SUPPORING INFORMATION

Synthesis and Anti-HBV Activity of Carbocyclic Nucleoside Hybrids with Salient Features of Entecavir and Aristeromycin

Ramakrishnamraju Samunuri^{a,b}, Masaaki Toyama^c, Renuka Sivasankar Pallaka,^b Seshubabu Neeladri,^b Ashok Kumar Jha^b, Masanori Baba^c, Chandralata Bal^{a,*}

^aDepartment of Chemistry, Birla Institute of Technology, Mesra, Ranchi, India

^bChemistry Services, GVK Biosciences Pvt.Ltd, IDA Nacharam, Hyderabad, India

^cDivision of Antiviral Chemotherapy, Joint Research Center for Human Retrovirus Infection,

Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan

*Email: cbal@bitmesra.ac.in

Experimental Section:

The ¹H and ¹³C NMR spectroscopic data were recorded at 300 MHz or 400 MHz and 75 MHz or 100 MHz on a Varian NMR spectrometer with CDCl₃, DMSO- d_6 or CD₃OD as a solvent and in some cases TMS as internal standard ($\delta = 0$). Chemical shifts of ¹H and ¹³C NMR spectra are reported in ppm. All coupling constants (*J* values) were expressed in Hertz (Hz). Multiplicities are stated as follows: singlet (s), doublet (d), double doublet (dd), triplet (t), and multiplet (m). Glassware for moisture-sensitive reactions was carried out under an atmosphere of argon. Melting points were recorded on a BUCHI (B-540) apparatus and are uncorrected. High-resolution mass spectra were recorded on a Thermo Q Exactive (resolution = 1, 40, 000 FWHM) under electrospray ionization (ESI) and are reported to four decimal places. Specific optical rotation measurements were carried out on a *JASCO* P-2000 digital polarimeter at 20 °C equipped with a PMT detector using the sodium line at 589 nm, and 2 mL (100 mm path length) cell. UV spectra were recorded on a Thermo Scientific Evolution 201 and 220 UV-Visible Spectrophotometers.

Scheme 1: Synthesis of 4a-e. Reagents and conditions: i) PPh₃, DIAD, THF, 10 °C-rt, 1 h; ii) TFA:H₂O (8:2 ratio), rt, 30 min; iii) NH₃ in MeOH, 100 °C, sealed tube, 24 h.

General procedure for the synthesis of 3a-e: To a stirring solution of 1 (0.54 mmol), appropriate 2a-e (0.71 mmol) and Ph₃P (1.36 mmol) in 5 ml dry THF was added DIAD (1.50 mmol) drop wise at 5-10 °C under argon atmosphere, stirring continued at rt for 1 h. Completion of reaction was monitored by TLC, volatiles were removed under reduced pressure. 10 mL TFA: water (8:2 ratio) was added to the crude at rt and stirred for 30 min. Up on consumption of starting material, the volatiles were removed under reduced pressure. The crude residue was partitioned between sat. NaHCO₃ solution (10 mL) and EtOAc (3 x 25 mL). The combined organic layer was washed with brine solution, dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by column chromatography on silica gel (100-200 mesh), eluting up to 5% MeOH in CH₂Cl₂.

(18,2R,3R,5R)-5-(4-Chloro-7H-pyrrolo[2,3-*d*]pyrimidin-7-yl)-3-(hydroxymethyl)-3-methyl-4-methylenecyclopentane-1,2-diol (3a): Purified yield: 45.4% (in two steps), off white solid, (TLC: R_f 0.3, 7% MeOH in CH₂Cl₂); $[\alpha]_D^{25}$: +21.6 (c = 0.25, MeOH); UV (MeOH) λ_{max} : 273.25 nm; ¹H NMR (400 MHz, CD₃OD) δ : 1.21 (s, 3H), 3.52 (d, J = 11.2 Hz, 1H), 3.69 (d, J = 11.2 Hz, 1H), 4.03 (d, J = 4.4 Hz, 1H), 4.51 (d, J = 2.8 Hz, 1H), 4.77 (dd, J = 4.4 and 9.6 Hz, 1H), 5.07 (d, J = 3.2 Hz, 1H), 5.68–5.71 (m, 1H), 6.71 (d, J = 3.6 Hz, 1H), 7.64 (d, J = 3.6 Hz, 1H), 8.53 (s, 1H); MS-ESI (m/z): [M+1]⁺ 309.97.

(1S,2R,3R,5R)-5-(4-Chloro-5-fluoro-7H-pyrrolo[2,3-*d*]pyrimidin-7-yl)-3-(hydroxymethyl)-3-methyl-4-methylenecyclopentane-1,2-diol (3b): Purified yield: 52% (in two steps), pale yellow solid, (TLC: R_f 0.3, 7% MeOH in CH₂Cl₂); $[\alpha]_D^{20}$: +6.4 (c = 0.25, DMSO); UV (MeOH) λ_{max} : 273.25 nm; ¹H NMR (300 MHz, CD₃OD) δ : 1.19 (s, 3H), 3.51 (d, J = 11.1 Hz, 1H), 3.65 (d, J = 10.8 Hz, 1H), 4.00 (d, J = 4.5 Hz, 1H), 4.57 (d, J = 2.7 Hz, 1H), 4.65 (dd, J = 4.5 and 10.2 Hz, 1H), 5.09 (d, J = 3.0 Hz, 1H), 5.75–5.78 (m, 1H), 7.50 (d, J = 2.1 Hz, 1H), 8.55 (s, 1H); MS-ESI (m/z): [M+1]⁺ 327.85.

(1S,2R,3R,5R)-5-(4,5-Dichloro-7H-pyrrolo[2,3-*d*]pyrimidin-7-yl)-3-(hydroxymethyl)-3methyl-4-methylenecyclopentane-1,2-diol (3c): Purified yield: 65.6% (in two steps), off white solid, (TLC: R_f 0.3, 7% MeOH in CH₂Cl₂); $[\alpha]_D^{20}$: -3.39 (c = 0.25, DMSO); UV (MeOH) λ_{max} : 273.25 nm; ¹H NMR (400 MHz, CD₃OD) δ : 1.20 (s, 3H), 3.52 (d, J = 10.4 Hz, 1H), 3.66 (d, J = 11.6 Hz, 1H), 4.01 (d, J = 4.4 Hz, 1H), 4.56 (d, J = 2.4 Hz, 1H), 4.69 (dd, J = 4.8 and 10.0 Hz, 1H), 5.09 (d, J = 3.2 Hz, 1H), 5.74–5.78 (m, 1H), 7.71 (s, 1H), 8.56 (s, 1H); MS-ESI (m/z): [M+1]⁺ 343.89.

(1S,2R,3R,5R)-5-(5-Bromo-4-chloro-7H-pyrrolo[2,3-*d*]pyrimidin-7-yl)-3-(hydroxymethyl)-3-methyl-4-methylenecyclopentane-1,2-diol (3d): Purified yield: 70.7% (in two steps), off white solid, (TLC: R_f 0.3, 7% MeOH in CH₂Cl₂); $[\alpha]_D^{20}$: +7.66 (c = 0.25, DMSO); UV (MeOH) λ_{max} : 273.25 nm; ¹H NMR (400 MHz, CD₃OD) δ : 1.20 (s, 3H), 3.52 (d, *J* = 10.8 Hz, 1H), 3.67 (d, *J* = 11.2 Hz, 1H), 4.01 (d, *J* = 4.8 Hz, 1H), 4.56 (d, *J* = 2.8 Hz, 1H), 4.71 (dd, *J* = 4.8 and 10.4 Hz, 1H), 5.09 (d, *J* = 3.6 Hz, 1H), 5.74–5.78 (m, 1H), 7.77 (s, 1H), 8.56 (s, 1H); MS-ESI (*m/z*): [M+1]⁺ 387.83 and [M+2]⁺ 389.81.

(1S,2R,3R,5R)-5-(4-Chloro-5-iodo-7H-pyrrolo[2,3-*d*]pyrimidin-7-yl)-3-(hydroxymethyl)-3methyl-4-methylenecyclopentane-1,2-diol (3e): Purified yield: 84.2% (in two steps), off white solid, (TLC: R_f 0.3, 7% MeOH in CH₂Cl₂); $[\alpha]_D^{20}$: + 8.99 (c = 0.25, DMSO); UV (MeOH) λ_{max} : 272.25 nm; ¹H NMR (400 MHz, CD₃OD) δ : 1.19 (s, 3H), 3.52 (d, J = 10.8 Hz, 1H), 3.67 (d, J = 10.8 Hz, 1H), 4.01 (d, J = 4.4 Hz, 1H), 4.54 (d, J = 2.8 Hz, 1H), 4.72 (dd, J = 4.4 and 10.0 Hz, 1H), 5.08 (d, J = 2.8 Hz, 1H), 5.72–5.76 (m, 1H), 7.83 (s, 1H), 8.54 (s, 1H); MS-ESI (*m*/*z*): [M+1]⁺ 435.80.

General procedure for the synthesis of 4a-e: A screw-cap vial equipped with a magnetic bar was charged with NH₃ in methanol (7M, 7 ml) and appropriate **3a-e** (0.80 mmol) was added. The vial was sealed and heated to 100 °C with stirring for 24 h. The reaction mixture was concentrated under reduced pressure and crude was purified by flash chromatography on silica gel (230-400 mesh, elution gradient 0-9% MeOH in CH_2Cl_2).

(1*S*,2*R*,3*R*,5*R*)-5-(4-Amino-7*H*-pyrrolo[2,3-*d*]pyrimidin-7-yl)-3-(hydroxymethyl)-3-methyl-4-methylenecyclopentane-1,2-diol (4a): Purified yield: 78%, off white solid, (TLC: $R_f 0.2$, 10% MeOH in CH_2Cl_2); $[\alpha]_D^{-20}$: +2.73 (c = 0.25, DMSO); mp: 210-220 °C; UV (MeOH) λ_{max} : 274.25 nm; ¹H NMR (400 MHz, CD₃OD) δ : 1.19 (s, 3H), 3.51 (d, *J* = 10.8 Hz, 1H), 3.66 (d, *J* = 10.8 Hz, 1H), 4.01 (d, *J* = 5.2 Hz, 1H), 4.55 (d, *J* = 3.2 Hz, 1H), 4.73 (dd, *J* = 4.4 and 9.6 Hz, 1H), 5.07 (d, *J* = 3.2 Hz, 1H), 5.50–5.53 (m, 1H), 6.70 (d, *J* = 3.2 Hz, 1H), 7.27 (d, *J* = 3.2 Hz, 1H), 8.08 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 18.9, 49.2, 62.7, 69.2, 73.5, 74.3, 99.8, 102.0, 107.8, 123.8, 148.3, 149.5, 155.0, 155.3; HRMS (ESI-Orbitrap) m/z: Exact mass calculated for $C_{14}H_{19}N_4O_3$ [M+H]+: 291.1457, found: 291.1422.

(1*S*,2*R*,3*R*,5*R*)-5-(4-Amino-5-fluoro-7*H*-pyrrolo[2,3-*d*]pyrimidin-7-yl)-3-(hydroxymethyl)-3methyl-4-methylenecyclopentane-1,2-diol (4b): Purified yield: 55%, off white solid, (TLC: Rf 0.2, 10% MeOH in CH₂Cl₂); $[\alpha]_D^{20}$: -6.43 (c = 0.25, DMSO); mp: 243–247 °C; UV (MeOH) λ_{max} : 280.25 nm; ¹H NMR (300 MHz, CD₃OD) δ : 1.18 (s, 3H), 3.50 (d, *J* = 10.8 Hz, 1H), 3.63 (d, *J* = 10.8 Hz, 1H), 3.98 (d, *J* = 4.8 Hz, 1H), 4.59 (d, *J* = 3.2 Hz, 1H), 4.63 (dd, *J* = 4.5 and 9.6 Hz, 1H), 5.07 (d, J = 3.3 Hz, 1H), 5.47–5.51 (m, 1H), 7.00 (d, J = 2.1 Hz, 1H), 8.02 (s, 1H); ¹⁹ F NMR (376 MHz, DMSO-*d*₆) δ : –168.25; ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 18.9, 49.1, 62.0, 69.1, 73.4, 74.2, 91.9, 105.2, 107.8, 140.3, 146.4, 152.3, 154.2, 155.7; HRMS (ESI-Orbitrap) m/z: Exact mass calculated for C₁₄H₁₈FN₄O₃ [M+H]⁺: 309.1285, found: 309.1325.

(1*S*,2*R*,3*R*,5*R*)-5-(4-Amino-5-chloro-7*H*-pyrrolo[2,3-*d*]pyrimidin -7-yl)-3-(hydroxymethyl)-3-methyl-4-methylenecyclopentane-1,2-diol (4c): Purified yield: 80%, off white solid, (TLC: Rf 0.2, 10% MeOH in CH₂Cl₂); $[\alpha]_D^{20}$: -30.41 (c = 0.25, DMSO); mp: 226–229 °C; UV (MeOH) λ_{max} : 281.25 nm; ¹H NMR (300 MHz, CD₃OD) δ : 1.18 (s, 3H), 3.51 (d, *J* = 11.1 Hz, 1H), 3.65 (d, *J* = 10.8 Hz, 1H), 3.99 (d, *J* = 4.8 Hz, 1H), 4.59 (d, *J* = 2.7 Hz, 1H), 4.68 (dd, *J* = 4.8 and 9.9 Hz, 1H), 5.08 (d, *J* = 3.0 Hz, 1H), 5.46–5.51 (m, 1H), 7.24 (s, 1H), 8.05 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 18.9, 49.2, 62.4, 69.1, 73.5, 74.2, 99.4, 101.4, 107.9, 120.0, 149.6, 152.2, 154.7, 156.7; HRMS (ESI-Orbitrap) m/z: Exact mass calculated for C₁₄H₁₈ClN₄O₃ [M+H]⁺: 325.0989, found: 325.1031.

(1*S*,2*R*,3*R*,5*R*)-5-(4-Amino-5-bromo-7*H*-pyrrolo[2,3-*d*] pyrimidin -7-yl)-3-(hydroxymethyl)-3-methyl-4-methylenecyclopentane-1,2-diol (4d): Purified yield: 75%, off white solid, (TLC: Rf 0.2, 10% MeOH in CH₂Cl₂); $[\alpha]_D^{20}$: +6.14 (c = 0.25, DMSO); mp: 228–232 °C; UV (MeOH) λ_{max} : 283.25 nm; ¹H NMR (300 MHz, CD₃OD) δ : 1.18 (s, 3H), 3.51 (d, *J* = 11.1 Hz, 1H), 3.65 (d, *J* = 11.1 Hz, 1H), 3.98 (d, *J* = 4.5 Hz, 1H), 4.58 (d, J = 2.7 Hz, 1H), 4.69 (dd, *J* = 4.8 and 9.9 Hz, 1H), 5.08 (d, *J* = 2.7 Hz, 1H), 5.48–5.51 (m, 1H), 7.30 (s, 1H), 8.04 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 18.9, 49.2, 62.5, 69.1, 73.5, 74.2, 85.4, 100.6, 107.9, 122.5, 150.0, 152.0, 154.7, 156.8; HRMS (ESI-Orbitrap) m/z: Exact mass calculated for C₁₄H₁₈BrN₄O₃ [M+H]⁺: 369.0484, found: 369.0522.

(1S,2R,3R,5R)-5-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-3-(hydroxymethyl)-3-

methyl-4-methylenecyclopentane-1,2-diol (4e): Purified yield: 80%, off white solid, (TLC: Rf 0.2, 10% MeOH in CH₂Cl₂); [α]_D²⁰: +1.92 (c = 0.25, DMSO); mp: 227–228 °C; UV (MeOH) λ_{max} : 290.25 nm; ¹H NMR (300 MHz, CD₃OD) δ : 1.17 (s, 3H); 3.51 (d, *J* = 11.1 Hz, 1H), 3.65 (d, *J* = 10.8 Hz, 1H), 3.99 (d, *J* = 4.8 Hz, 1H), 4.57 (d, *J* = 2.4 Hz, 1H), 4.70 (dd, *J* = 4.8 and 9.9 Hz, 1H), 5.07 (d, *J* = 3.0 Hz, 1H), 5.40–5.50 (m, 1H), 7.37 (s, 1H), 8.04 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 18.9, 49.2, 50.4, 62.6, 69.2, 73.6, 74.3, 102.8, 107.9, 127.9, 150.7, 151.6, 154.8, 157.1; HRMS (ESI-Orbitrap) m/z: Exact mass calculated for C₁₄H₁₈IN₄O₃ [M+H]⁺: 417.0345, found: 417.0377.

Scheme 2. Synthesis of 7-ethynyl/vinyl derivatives (4f-g). Reagents and conditions: i) a) Trimethylsilylacetylene, CuI, Et₃N, Pd(PPh₃)₄, DMF, 50 °C, 3 h; b) K₂CO₃, MeOH, rt, 30 min; ii) Tri-*n*-butyl vinyl tin, Pd(PPh₃)₄, DMF, 110 °C, 3 h.

Procedure for the synthesis of 4f: A suspension of **4e** (0.60 mmol), trimethylsilyl acetylene (3.0 mmol), CuI (0.06 mmol), Et₃N (3.0 mmol) and (PPh₃)₄Pd (0.06 mmol) in DMF was stirred at 50 °C under sealed condition for 3 h. The reaction mixture was concentrated under reduced pressure and crude was purified by silica gel (100-200 mesh) column chromatography, elution gradient 0-6% MeOH in CH₂Cl₂ to afford trimethylsilyl protected compound. The deprotection was carried out by stirring in methanol and K₂CO₃ (3.0 mmol) at rt for 30 min. The reaction mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel (230-400 mesh), eluting gradient 0-7% MeOH in CH₂Cl₂.

(1*S*,2*R*,3*R*,5*R*)-5-(4-Amino-5-ethynyl-7*H*-pyrrolo[2,3-*d*]pyrimid in-7-yl)-3-(hydroxymethyl)-3-methyl-4-methylenecyclopentane-1,2-diol (4f): Purified yield: 62%, off white solid. (TLC: Rf 0.1, 10% MeOH in CH₂Cl₂); $[\alpha]_D^{20}$: -2.17 (c = 0.25, DMSO); mp: 183-187 °C; UV (MeOH) λ_{max} : 283.25 nm; ¹H NMR (400 MHz, CD₃OD) δ : 1.18 (s, 3H), 3.51 (d, *J* = 10.8 Hz, 1H), 3.66 (d, *J* = 10.8 Hz, 1H), 3.70 (s, 1H), 3.99 (d, *J* = 4.4 Hz, 1H), 4.58 (d, *J* = 2.8 Hz, 1H), 4.72 (dd, *J* = 4.4 and 10.0 Hz, 1H), 5.08 (d, *J* = 3.2 Hz, 1H), 5.48–5.44 (m, 1H), 7.48 (s, 1H), 8.06 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 18.9, 49.3, 62.8, 69.2, 73.5, 74.2, 77.7, 82.7, 93.0, 102.1, 108.0, 128.5, 150.0, 152.4, 154.8, 157.4; HRMS (ESI-Orbitrap) m/z: Exact mass calculated for C₁₆H₁₉N₄O₃ [M+H]⁺: 315.1457, found: 315.1418.

Procedure for the synthesis of 4g: To a suspension of **4e** (0.6 mmol), $Pd(PPh_3)_4$ (0.06 mmol) in anhydrous DMF under argon atmosphere, tri-*n*-butyl(vinyl)tin (1.8 mmol) was added. The resulting mixture was heated at 110 °C for 3 h under sealed condition. Upon completion of reaction, concentrated the volatile under reduced pressure and crude was purified by flash chromatography on silica gel (230-400 mesh), elution gradient 0-7% MeOH in CH₂Cl₂.

(1*S*,2*R*,3*R*,5*R*)-5-(4-Amino-5-vinyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-7-yl)-3-(hydroxymethyl)-3methyl-4-methylenecyclopentane-1,2-diol (4g): Purified yield: 60%, off white solid, (TLC: Rf 0.1, 10% MeOH in CH₂Cl₂); $[\alpha]_D^{20}$: -14.28 (c = 0.25, DMSO); mp: 194–198 °C; UV (MeOH) λ_{max} : 294.25 nm; ¹H NMR (300 MHz, CD₃OD) δ : 1.19 (s, 3H), 3.52 (d, *J* = 11.1 Hz, 1H), 3.67 (d, *J* = 11.1 Hz, 1H), 4.00 (d, *J* = 4.8 Hz, 1H), 4.57 (d, *J* = 2.7 Hz, 1H), 4.78 (dd, *J* = 4.8 and 9.9 Hz, 1H), 5.07 (d, *J* = 3.3 Hz, 1H), 5.24 (dd, *J* = 1.5 and 10.8 Hz, 1H), 5.44–5.48 (m, 1H), 5.58 (dd, *J* = 1.8 and 17.4 Hz, 1H), 7.05 (dd, *J* = 10.8 and 11.1 Hz, 1H), 7.35 (s, 1H), 8.02 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 18.9, 49.2, 62.3, 69.2, 73.5, 74.1, 100.2, 107.7, 112.1, 113.3, 120.0, 129.2, 151.1, 155.0, 157.5; HRMS (ESI-Orbitrap) m/z: Exact mass calculated for C₁₆H₂₁N₄O₃ [M+H]⁺: 317.1614, found: 317.1575.

¹H and ¹³C NMR Copies:

S7

Plotname: 021604B1957_PROTON_01_plot01

NOE correlation of the protons in 4c (correlated protons has shown the increase in the intensity of the signal in the upper the line).

Plotname: 021604B0003_PROTON_01_plot01

S22

X-ray Crystal Structure Data of 4c:

 $C_{14}H_{17}CIN_4O_3$ (M =324.7650 g/mol): monoclinic, space group P21 (no. 4),unit cell dimensions a =6.28(5) Å alpha = 90 °, b = 9.06 (10) Å beta = 90.1(6) °, c = 9.91 (6) Å gamma =90 °, V = 765.46(9) Å3, Z = 2, T = 293 K, Dcalc = 1.405 Mg/m3, Data completeness =1.84/1.00,Theta(max) = 26.370,R(reflections)=0.0352(2863), R2(reflections)=0.0985(3147), s = 0.952 and Npar = 222.