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Introduction

The text, table, and figures presented here are auxiliary information for the main text. The same
data processed as in the main text are used in these supplemental figures.

S1 Description of the model physics and uncertainties in COSP

The previous version 0 of the E3SM is a descendent of CESM1. The atmospheric
component of the current version 1, the E3SM Atmosphere Model version 1 (EAMv1),
uses a spectral element dynamical core at standard low (~100 km) and high (~25 km)
horizontal resolutions, and adopts a much higher vertical resolution. The primary
changes in EAMv1 physics relevant to this study include the use of Cloud Layers Unified
by Binormals (CLUBB, Bogenschutz et al., 2012; Golaz et al., 2002; Larson et al., 2002;
Larson and Golaz, 2005; Larson, 2017) for turbulence, shallow convection, and cloud
macrophysics; the second version of Morrison and Gettelman microphysics (MG2,
Gettelman and Morrison, 2015); and the 4-mode version of the Modal Aerosol Module



(MAMA4) with marine organics (Burrows et al., 2016). The general characteristics of
clouds and precipitation are documented in Xie et al. (2018).

CAMS5’s moist turbulence is characterized by the Bretherton and Park (2009)
parameterization, while microphysics is represented by the older MG1 (Morrison and
Gettelman, 2008). Stratiform condensation and cloud fraction are similar to Zhang et al.
(2003) as adapted in Neale et al. (2010). CM3’s stratiform cloud liquid and fraction are
determined according to Tiedtke (1993) as adapted by Anderson et al. (2004) and
Donner et al. (2011). Shallow cumulus is parameterized as in Bretherton et al. (2004).
Subgrid variability is allowed by considering a normally-distributed vertical velocity with
cloud droplet activation determined through integration (Ghan et al., 1997).

In ModelE2, stratiform cloud water is determined prognostically by a Sundqvist-
type scheme with cloud fraction determined diagnostically (Del Genio et al., 1996).
Updates to this scheme from ModelE were explained in Schmidt et al. (2006).

Further details on the above CMIP5 models can be found in Meehl et al. (2013)
for CAMS5, Donner et al. (2011) for CM3, and Schmidt et al. (2014) for ModelE2.

In this study, we use the LCC from the CALIPSO satellite simulator in the models,
but Song et al. (2018) found a discrepancy between satellite simulator cloud fraction
and model diagnostic cloud fraction due to deficiencies in the sub-column generator in
COSP. We compare the model diagnostic LCCs from the E3SMv1 runs to those from the
satellite simulator in Fig. S8. Generally, the one-to-one line lies within the bulk of the
25™ and 75 percentiles of binned diagnostic LCCs. The model diagnostic values can be
much higher than COSP values as represented by the maximum bin diagnostic LCCs, but
this is particularly problematic for low LCCs from the satellite simulator, consistent with
Song et al. (2018). This problem is reduced for LCC > ~40% which is a focus of this
paper, because the diagnostic clouds are likely to be more homogeneous for these LCCs.
Therefore, we continue to rely on the satellite simulator LCCs, but we use multiple
observational datasets in model evaluations (see Section 2.2).

S2 Other satellite climatologies used in this study

To better quantify the uncertainty in using other climatologies from previous
studies, we also utilize data from the International Satellite Cloud Climatology Project
(ISCCP) D2 product. In these products, the various cloud types are differentiated by
cloud top pressure and cloud optical thickness. D2 is the climatological summary
product that provides monthly mean CF for each layer (low, middle, and high) and for
each individual type using the revised algorithm (Rossow and Schiffer, 1999) on a 280-
km equal area grid. The D2 CFs are regridded to a 2.5° x 2.5° regular grid.

Furthermore, we compare the two satellite CF products to in-situ global
observations from an update to the Warren et al. (1986, 1988) climatology, the
Extended Edited Cloud Reports Archive (EECRA, Hahn and Warren, 2009; Eastman et al.,
2011). This climatology provides seasonal mean CF for the various layers (low, middle,



and high) as well as the various cloud types in each layer on a 5° x 5° equal-area regular
grid. We use the ocean climatology for 1954-1997.

S3 Defining the LCC45+ decks

Since low-level stratiform clouds can co-exist with other cloud types including
cumuliform clouds, a threshold should be chosen to differentiate a regime in which low
stratiform clouds (that we are most interested in) are dominant versus those for lower
LCC in which they are not necessarily so. The median frequency of low stratiform clouds
in the 2B-CLDCLASS-LIDAR product in all of the extended regions rises above ~40% for
LCC > 50% CF, whereas high and middle cloud frequencies decrease below ~40% for LCC
> 30% CF (Figure S9). Shallow cumulus clouds are less frequent than both of these cloud
types for all LCCs. Thus, low stratiform clouds are increasingly dominant for LCC > 40%
CF. Therefore, we choose an LCC threshold of 45% CF to define the stratiform cloud
decks. We call these regions the LCC45+ decks.

S4 Evaluation of the E3SMv1 coupled historical simulation

Additional dynamical sensitivity can be studied when coupling the atmosphere
model to an ocean model. The sensitivity of this coupling can be assessed by comparing
the results from the fully coupled historical simulations versus the prescribed SST AMIP
runs. The ensemble mean of the former generally produces similar mean annual cycles
in LCC to that of the latter in all of the LCC45+ decks. Notably in the NEP, the coupled
historical runs do not produce a maximum in July as in the AMIP runs, decreasing from
May until September (Figure 1). During this decreasing LCC period, historical LCC is 4%
CF lower than that of the AMIP runs. Some improvement is found for some seasons and
decks in centroid distances, while area and overlap ratios generally are reduced (Figure
2). Average centroid distances over all seasons for the historical ensemble mean range
from 54 to 1316 km compared to 88-995 km in the AMIP runs. Average area ratios for
the historical ensemble are 0.21-1.16 (which are better compared to 0.78-1.08 in the
AMIP runs), and average overlap ratios are 0.20-0.81 (which are worse compared to
0.16-0.63 in AMIP).
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Table S1. The Marine Subtropical Stratocumulus Regions.

Marine subtropical Core regions Extended regions?
stratiform cloud deck

region

Northeast Pacific (NEP) 20°-30°N, 120°-130°W 10°-40°N, 110°-145°W
Northeast Atlantic (NEA) 15°-25°N, 25°-35°W 0°-30°N, 15°-50°W
Southeast Pacific (SEP) 10°-20°S, 80°-90°W 5°-35°S, 70°-105°W
Southeast Atlantic (SEA) 10°-20°S, 0°-10°E 5°-35°S, 20°W-15°E
Southern Indian Ocean 25°-35°S, 95°-105°E 10°-40°S, 80°-115°E
(S10)

aLCC > 45% within these regions encapsulate all or most of the low stratiform cloud
decks.
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Figure S1. The biases in maximum low cloud cover (LCC) of the LCC45+ decks in E3SMv1
AMIP runs, CESM1-CAM5, GFDL CM3, GISS ModelE2, E3SMv1 sensitivity test, and
E3SMv1 historical runs to GOCCP in each season and each region. No bar is shown
whenever an LCC45+ deck is not produced by a model.
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Figure S2. Seasonal mean LCC (% CF) in (left) NEP and (right) SEP in June-August (JJA)
from (top to bottom) CALIPSO-GOCCP for 2007-2014, E3SMv1 for 1990-2009, GFDL CM3
for 1990-2008, CESM1-CAMS5 for 1990-2005, and GISS ModelE2 for 1990-2009.
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Figure S3. The mean annual cycle in lower tropospheric stability (LTS, top) and vertical
velocity (bottom) from ERA-Interim and MERRA-2 versus E3SMv1, CESM1-CAMS5, GFDL
CM3, and GISS ModelE2 in the extended regions. The reanalyses, E3SMv1, and CESM1-
CAMS values were regridded to the coarser (2° latitude x 2.5° longitude) resolution of
CM3 and ModelE2 before averaging.
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Figure S4. The potential temperature profiles up to 500 hPa in December-February
(DJF) and June-August (JJA) in ERA-Interim (black) and E3SMv1 (green). Profiles are
shown for grid cells in the middle of the core regions and farther offshore corresponding
roughly to the center of the misplaced cloud decks in E3SMv1 in the (top) NEP and
(bottom) SEP. The numbers in the bottom right are the lower tropospheric stability
(LTS).



40

30 — =
i )
x = - [l ERA-Interim
S - ]
B E3SMvi AMIP
(IL) 20 B | moms
L - H CAM5
E3SMv1 hist

0 | | | | |
NEP NEA SEP SEA SIO

Region

Figure S5. The range of LTS values in the LCC45+ decks in all months for each region in
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Figure S6. Median differences in 700-hPa vertical velocity (A®z7oo hra) for grid cells in

which LCC is decreased (ALCC < 0) and increased (ALCC > 0) in each extended region.
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Figure S7. CESM large ensemble (CESM-LE) standard deviation in JJA seasonal mean LCC
(% CF) in (a) NEP and (b) SEP. Note the difference in scale from Figure 3c-f.
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Figure S8. Boxplots of model-derived LCC for 10% CALIPSO simulator LCC bins from
COSP over all of the extended regions in E3SMv1. The top and bottom of the boxes are
the upper and lower quartiles, respectively, and the horizontal line indicates the bin
medians. The wings of each box indicate the maximum and minimum values in the bin.
The slantwise line represents the one-to-one line.
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Figure S9. The median frequency of 2B-CLDCLASS-LIDAR cloud types per 10% CF bins of
LCC in CALIPSO-GOCCP over all of the extended regions.

14



