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Software

In Section 3 of the manuscript, we analyze the performance of our test in the context of a
DTI study of connectomics in autism. Software implementing these analyses in R is avail-
able on Github at https://github.com/rshinohara/distance_statistics_software/.
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Figure A1: Comparison of p-value estimation and computation time for tuning parameters
for the proposed and permutation-based tests. Number in green indicate the number of
Monte Carlo samples for the proposed test, and numbers in red indicate the number of
permutations used. The three columns indicate three separate simulation scenarios in
which 500 graphical simulations from Scenario 2 were conducted using n = 250, π0=

1
2 ,

τ0 = 0.5, and τ1 = 0.5, 0.1, and 0.2 in the left, middle, and right columns respectively.

1



Figure A2: Figures showing the type I error rates and power for various settings with scalar
outcomes in Scenario 1. The top two rows show type I error rates and power under several
alternatives for the case of π0 = 1

2 , and the bottom two rows show results for the case of
imbalanced group sizes.
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Figure A3: Figures showing the computation time for various settings with scalar outcomes
in Scenario 1 in seconds.
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Figure A4: Figures showing the type I error rates and power for various settings with graph
outcomes in Scenario 2. The top two rows show type I error rates for several noise levels
and power under several alternatives for the case of π0 = 1

2 , and the bottom two rows show
results for the case of imbalanced group sizes.
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Figure A5: Figures showing the computation time for various settings with graph outcomes
in Scenario 2 in seconds. The first and third rows show results from type I error simulations
with various noise levels, and the second and fourth rows show power simulations with
various effect sizes.
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Figure A6: Figures showing the type I error rates and power for various settings with
functional outcomes in Scenario 3. The top two rows show type I error rates for several
noise levels and power under several alternatives for the case of π0 = 1

2 , and the bottom
two rows show results for the case of imbalanced group sizes.
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Figure A7: Figures showing the computation time for various settings with functional
outcomes in Scenario 3 in seconds. The first and third rows show results from type I
error simulations with various noise levels, and the second and fourth rows show power
simulations with various effect sizes.
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Figure A8: Figures showing the computation time for various settings with the DTI-based
network outcomes in Scenario 4 in seconds. The first and third rows show results from type
I error simulations with various noise levels, and the second and fourth rows show power
simulations with various effect sizes.
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Figure A9: Figures showing the type I error rates and power for various settings with
network outcomes in Scenario 4 for K = 5. The top row shows type I error rates for several
noise levels and power under several alternatives for the case of π0 = 1

2 , and the bottom
rows show results for the case of imbalanced group sizes.
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Figure A10: Figures showing the computation time for various settings with the DTI-based
network outcomes in Scenario 4 for K = 5 in seconds. The first and third rows show results
from type I error simulations with various noise levels, and the second and fourth rows
show power simulations with various effect sizes.
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Technical proofs

We begin by establishing a result on the asymptotic behavior of the product of the
estimation error of two asymptotically linear estimators. Specifically, let θ1 and θ2 be two
parameters, and denote by θ10 and θ20 their respective true values. Suppose that θ̂1n and
θ̂2n are asymptotically linear estimators of θ10 and θ20, respectively, with influence functions
φ10 and φ20.

Lemma. The mapping h : (u, v) 7→ 1
2 {φ10(u)φ20(v) + φ10(v)φ20(u)} is a first-order degen-

erate kernel, and furthermore,

n(θ̂1n − θ10)(θ̂2n − θ20) = E0 {φ10(X)φ20(X)}+ nUn + oP (1) ,

where Un is a U -statistic with kernel h. Additionally, it holds that∫∫∫
f(x1, x2)h(x1, x3)dP0(x1)dP0(x2)dP0(x3) = 0

for any function (x1, x2) 7→ f(x1, x2) such that
∫∫

f2(x1, x2)dP0(x1)dP0(x2) <∞.

Proof. In view of asymptotic linearity, we may write

(θ̂1n − θ10)(θ̂2n − θ20) =

{
1

n

n∑
i=1

φ10(Xi) + oP (n−1/2)

}{
1

n

n∑
i=1

φ20(Xi) + oP (n−1/2)

}

=
1

n2

n∑
i=1

n∑
j=1

φ10(Xi)φ20(Xj) +

{
1

n

n∑
i=1

φ10(Xi)

}
oP (n−1/2)

+

{
1

n

n∑
i=1

φ20(Xi)

}
oP (n−1/2) + oP (n−1)

and so, using the fact that both 1
n

∑n
i=1 φ10(Xi) and 1

n

∑n
i=1 φ20(Xi) are OP (n−1/2) by the

Central Limit Theorem,

n(θ̂1n − θ10)(θ̂2n − θ20) =
1

n

n∑
i=1

n∑
j=1

φ10(Xi)φ20(Xj) + oP (1) .

Furthermore, we can write

1

n

n∑
i=1

n∑
j=1

φ10(Xi)φ20(Xj)

= n

(
n− 1

n

)(
n

2

)−1∑
i<j

h(Xi, Xj) +
1

n

n∑
i=1

φ10(Xi)φ20(Xi) + oP (1)

= nUn + E0 {φ10(X)φ20(X)}+ oP (1) .

Since E0 {φ10(X)} = E0 {φ20(X)} = 0, it follows that E0 {h(Xi, Xj)} = 0 for i 6= j and
furthermore that E0 {h(X1, X2)h(X1, X3)} = 0.
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We now establish the validity of our main theorea and their corollary.

Proof of Theorem 1. We prove the theorem for the general case of K ≥ 2. (a) The weak
consistency of SSEn/(n−K) to σ2(P0∗) is a consequence of the weak law of large numbers
for U-statistics. In particular,

SSEn :=
K−1∑
s=0

(ns − 1)

(
ns
2

)−1∑
i<j

r(Mi,Mj)I(Di = Dj = s)

and (ns − 1)
(
ns

2

)−1∑
i<j r(Mi,Mj)I(Di = Dj = s) is a U-statistic with kernel (x1, x2) 7→

r(m1,m2)I(d1 = d2 = s) where x1 := (m1, d1) and x2 := (m2, d2) represent two arbitrary
realizations of X, and E0 {r(Mi,Mj)I(Di = Dj = s)} = σ2(P0s)π

2
s . Thus, since (ns −

1)/(n−K)
P−→ πs as n→∞, we have that

SSEn/(n−K)
P−→

K−1∑
d=0

πsσ
2(P0s) = σ2(P0∗),

under the null hypothesis. (b) Using the fact that SSTn = SSn − SSEn, we observe that
we may represent SSTn as

(n− 1)

(
n

2

)−1∑
j<k

r(Mj ,Mk)−
K−1∑
s=0

(ns − 1)

(
ns
2

)−1∑
j<k

r(Mj ,Mk)I(Dj = Dk = s)

=
2

n

∑
j<k

r(Mj ,Mk)

{
1−

K−1∑
s=0

I(Dj = Dk = s)

πs

}

− 2

n

∑
j<k

r(Mj ,Mk)

[
K−1∑
s=0

(
n

ns
− 1

πs

)
I(Dj = Dk = s)

]
= A1n −A2n −A3n + oP (1) ,

where we have defined the summands

A1n := n ·
(
n

2

)−1∑
j<k

r(Mj ,Mk)

{
1−

K−1∑
s=0

I(Dj = Dk = s)

πs

}

A2n := n ·
K−1∑
s=0

(
n

ns
− 1

πs

)(
n

2

)−1∑
j<k

{
r(Mj ,Mk)I(Dj = Dk = s)− π2sσ2(P0∗)

}
A3n := n ·

K−1∑
s=0

(
n

ns
− 1

πs

)
π2sσ

2(P0∗) .

We now analyze each of the above three terms under the null hypothesis. The term A1n is
an n-scaled U -statistic with first-order degenerate kernel h1 given by

(x1, x2) 7→ r(m1,m2)

{
1−

K−1∑
s=0

I(d1 = d2 = s)

πs

}
.
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To study the term A2n, we first note that(
n

2

)−1∑
j<k

{
r(Mj ,Mk)I(Dj = Dk = s)− π2sσ2(P0∗)

}
is a non-degenerate U -statistic with kernel (x1, x2) 7→ r(m1,m2)I(d1 = d2 = s)−π2sσ2(P0∗),
and by the Hájek projection, it is asymptotically linear with influence function

x 7→ 2
[
E0 {r(M,m)I(D = d = s)} − π2sσ2(P0∗)

]
= 2πs

[
I(d = s)E0 {r(M,m)} − πsσ2(P0∗)

]
=: φ21s(x) ,

where E0 {r(M,m)} is the average distance from m to a random draw from the distribution
of M . By the delta method, we have that

n

ns
− 1

πs
= π−2s

{
n− ns
n

− (1− πs)
}

+ oP (n−1/2) =
1

n

n∑
i=1

φ22s(Xi) + oP (n−1/2)

with φ22s(x) := {I(d 6= s) − (1 − πs)}/π2s . By the Lemma, we can then write A2n =∑K−1
s=0 B2s + nU2ns + oP (1), where B2s := E0 {φ21s(X)φ22s(X)} = −2(1 − πs)σ2(P0∗) and

U2ns is a first-order degenerate U -statistic with kernel

h2 : (x1, x2) 7→
K−1∑
s=0

{φ21s(x1)φ22s(x2) + φ21s(x2)φ22s(x1)} /2 .

To study the term A3n, we note that by a second-order approximation we have

n

ns
− 1

πs
= π−2s

{
n− ns
n

− (1− πs)
}

+ π−3s

(ns
n
− πs

)2
+ oP (n−1) .

Thus, we readily find that

A3n = n

K−1∑
s=0

(ns
n
− πs

)2
π−1s σ2(P0∗) + oP (1)

for all s = 1, . . . ,K − 1, and hence A3n = B3 + nU3n + oP (1), where

B3 := (K − 1) · σ2(P0∗)

and U3n is a first-order degenerate U -statistic with kernel

h3 : (x1, x2) 7→
K−1∑
s=0

[σ2(P0∗)/πs]{I(d1 = s)− πs}{I(d2 = s)− πs} .

In view of the above facts, we obtain that

SSTn = (K − 1) · σ2(P0∗) + n ·
(
n

2

)−1∑
j<k

u(Xj , Xk) + oP (1) ,
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where u is the first-order degenerate kernel (x1, x2) 7→ h1(x1, x2)− h2(x1, x2)− h3(x1, x2).
It is easy to verify that Cov{f(X1, X2), hj(X1, X3)} = 0 for any f : R2 → R, and so,
in particular, we find that Cov{u(X1, X2), u(X1, X3)} = 0. It follows then that SSTn
tends in distribution to (K − 1) · σ2(P0∗) +

∑∞
j=1 λj(Z

2
j − 1) as n → ∞, where Z1, Z2, . . .

are independent standard normal random variables and λ1, λ2, . . . are eigenvalues of the
operator g 7→ Γ(g) : m 7→

∫
u(m,m2)g(m2)dP00(m2) (Lee 1990).

Proof of Corollary. Follows from the theorem by an application of Slutsky’s theorem.

Proof of Theorem 2. Under the alternative, by the law of large numbers for U-statistics,
we see that T (P0) > 0. Since Tn = T (P0) + oP (1), the power of the test, P0(Qn > qα) =
P0(Tn > qα/n), tends to one.
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