or AAVRh.10-hFXN vector at 2.5x10¹³vg/kg.

One-way ANOVA analysis, Mixed-effects model (REML), no assumption of sphericity, $\alpha = 0.05$.

Table S4. Statistical analysis of echocardiography measurements in *Mck* mice treated at 7 weeks of age with AAVRh.10-CAG-hFXN-HA vector or AAVRh.10-hFXN vector at 2.5x10¹³vg/kg. One-way ANOVA analysis, Mixed-effects model (REML), no assumption of sphericity, α = 0.05

Left ver	ntricle snortening fraction			
Fixed effect (type III) = 0.0112	F (DFn, DFd): F (0.7212, 3.366) = 27.54	Geisser-Greenhouse	s epsilon = 0.2404	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
Mck AAVRh.10-hFXN (n=8) vs. Mck AAVRh.10-CAG-hFXN-HA (n=6)	-1.992	-9.261 to 5.278	0.6098	
Mck AAVRh.10-hFXN (n=8) vs. Mck untreated (n=10)	14.00	-125.7 to 153.7	0.4786	
Mck AAVRh.10-hFXN (n=8) vs. WT NaCl (n=8)	-9.949	-24.29 to 4.392	0.1251	
Mck AAVRh.10-CAG-hFXN-HA (n=6) vs. Mck untreated (n=10)	16.00	-4.653 to 36.64	0.0960	
Mck AAVRh.10-CAG-hFXN-HA (n=6) vs. WT NaCl (n=8)	-7.957	-14.23 to -1.683	0.0153	
Mck untreated (n=10) vs. WT NaCl (n=8)	-23.95	-27.96 to -19.95	0.0003	
Cardiac output normalized to body weight				
Fixed effect (type III) = 0.0112	F (DFn, DFd): F (0.7212, 3.366) = 27.54	Geisser-Greenhouse	s epsilon = 0.2404	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
Mck AAVRh.10-hFXN (n=8) vs. Mck AAVRh.10-CAG-hFXN-HA (n=6)	-0.4267	-1.736 to 0.8823	0.5016	
Mck AAVRh.10-hFXN (n=8) vs. Mck untreated (n=10)	2.016	-18.42 to 22.45	0.4847	
Mck AAVRh.10-hFXN (n=8) vs. WT NaCl (n=8)	-0.6183	-2.992 to 1.756	0.6401	
Mck AAVRh.10-CAG-hFXN-HA (n=6) vs. Mck untreated (n=10)	2.443	0.3170 to 4.569	0.0344	
Mck AAVRh.10-CAG-hFXN-HA (n=6) vs. WT NaCl (n=8)	-0.1916	-1.029 to 0.6456	0.8813	
Mck untreated (n=10) vs. WT NaCl (n=8)	-2.635	-3.164 to -2.105	0.0006	
Left ventr	icle mass normalized to body			
Fixed effect (type III) = 0.0138	F (DFn, DFd): F (0.7034, 3.282) = 24.91	Geisser-Greenhouse	s epsilon = 0.2345	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
Mck AAVRh.10-hFXN (n=8) vs. Mck AAVRh.10-CAG-hFXN-HA (n=6)	0.0009792	4.837e-005 to 0.001910	0.0437	
Mck AAVRh.10-hFXN (n=8) vs. Mck untreated (n=10)	0.001687	-6.490e-006 to 0.003381	0.0505	
Mck AAVRh.10-hFXN (n=8) vs. WT NaCl (n=8)	-0.0004650	-0.02119 to 0.02026	0.9513	
Mck AAVRh.10-CAG-hFXN-HA (n=6) vs. Mck untreated (n=10)	0.0007082	0.0002797 to 0.001137	0.0033	
Mck AAVRh.10-CAG-hFXN-HA (n=6) vs. WT NaCl (n=8)	-0.001444	-0.003638 to 0.0007495	0.1412	
Mck untreated (n=10) vs. WT NaCl (n=8)	-0.002152	-0.003301 to -0.001004	0.0087	
Left ven	tricle end diastole diameter			
Fixed effect (type III) = 0.0132	F (DFn, DFd): F (0.7051, 5.170) = 15.30	Geisser-Greenhouse	s epsilon = 0.2350	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
Mck AAVRh.10-hFXN (n=8) vs. Mck AAVRh.10-CAG-hFXN-HA (n=6)	-0.001386	-0.05710 to 0.05433	0.9992	
Mck AAVRh.10-hFXN (n=8) vs. Mck untreated (n=10)	-0.03596	-0.9011 to 0.8292	0.8200	
Mck AAVRh.10-hFXN (n=8) vs. WT NaCl (n=8)	0.02581	-0.05129 to 0.1029	0.4848	
Mck AAVRh.10-CAG-hFXN-HA (n=6) vs. Mck untreated (n=10)	-0.03457	-0.09014 to 0.02099	0.1603	
Mck AAVRh.10-CAG-hFXN-HA (n=6) vs. WT NaCl (n=8)	0.02720	0.01198 to 0.04241	0.0020	
Mck untreated (n=10) vs. WT NaCl (n=8)	-0.06177	-0.09496 to -0.02858	0.0088	
Left ventricle end systole diameter				
Fixed effect (type III) = 0.0132 F (DFn, DFd): F (0.7051, 5.170) = 15.30Geisser-Greenhouse's epsilon = 0.2350				
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Adjusted P Value	
Mck AAVRh.10-hFXN (n=8) vs. Mck AAVRh.10-CAG-hFXN-HA (n=6)	-0.001386	-0.05710 to 0.05433	0.9992	
Mck AAVRh.10-hFXN (n=8) vs. Mck untreated (n=10)	-0.03596	-0.9011 to 0.8292	0.8200	
Mck AAVRh.10-hFXN (n=8) vs. WT NaCl (n=8)	0.02581	-0.05129 to 0.1029	0.4848	
Mck AAVRh.10-CAG-hFXN-HA (n=6) vs. Mck untreated (n=10)	-0.03457	-0.09014 to 0.02099	0.1603	
Mck AAVRh.10-CAG-hFXN-HA (n=6) vs. WT NaCl (n=8)	0.02720	0.01198 to 0.04241	0.0020	
Mck untreated (n=10) vs. WT NaCl (n=8)	-0.06177	-0.09496 to -0.02858	0.0088	

Table S5. Primers sequence.

Gene	Forward	Reverse
18s	ACCGCAGCTAGGAATAATGGAA	CCTCCGACTTTCGTTCTTGATT
Hprt	GTAATGATCAGTCAACGGGGGGAC	CCAGCAAGCTTGCAACCTTAACCA
Fxn	ATGGCGTGCTCACCATTAAG	GGCCAATGAAGACAAGTCCA
FXN	AGAGGAAACGCTGGACTCTT	ACGCTTAGGTCCACTGGATG
Collal	TCACCTACAGCACCCTTGTG	GTCCGAATTCCTGGTCTGG
Col3a1	TCAAGGCTGAAGGAAACAGC	GGGTAGTCTCATTGCCTTGC
Tgf • 1	GGAGAGCCCTGGATACCAAC	CAACCCAGGTCCTTCCTAAA
Il1b	AGCTATGGCAACTGTTCCTGA	CTGCCACAGCTTCTCCACA
116	GTGACAACCACGGCCTTC	ACAACTCTTTTCTCATTTCCACGA
Tnf ·	TCAGTTCTATGGCCCAGACCC	GTCTTTGAGATCCATGCCGTT
Nppa	TCGTCTTGGCCTTTTGGCT	TCCAGGTGGTCTAGCAGGTTCT
Nppb	AAGTCCTAGCCAGTCTCCAGA	GAGCTGTCTCTGGGCCATTTC
Asns	ATTACGACAGTTCGGGCATC	TCTCAGTTCGAGACCGTGTC
Mthfd2	AATTTGGGCTTTGCAGTGAC	ACACTCCCAAAGAGCAGCTG
Ddit3	CCAGAATAACAGCCGGAACC	ATCCTCATACCAGGCTTCCA
Trib3	CGCTTTGTCTTCAGCAACTGT	TCATCTGATCCAGTCATCACG
Fgf21	ACCTCTACACAGATGACGACCA	AGAAACCTAGAGGCTTTGACACC
Gdf15	GCTGCTACTCCGCGTCAACC	CTACCCGTAAGCGCAGTTCC