Ruth Ruth Rappaport Children's Hospital	1
Rambam Health Care Campus	2
	3
This supplement contains the following item:	4
A translation* of the original and final protocol (no changes done),	5
including statistical analysis methods described in the end of the	6
protocol (page 18).	7
* The original protocol was not in English.	8
	9
Study Protocol:	10
	11
RAM Cannula vs. Binasal Prongs/Mask for Delivering NIPPV in	12
Preterm Infants :Non-Inferiority, Randomized, Controlled Trial	13
	14
	15

Funding: None	17
Principal Investigator: Dr. Ori Hochwald, Rambam medical center,	18
Haifa, Israel	19
Date: Dec 26 th 2016	20

Version # 1 / 26.12.2016

Study summary - flow diagram

Matarot Helsinki

0617-16-RMB

Version # 1 / 26.12.2016

Please think about the environment before printing

Matarot Helsinki

0617-16-RMB

Version # 1 / 26.12.2016

TABLE OF CONTENT		
1. Synopsis	•••••	4
2. Introduction	•••••	7
3. Methods	•••••	9
3.1 Design	9	
3.2 Ethics	9	

1. Synopsis

3.1 Desig 3.2 Ethics 3.7 Randomization..... 3.10 Safety...... 16 3.11 Ethical Aspect...... 16 4. Satistical Analysis...... 18

Please think about the environment before printing 💕 אנא חשוב על הסביבה לפני הדפסת המסמך

Full title	RAM Cannula vs. Binasal Prongs/Mask for Delivering NIPPV in
	Preterm Infants :Non-Inferiority, Randomized, Controlled Trial
Principal	Dr. Hochwald Ori
investigator	
Short background	Thanks to ease of use, perceived patient comfort and
	reduced nasal trauma Ram cannula use has gained
	increasing popularity and was adopted as default by many
	NICUs without strong evidence supporting its use. In
	contrast, there are many other NICUs that completely refrain
	from using Ram cannula in concern that this long thin
	interface delivers reduced and suboptimal support.
	We hypothesized that using Ram cannula would be inferior
	to short prongs or mask in preterm infants who require
	noninvasive ventilation for the primary treatment of RDS or
	post extubation and would result in a higher rate of
	endotracheal ventilation.
Primary outcome	The need for endotracheal ventilation within 72 hours after
	initiation of NIPPV, i.e. "Treatment failure".
Secondary	• Failure between 72 hours and 7 days after initiation of
outcomes	NIPPV
	Nasal trauma
	• The need for surfactant

Version # 1 / 26.12.2016

	Complications of prematurity (including
	bronchopulmonary dysplasia, patent ductus
	arteriosus, necrotizing enterocolitis (bell's staging 2-
	3), sepsis, intraventricular hemorrhage and
	periventricular leukomalacia
	• Air leaks.
	Length of invasive and noninvasive respiratory
	support
	Time to full feeds and
	Length of hospital stay.
Design	Dual center, randomized, controlled, non-inferiority trial.
Patients	Premature infants born in gestational age between 24 ⁰ and
	33 ⁶
Inclusion criteria	Need for noninvasive ventilatory support either
	• For initial treatment of RDS, <u>or</u>
	Post first extubation after birth.
	Written informed consent. Antepartum consent should be
	sought when possible, otherwise parents can consent at the
	earliest opportunity within 4 hours after NIPPV is initiated.
Exclusion criteria	Significant morbidity apart from RDS including:
	Cardiac disease (not including patent ductus

	arteriosus)
	Congenital malformation
	Cardiovascular or respiratory instability because of
	sepsis, anemia or severe intra-ventricular hemorrhage.
	Written consent not provided within 4 hours from NIPPV
	initiation
Devices (type of	- Ram (Neotech, Valencia, CA)
cannula)	- Short binasal prongs - including the currently used devices
	in the two units participating in the study:
	• (INCA Nasal Cannula [CooperSurgical, Inc, Trumbull,
	CT] <u>or</u>
	• EasyFlow prongs or mask [Fritz Stephan GmbH]).
Number of	164, 82 in each group
patients required	
Recruiting	Rambam medical center, Haifa, Israel
centers	Bnai Zion medical center, Haifa, Israel
Non inferiority	We prespecified a noninferiority margin for Ram cannula of
analysis	15% above the failure (intubation within 72 hours) rate for
	short prongs or mask. Using Ram cannula will be considered
	noninferior to using SPM if the upper limit of the two-sided
	95% confidence interval is less than 15% and the lower limit
	of the 95% confidence interval is below zero.

0617-16-RMB

Funding	None
Conflict of	None
interest	
Trial Registration	Clinicaltrials.gov: NCT03081611
	(https://clinicaltrials.gov/ct2/show/NCT03081611)

Matarot Helsinki

0617-16-RMB

Version # 1 / 26.12.2016

Vatarot Helsinki 0617-16-RMB Version # 1 / 26.12.2 Please think about the environment before printing אנא חשוב על הסביבה לפני הדפסת המסמך

2. Introduction	72
In the recent years, in an effort to avoid endotracheal intubation and	73
invasive mechanical ventilation, there has been an increase in the use of	74
noninvasive ventilation in very low birth (VLBW) preterm infants as the initial	75
respiratory support after birth or after extubation ^{1,2} .	76
Different interfaces are available for applying noninvasive ventilation.	77
The commonly used interfaces include short binasal prongs, nasal masks and	78
Ram cannula. The different properties of these interfaces may affect the	79
pressure and volume transmission, which may have influence on clinical	80
outcomes ³ .	81
The most commonly used interfaces, the standard short binasal prongs	82
and masks, are located at the end of normal caliber ventilator tubing.	83
Unfortunately, short nasal prongs and masks are occasionally associated with	84
discomfort and pressure-related nasal injury ⁴ . The Ram cannula is made of	85
softer material with a long and narrow tubing for transmitting the pressure to	86
thin walled prongs. This results in a perceived ease of use, comfort and less	87
nasal trauma 5 . However, there is concern that this long thin interface delivers	88
reduced and suboptimal pressure and support compared with the short nasal	89
prongs and masks $^{6-8}$. Despite its widespread use 9 , the clinical efficacy of the	90

Matarot Helsinki

0617-16-RMB

Ram cannula was not thoroughly studied. To adopt this method for clinical

practice in preterm infants it has to be shown to be non-inferior to binasal	
prongs/mask interfaces.	93

The most important factor in noninvasive ventilation of premature 94 infants is supporting the functional residual capacity (FRC) with continuous 95 positive airway pressure (CPAP). This might be the reason for the advantage of 96 NCPAP over HFNC in these infants ^{10,11}. While both NCPAP and NIPPV support 97 the FRC with NCPAP, different studies showed NIPPV to be either as good as 98 or superior to NCPAP^{12,13}. Thus, we will use in this our study the NIPPV as a 99 preferred mode, and evaluate the two interfaces using it. 100

There are a limited number of studies assessing Ram cannula efficacy in 101 delivering noninvasive ventilation, most of them are bench testing using lung 102 models or focused on measurements of the applied pressures. Those studies 103 used the manufacturer recommendation for prong occlusion of 60-80% of the 104 nares space ⁶. Gerdes et al measured mean airway pressure (MAP) delivered 105 through the Ram Cannula as a function of percent nares occlusion in a 106 simulated lung model. With 60-80% nares occlusion, overall delivered MAPs 107 were around 60% of the set CPAP levels. With 100% occlusion the MAPs were 108 within ± 0.5 cmH₂O of the set CPAP levels ⁷. In summary, studies suggest that 109 using Ram cannula would be potentially more efficacious once lower leak 110 around the cannula and higher ventilatory set pressures are used ^{3,6–8}. We 111

0617-16-RMB

found no published randomized controlled trial that compared NIPPV using	112
Ram cannula and short nasal prongs for the initial treatment of RDS.	113

Compared to short prongs, the RAM cannula is made of softer material 114 and is less cumbersome, resulting in a perceived more comfort and less nasal 115 trauma ⁵. In their study on noninvasive ventilation, Nzegwu et al had 17.9% of 116 nasal breakdown using short prongs. In case of nasal breakdown they 117 switched to Ram cannula, and showed no new instances of nasal breakdown 118 or injury with its use 5. 119

We hypothesized that because of its long thin design, using Ram 120 cannula would be inferior to binasal prongs/mask in preterm infants who 121 require nasal support and would result in a higher rate of endotracheal 122 ventilation. 123

In this randomized, controlled, non-inferiority study, we aim to 124 compare the ability to prevent intubation in preterm infants in need for 125 ventilatory support for the initial treatment of RDS or post extubation by using 126 nasal intermittent positive pressure ventilation (NIPPV) with either Ram 127 cannula or short binasal prongs/mask (SPM) interfaces. 128

3. Methods	130
	131
3.1 Design	132
Randomized prospective, open, controlled, non-inferiority dual-center	133
study was conducted in the tertiary neonatal intensive care units of Rambam	134
Medical Center and Bnai Zion Medical Center in Haifa, Israel.	135
Blinding of the intervention is impossible in this study.	136
	137
3.2 Ethics	138
This trial was approved by the local ethics committee and was entered	139
to ClinicalTrials.gov database, registration number NCT03081611.	140
	141
3.3 Subjects	142
premature infants born in gestational age between 24 ⁰ and 33 ⁶ weeks	143
as assessed by the obstetrical team from dating of last menstrual period or	144
ultrasound	145
	146
3.4 Subgroups: The study population is divided into two groups:	
3 Matarot Helsinki 0617-16-RMB Version # 1 / 26.12.2016	
Please think about the environment before printing 🚔 אנא חשוב על הסביבה לפני הדפסת המסמך	

•	The initial-treatment group - infants that needs noninvasive ventilation	148	
	during the first 7 days of life without prior invasive ventilation in the	149	
	NICU.	150	
•	The post-extubation group includes infants that needed noninvasive	151	
	ventilation during the first 28 days of life after any period of	152	
	endotracheal ventilation in the NICU. The latter group will includ infants	153	
	from the initial-treatment group that are ventilated after the initial	154	
	treatment with NIPPV. These infants will keep the same interface	155	
	according to the initial allocation.	156	
		157	
3.5 In	3.5 Inclusion criteria		
1.	Need for noninvasive ventilatory support:	159	
	For initial treatment all including:	160	
	 Clinical RDS including tachypnea, apneic episodes, 	161	
	grunting and/or retractions	162	
	◦ Need for more than "low flow" (≤2 lpm) for keeping	163	
	saturation >90% and/or pCO ₂ \leq 60 mmHg.	164	
	\circ The decision on the need for ventilatory support will be	165	
	assessed by the attending clinician.	166	
	• Post first extubation after birth – all infants will be treated with	167	
	NIPPV.	168	

0617-16-RMB

2. Both parents of all participating infants will provide written informed	169	
consent. Antepartum consent will be sought when possible. If	170	
antepartum consent is not sought, parents will be approached and ask	171	
for consent at the earliest opportunity within 4 hours after NIPPV is	172	
initiated.	173	
	174	
3.6 Exclusion criteria		
1. Significant morbidity apart from RDS including:	176	
Cardiac disease (not including patent ductus arteriosus)	177	
Congenital malformation	178	
Cardiovascular or respiratory instability because of sepsis, anemia or	179	
severe intra-ventricular hemorrhage.	180	
2. Written consent not provided within 4 hours from NIPPV initiation.	181	
	182	

3.7 Randomization	184
Pre-randomization stratification will be done by groups (initial-	185
treatment and post-extubation) and by BW (< 1250 gr and \ge 1250 gr) in each	186
study center, separately. Multiple births will be randomized individually. The	187
randomization sequence is computer generated with block size of 4. A note	188
with the type of the assigned interfaces (Ram cannula or short prongs/mask)	189
will be provided in consecutively numbered, opaque envelopes.	190
	191
3.8 Interventions	192
Endotracheal intubation criteria in the delivery room are ¹⁴ :	193
 Heart rate ≤100 beats/min despite after noninvasive positive pressure 	194
applied	195
Insufficient spontaneous respiratory	196
Marked and increasing dyspnea.	197
	198
Early nasal respiratory support with NIPPV will be initiated in any spontaneous	199
breathing premature infant meeting the inclusion criteria.	200

201

Exogenous surfactant (200 mg/kg for the 1st dose, 100 mg/kg for the 2nd	202
dose, 1 to 2 doses as needed, Curosurf; Chiesi Farmaceutici, Parma, Italy) will	203
be given only as rescue therapy.	204

205

Study intervention

206

Eligible infants will be randomly assigned to NIPPV with either Ram	207
Cannula (Neotech, Valencia, CA) or short binasal prongs (INCA Nasal Cannula	208
[CooperSurgical, Inc, Trumbull, CT] or EasyFlow prongs [Fritz Stephan GmbH]).	209
The study protocol allows use of EasyFlow mask (Fritz Stephan GmbH) or	210
alternating between short prongs and mask in cases of nasal trauma or for	211
prevention of nasal trauma per unit protocol. Both prongs and mask are	212
referred to as short prongs/mask interface (SPM) for the study purposes. No	213
cross over between Ram cannula and short prongs/mask allowed in the study.	214

The Ram Canula prongs size will be selected so it will fill approximately21580% of nares. The short prongs size will be selected as per the manufacturer's216instructions so it will fill close to 100% of nares without causing local pressure.217If used, the mask size will be chosen as per the manufacturer's instructions.218

The study team is encouraged to obtain an antepartum consent. If not219approached before NIPPV is initiated, NIPPV will be initiated with Ram220cannula, and once parents gave their consent, treatment will continue with an221

Please think about the environment before printing 💕 אנא חשוב על הסביבה לפני הזפסת המסמך

initiated.

NIPPV will be administered using Leoni (Heinen&Löwenstein, Bad Ems, 226 Germany) or SLE 5000 (SLE, Croydon, UK) ventilators on SIMV mode. The 227 ventilators will be managed by the attending neonatologist according to the 228 following initial and weaning approach. 229

•	Initial	NIPPV settings:	230
	0	Peak inspiratory pressure (PIP) of 14-18 cmH_2O (according to chest	231
		excursion)	232
	0	Positive end expiratory pressure (PEEP) of 6 cmH ₂ O	233
	0	Respiratory rate (RR) of 10-30 breaths per minute (BPM)	234
	0	Inspiratory time (Ti) of 0.3-0.35 seconds	235
	0	Saturation targets were 90-94%.	236
•	Settir	gs limits allowed are	237
	0	PIP of 10-24 cmH ₂ O	238
	0	PEEP of 5-7 cmH ₂ O	239
	0	RR of 8-40 BPM	240
•	Wear	ing from NIPPV to no support or to low flow (i.e. \leq 2 LPM) will be	241
	consi	dered if:	242

0617-16-RMB

Matarot Helsinki

interface according to randomization allocation. Parents will be approached

and ask for consent at the earliest opportunity within 4 hours after NIPPV is

Version # 1 / 26.12.2016

222

223

224

 There was clinical improvement and 	243
 Fraction of inspired oxygen of 0.3 or lower 	244
○ PIP $\leq 16 \text{ cmH}_2\text{O}$	245
o PEEP ≤6 cmH ₂ O	246
 RR ≤20 BPM. 	247
	248
All infants will be evaluated at least daily.	249
	250
Infants with GA<32 will receive caffeine for apnea prevention starting in the 1^{st}	251
day of life. Apneic infants with GA \geq 32 will receive caffeine as per the attending	
clinician's discretion.	
	254
Surfactant administration using either MIST or INSURE techniques or after	255
intubation according to clinician's discretion and according to the unit	256
protocol.	257
	258
Using high flow nasal canulla (HFNC) will be done only in cases of significant	259
nasal trauma during NIPPV.	260
	261

Ot	her aspec	ts of neonatal care will be provided according to the routine unit	262
pr	otocols.		263
			264
3.9	9 Outcome	25	265
	The p	orimary outcome: Treatment failure within 72 hours after	266
ini	tiation of	NIPPV, i.e. the need for endotracheal ventilation.	267
•	intubatio	on and ventilated criteria: clinical deterioration (increased	268
	respirato	ory distress) accompanied by at least one of the following or	269
	worsenir	ng of the following:	270
	0	pH<7.20 and pCO2> 60 mm Hg	271
	0	Oxygen saturation by pulse-oximetry (SpO2)<90% on	272
		FiO2>50%,	273
	0	Recurrent significant apnea requiring repeated stimulation or	274
		bag-and-mask ventilation despite the use of caffeine and	275
		excluding technical problems	276
	0	All of the above despite allowing setting on NIPPV up to PIP=24	277
		cmH_2O , PEEP= 7 cmH_2O and RR of 40.	278
	• Mode	erate to severe nasal trauma within 72 hours, requiring change of	279
	interf	ace will be also considered as a failure criterion.	280
	• Surfa	ctant administration via the INSURE technique (intubation-	281
	surfa	ctant-extubation immediately after surfactant administration) or	282

0617-16-RMB

the MIST (minimally invasive surfactant therapy) via a thin catheter will		283	
not considered a failure of the NIPPV treatment.		284	
		285	
Secondary o	Secondary outcomes included:		
• Treatm	nent failure between 72 hours and 7 days after initiation of	287	
NIPPV		288	
• The re	ason for treatment failure	289	
Nasal	trauma: graded as mild- persistent erythema, moderate-	290	
superf	icial ulceration and severe- necrosis.	291	
• The ne	ed for surfactant	292	
Compl	lications of prematurity including:	293	
0	Bronchopulmonary dysplasia - defined as the need for	294	
	oxygen therapy or positive pressure (CPAP or NIPPV) or	295	
	high flow nasal cannula of >2LPM at 36 weeks gestation	296	
0	Patent ductus arteriosus – diagnosed by	297	
	echocardiography by cardiologist,	298	
0	Necrotizing enterocolitis, bell's staging 2-3 – diagnosed	299	
	by clinical signs and x-ray reviewed by pediatric	300	
	radiologist	301	
0	Culture proven sepsis	302	

0617-16-RMB

\circ Intraventricular hemorrhage (any grade and grades 3-4)	303
and/or periventricular leukomalacia diagnosed by cranial	304
ultrasound reviewed by pediatric radiologist. Routine	305
ultrasound schedule will be 3, 14 and 28 days and before	306
discharge if older than 60 days at discharge.	307
• Complications related to ventilation (i.e. air leaks).	308
• Length of invasive and noninvasive respiratory support.	309
• Time to "full feeds", i.e 140 ml/k/day.	310
Length of hospital stay.	311
All data will be entered to computerized CRF.	312

0617-16-RMB

3.10 Safety	314
All adverse events will be reported to the ethical committee and to the	315
principal investigator (Dr. Ori Hochwald) according to the rules of Good	316
Clinical Practice (GCP). Definitions:	317
Adverse event (AE)	318
Any harmful event occurring in a person who is engaged in biomedical	319
research, whether or not it is related to the research or the product to which	320
the research relates.	321
Adverse reaction to a medical device (MD)	322
Any harmful and unwanted reaction to a medical device or any incident that	323
could have caused such a reaction if an appropriate action had not been	324
taken, in a person who is engaged for research or in the user of the medical	325
device or any effect related to a failure or alteration of an in vitro diagnostic	326
medical device that is harmful to the health of a person who is suitable for	327
research.	328
Serious event or adverse reaction	329
Any adverse event or reaction that results in death, endangers the life of the	330
person	331

undergoing research, requires hospitalization or prolongation of	332
hospitalization, causes	333
significant or lasting disability or handicap, or results in a congenital and	omaly 334
or	335
malformation, and in the case of the drug, at any dose administered.	336
Unexpected adverse reaction for research involving a medical device	:e 337
Any adverse reaction whose nature, severity or course does not corresp	ond to 338
the	339
information contained in the instructions or instructions for use when the	าe 340
medical device is CE marked, and in the investigator's brochure when it	is not 341
so marked.	342

343

Matarot Helsinki

0617-16-RMB

3.11 Ethical Aspect	344
Parents of children will be informed in full and fair manner, in	345
understandable terms, of the objectives and constraints of the research, the	346
possible risks involved, the necessary surveillance and safety measures, their	347
rights to refuse to participate in the research or the possibility of withdrawing	348
at any time. All this information is contained in an information and consent	349
form given to the parents.	
In order to ensure medical confidentiality and data protection, written	351
consent forms and un-named clinical data will be retained by the investigator	352
for a period of fifteen years after the end of the trial. All trial data will be	353
computerized and kept confidential. As patients' names are kept secret,	354
documentation and clinical data will be identified only by study number.	355
The data will be entered to computerized CRF.	356
No funding or conflict of interest are present in this study.	357

Statistical Analysis Л

4. <u>Statistical Analysis</u>	359
The statistical analysis will be carried out by prof. A Riskin and hi	360
statistical team (Bnai Zion medical center Haifa, Israel).	361
The statistical analysis will be carried out with "intention to treat", i.e	362
the intervention considered in the analysis will be the one resulting from	363
randomization.	364
Based on our units' previous data we estimate that treatment failure	365
within 72 hours after NIPPV initiation would be ~ 18% using short	366
prongs/mask (SPM). We prespecified a noninferiority margin for Ram cannula	367
of 15% above the failure (intubation within 72 hours) rate for short prongs or	368
mask. This was considered clinically significant and based on previous studied.	369
^{11,15} Using Ram cannula will be considered noninferior to using SPM if the	370
upper limit of the two-sided 90% confidence interval is less than 15% and the	371
lower limit of the 90% confidence interval was below zero ¹⁶ .	372
Using Significance level (p value) of 5% and 80% power, a sample of	373
164 infants is required. The calculation done by power calculator for binary	374
outcome noninferiority trial. Available from:	375
https://www.sealedenvelope.com/power/binary-noninferior/ [Accessed Mon	376
Oct 24 2016]. We aim to include 85-90 infants in each arm in case of losts to	377
follow up.	378

Matarot Helsinki

0617-16-RMB

Version # 1 / 26.12.2016

The variables will be summarized by their mean (standard deviation),379median (range) or percentage depending on the type of variable.380

25

For comparing the binomial proportions in failure rate for non-381inferiority based on the score test of Farrington and Manning (1990) we will382use SAS 9.4 statistical software with non-inferiority margin of 0.15. We will also383compare failure rate (primary outcome) using Chi square analysis. Although384theoretically not needed for non-inferiority description, Chi-square is more385often used by clinicians and probably therefore it was mentioned in previously386published non-inferiority trials. 10387

Chi-square test will be used to compare dichotomous variables.388Student's t-test and Mann–Whitney U test will be used for normal and389abnormal distribution, respectively, to compare continuous variables. We will390use Shapiro-Wilks test to assess normal distribution of the results. Analyses were391performed Using SPSS for Windows v. 19.0 (SPSS Inc, Chicago, IL). A p-value of392< 0.05 will be considered statistically significant.</td>393

394

395

	5.	REF	397
1.		Bhandari V. Noninvasive respiratory support in the preterm infant. Clin	398
		<i>Perinatol</i> . 2012. doi:10.1016/j.clp.2012.06.008	399
2.		LeVan JM, Brion LP, Wrage LA, et al. Change in practice after the	400
		surfactant, positive pressure and oxygenation randomised trial. Arch Dis	401
		Child Fetal Neonatal Ed. 2014. doi:10.1136/archdischild-2014-306057	402
3.		Mukerji A, Belik J. Neonatal nasal intermittent positive pressure	403
		ventilation efficacy and lung pressure transmission. J Perinatol.	404
		2015;35(9):716-719. doi:10.1038/jp.2015.61	405
4.		Imbulana DI, Manley BJ, Dawson JA, Davis PG, Owen LS. Nasal injury in	406
		preterm infants receiving non-invasive respiratory support: a systematic	407
		review. Arch Dis Child Fetal Neonatal Ed. 2018;103(1).	408
		doi:10.1136/archdischild-2017-313418	409
5.		Nzegwu NI, Mack T, DellaVentura R, et al. Systematic use of the RAM	410
		nasal cannula in the Yale–New Haven Children's Hospital Neonatal	411
		Intensive Care Unit: a quality improvement project. J Matern Neonatal	412
		<i>Med</i> . 2015;28(6):718-721. doi:10.3109/14767058.2014.929659	413
6.		Bailes SA, Firestone KS, Dunn DK, McNinch NL, Brown MF, Volsko TA.	414
		Evaluating the Effect of Flow and Interface Type on Pressures Delivered	415
		With Bubble CPAP in a Simulated Model. Respir Care. 2016;61(3):333-	416

	339. doi:10.4187/respcare.04251	417
7.	Gerdes JS, Sivieri EM, Abbasi S. Factors influencing delivered mean	418
	airway pressure during nasal CPAP with the RAM cannula. Pediatr	419
	Pulmonol. 2016;51(1):60-69. doi:10.1002/ppul.23197	420
8.	lyer NP, Chatburn R. Evaluation of a Nasal Cannula in Noninvasive	421
	Ventilation Using a Lung Simulator. Respir Care. 2015;60(4):508-512.	422
	doi:10.4187/respcare.03560	423
9.	Drescher GS, Hughes CW. Comparison of Interfaces for the Delivery of	424
	Noninvasive Respiratory Support to Low Birthweight Infants. Respir Care.	425
	2018;63:1197-1206. doi:10.4187/respcare.05978	426
10.	Roberts CT, Owen LS, Manley BJ, et al. Nasal high-flow therapy for	427
	primary respiratory support in preterm infants. N Engl J Med. 2016.	428
	doi:10.1056/NEJMoa1603694	429
11.	Manley BJ, Owen LS, Doyle LW, et al. High-flow nasal cannulae in very	430
	preterm infants after extubation. N Engl J Med. 2013.	431
	doi:10.1056/NEJMoa1300071	432
12.	Lemyre B, Laughon M, Bose C, Davis PG. Early nasal intermittent positive	433
	pressure ventilation (NIPPV) versus early nasal continuous positive	434
	airway pressure (NCPAP) for preterm infants. Cochrane Database Syst	435
	<i>Rev</i> . 2016. doi:10.1002/14651858.CD005384.pub2	436

0617-16-RMB

13.	Lemyre B, Davis PG, De Paoli AG, Kirpalani H. Nasal intermittent positive	437
	pressure ventilation (NIPPV) versus nasal continuous positive airway	438
	pressure (NCPAP) for preterm neonates after extubation. Cochrane	439
	Database Syst Rev. 2017. doi:10.1002/14651858.CD003212.pub3	440
14.	Perlman JM, Wyllie J, Kattwinkel J, et al. Part 7: Neonatal resuscitation:	441
	2015 international consensus on cardiopulmonary resuscitation and	442
	emergency cardiovascular care science with treatment	443
	recommendations. Circulation. 2015.	444
	doi:10.1161/CIR.000000000000276	445
15.	Lavizzari A, Colnaghi M, Ciuffini F, et al. Heated, Humidified High-Flow	446
	Nasal Cannula vs Nasal Continuous Positive Airway Pressure for	447
	Respiratory Distress Syndrome of Prematurity: A Randomized Clinical	448
	Noninferiority Trial (JAMA Pediatr.	449
	doi:10.1001/jamapediatrics.2016.1243). JAMA Pediatr. 2016;170(12):1228.	450
	doi:10.1001/jamapediatrics.2016.3743	451
16.	Piaggio G, Elbourne DR, Pocock SJ, Evans SJW, Altman DG. Reporting of	452
	noninferiority and equivalence randomized trials: Extension of the	453
	CONSORT 2010 statement. JAMA - J Am Med Assoc. 2012.	454
	doi:10.1001/jama.2012.87802	455