Supporting Information

¹²⁹Xe NMR-Protein Sensor Reveals Cellular Ribose Concentration

Serge D. Zemerov,^{1,‡} Benjamin W. Roose,^{1,‡} Kelsey L. Farenhem,^{1,‡} Zhuangyu Zhao,¹ Madison A. Stringer,¹ Aaron R. Goldman,² David W. Speicher,^{2,3} and Ivan J. Dmochowski^{1,*}

 ¹ Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
 ² Proteomics and Metabolomics Facility and ³Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA.

Table of Contents

Table S1. Oligonucleotide primers used for RBP(L19A) insert amplification2	2
Table S2. Oligonucleotide primers used in RBP site-directed mutagenesis. 2)
Figure S1. SDS-PAGE gel of purified GFP-RBP(L19A)2)
Figure S2. ITC enthalpograms for ribose binding	,
Figure S3. CD spectra of GFP-RBP(L19A) and mutants4	ŀ
Figure S4. Hyper-CEST z-spectra of 10 µM GFP-RBP(L19A) in PBS5	;
Figure S5. Hyper-CEST z-spectra of GFP-RBP(L19A) in FBS and serum-free medium	,
Figure S6. LC-MS response of [U- ¹³ C ₅] ribose spiked into extracted HeLa cell lysate samples	1
Figure S7. Hyper-CEST z-spectra of GFP-RBP(L19A) in FBS-supplemented HeLa cell lysate8	;;
Figure S8. Ribose calibration curve for LC-MS analysis9)
Table S3. Peak areas and calculated ribose concentrations from LC-MS analysis10)
Figure S9. Time dependent saturation curves with GFP-RBP(L19A)11	
Figure S10. Saturation contrast as a function of ribose-bound RBP12)
Figure S11. Hyper-CEST z-spectra of RBP mutants13	;
References	ł

Table S1.	Oligonucleotide	primers used t	for RBP(L19A) insert amplification.
		•	`	

Forward primer	5' – TACTTCCAATCCAATGCAAAAGATACCATCGCGCTGGTCG – 3'
Reverse primer	5' – TTATCCACTTCCAATGTTATTACTGTTTGACAACCAGTTTCAGG – 3'

 Table S2. Oligonucleotide primers used in RBP site-directed mutagenesis.

Q235A	Forward primer	5' – GCGACGATTGCAGCGCTGCCGGACCAG – 3'
	Reverse primer	5' – CTGGTCCGGCAGCGCTGCAATCGTCGC – 3'
T135A	Forward primer	5' – GGTATCGCGGGTGCCAGCGCTGCGCGC – 3'
	Reverse primer	5' – GCGCGCAGCGCTGGCACCCGCGATACC – 3'

Figure S1. SDS-PAGE gel of purified GFP-RBP(L19A).

Figure S2. ITC enthalpograms for ribose binding for (a) GFP-RBP(L19A); (b) GFP-

RBP(L19A/Q235A); (c) GFP-RBP(L19A/T135A/Q235A).

Figure S3. CD spectra of GFP-RBP(L19A) and mutants. Spectra taken from 5 μ M protein in 10 mM sodium phosphate buffer (pH 8.0) at 20 °C.

Figure S4. Hyper-CEST z-spectra of 10 μ M GFP-RBP(L19A) in PBS. Data acquired with protein in its unliganded state and in the presence of indicated ligands in pH 7.2 buffer at 300

K. Data shown as an average of 3 trials.

Figure S5. Hyper-CEST z-spectra of GFP-RBP(L19A) in FBS and serum-free medium. FBS was extracted with methanol following literature procedure¹ and then diluted 1:2 in PBS buffer. Pulse length, $\tau_{pulse} = 3.80$ ms; field strength, $B_{1,max} = 77 \mu$ T. Experiments were performed at 300 K with 20 μ M protein. Data shown as an average of 3 trials.

Figure S6. LC-MS response of $[U^{-13}C_5]$ ribose spiked into extracted HeLa cell lysate samples. "Pre-spike" corresponds to samples of 2 million/mL lysed HeLa cell extract spiked pre-extraction with $[U^{-13}C_5]$ ribose to a final concentration of 20 μ M. "Post-spike" corresponds to samples of 2 million/mL lysed HeLa cell extract spiked post-extraction with $[U^{-13}C_5]$ ribose to a final concentration of 20 μ M. "Buffer" corresponds to controls of the extraction solution only (1:2 ddH₂O:MeOH v/v) spiked with $[U^{-13}C_5]$ ribose to a final concentration of 20 μ M. Each sample was injected twice. The acetate adduct peak was quantified. The peak areas for each sample are shown in Table S3.

Figure S7. Hyper-CEST z-spectra of GFP-RBP(L19A) in FBS-supplemented HeLa cell lysate. Zspectra of varying percentages of GFP-RBP(L19A) in the closed conformation ([ribose] = 0, 2.5, 5.1, 10.3, 15.9, 49.5 μ M), and with cell lysate from HeLa cells grown in FBS-supplemented medium are shown. The z-spectrum of cell lysate only is shown for reference. All z-spectra were obtained with 20 μ M GFP-RBP(L19A) in pH 7.2 PBS at 300 K. Pulse length, $\tau_{pulse} = 3.80$ ms; field strength, $B_{1,max} = 77 \mu$ T. Data shown as an average of 3 trials. Inset: the magnitude of the CEST effect from each z-spectrum plotted against the percentage of closed RBP. R² = 0.982.

Figure S8. Ribose calibration curve for LC-MS analysis. Ribose was quantified as the ratio of the ribose standard peak area to the $[U^{-13}C_5]$ ribose internal standard peak area. The ribose standard concentrations used were 3.13, 6.25, 12.5, 25, 50, and 100 μ M, with 20 μ M $[U^{-13}C_5]$ ribose internal standard. $R^2 = 0.995$, slope = 0.0393 ± 0.001 , y-intercept = 0.0121 ± 0.008 . The acetate adduct peak was quantified. The peak areas for each sample are shown in Table S3.

	3.13 µM ribose	6.25 μM ribose	12.5 μM ribose	25 μM ribose	50 μM ribose	100 μM ribose	Pre- spike 1	Pre- spike 2	Post- spike 1	Post- spike 2	Buffer 1	Buffer 2
Ribose peak area	1.85 x 10 ⁷	4.37 x 10 ⁷	7.73 x 10 ⁷	1.49 x 10 ⁸	2.73 x 10 ⁸	4.73 x 10 ⁸	6.39 x 10 ⁷	6.75 x 10 ⁷	6.23 x 10 ⁷	6.27 x 10 ⁷	N/F	N/F
[U- ¹³ C ₅] ribose peak area	1.41 x 10 ⁸	1.63 x 10 ⁸	1.51 x 10 ⁸	1.42 x 10 ⁸	1.37 x 10 ⁸	1.29 x 10 ⁸	3.96 x 10 ⁷	4.67 x 10 ⁷	9.76 x 10 ⁷	9.02 x 10 ⁷	8.75 x 10 ⁷	7.90 x 10 ⁷
Light/ heavy ratio	0.13	0.27	0.51	1.05	1.99	3.66	1.61	1.45	0.64	0.70	N/A	N/A
Calculated ribose (µM)	3.02	6.54	12.7	26.3	50.4	92.7	40.7	36.5	15.9	17.4	N/A	N/A

Table S3. Peak areas and calculated ribose concentrations from LC-MS analysis.^a

^{*a*}All samples spiked with $[U^{-13}C_5]$ ribose to a final concentration of 20 μ M. The "pre-spike", "post-spike", and "buffer" terms refer to the same conditions as described in Figure S6. The acetate adduct peak was quantified.

Figure S9. Time dependent saturation curves with GFP-RBP(L19A). Saturation contrast for 100 nM GFP-RBP(L19A) with 1 mM ribose at 300 K in pH 7.2 PBS buffer was determined to be 0.30 \pm 0.01. T_{1on} = 28 \pm 1 s and T_{1off} = 47 \pm 1 s. Pulse length, τ_{pulse} = 1.727 ms; field strength, $B_{1,max}$ = 170 µT. Data shown as an average of three trials.

Figure S10. Saturation contrast as a function of ribose-bound RBP. Saturation contrast for 100 nM GFP-RBP(L19A) and 100 nM GFP-RBP(L19A/T135A/Q235A) at 300 K in pH 7.2 PBS buffer as a function of percent protein in the ribose-bound, closed conformation. For GFP-RBP(L19A), ($K_d = 0.3 \mu$ M) [ribose] = 0, 0.15, 0.35, 0.975, 1000 μ M. For GFP-RBP(L19A/T135A/Q235A), ($K_d = 130 \mu$ M) [ribose] = 0, 43, 130, 390, 4000 μ M. Pulse length, $\tau_{pulse} = 1.727$ ms; field strength, $B_{1,max} = 170 \mu$ T. Data shown as an average of three trials. Linear regressions for both sets of data reported R² values > 0.99.

Figure S11. Hyper-CEST z-spectra of RBP mutants. Data acquired in pH 7.2 PBS at 300 K.

Pulse length, $\tau_{pulse} = 3.80$ ms; field strength, $B_{1,max} = 77 \ \mu T$. Data shown as an average of 3 trials.

References

Nagana Gowda, G. A.; Djukovic, D.; Bettcher, L. F.; Gu, H.; Raftery, D. Anal. Chem.
 2018, 90 (3), 2001–2009.