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Supplementary Fig. 1. Identification of cell subsets and their markers in human fetal testes

a A fetal testis at 17w3d (Hs31) (top, low magnification) and 18w0d (Hs26) (bottom, high magnification)
stained with hematoxylin and eosin. Yellow arrowheads indicate presumptive GCs. Green arrowheads indi-
cate fetal Leydig cells. The stroma also contains spindle cells of uncertain origin (black arrow). Scale bar, 25
um.

b Mapping results of in vivo samples analyzed by scRNA-seq.

¢ tSNE plot of all testicular cells in our dataset. Cell cluster identities are determined by feature plots of
known markers shown in (d).

d Gene expression pattern of marker genes for the indicated cell clusters projected on tSNE plots in (c).

e Heatmap of markers for the indicated cell clusters. Cell clusters identified in (c) were used for DEG analy-
sis to identify markers for each cell cluster. Representative markers are shown on the right. The number of
DEGs for each cell cluster are shown on the left.

f RNA velocity analysis of GCs defined in (c). Cluster identifies on this tSNE plot were determined by project-
ing the expression patterns of TFAP2C and PIWIL4 on the tSNE space (left). The lineage trajectory predict-
ed by RNA velocity analysis is shown as arrows over each plot. Dotted lines circumscribe cells representing
M (blue) or T1 (purple). A large arrow indicates the overall direction of the individual arrows at the border
between M and T1.

g tSNE plot from Fig. 1a with cells colored according to their sample origin.

h Bar graph showing the relative proportion of M and T1 in each sample.

i Scatter plot comparisons of transcriptome data between each testicular sample (Hs26, Hs27, and Hs31).
Transcriptome comparisons are shown for whole GCs (top) and for T1 (bottom).

j Scatter plot comparison of the averaged expression values between M and T1 for Hs31 only. Purple, genes
upregulated in T1 (149 genes); cyan, genes upregulated in M (339 genes). Key DEGs are annotated.

k Venn diagram showing the overlap of DEGs (M versus T1 comparison) for Hs31 only and for all three in
vivo samples.
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Supplementary Fig. 2. Generation of AGVTPC-knock-in hiPSCs

a Targeting schemes for human TFAP2C (top) and DDX4 (bottom) loci. The TFAP2C locus in AG hiPSCs
(585B1 1-7) has already been targeted by the 2A-EGFP knock-in construct (Sasaki et al., 2015") and was
recombined by Cre over-expression in this study to remove the Puromycin selection cassette. The construct
for knocking-in 2A-tdTomato into the DDX4 loci is also shown. Black boxes indicate the exons. Arrows indi-
cate PCR screening primers.

b Schematic illustration of the human PIWIL4 locus and the construct for knocking-in 2A-ECFP into the locus.
¢ PCR screening of the homologous recombinants for TFAP2C-2A-EGFP (AG) (top), DDX4-2A-td Tomato
(VT) (second), PIWIL4-2A-ECFP (PC) (third), and of random integration of the targeting vector (bottom).
Rec., recombined by Cre; non, non-targeted; Yellow arrow, 3kb; yellow asterisk, 1kb.

d PCR genotyping of the genomic DNA isolated from 9A13 hiPSCs for AG, VT or PC alleles and for random
integration of the targeting vector. Yellow arrow, 3kb; yellow asterisk, 1kb. P.C., positive control. Clone 13
(red) was selected for the AGVTPC hiPSC line (9A13).

e Representative result for the 9A13 hiPSC karyotype analysis, showing a normal karyotype (46, XY).

f A phase-contrast image of 9A13 hiPSCs. Bar, 200 um.

g Immunofluorescence (IF) analysis of 9A13 hiPSCs for DAPI (white), POU5F1 (green, left), SOX2 (red) and
NANOG (green, right). Data are representative of two independent experiments. Bars, 20 um.

h A phase-contrast image of 9A13 hiPSC-derived iMeLCs. Bar, 200 um.

i Bright-field and fluorescence images of hPGCLCs derived from 9A13 hiPSCs for AG, VT, and PC, with a
merge. Bar, 200 um.

j Fluorescence-activated cell sorting (FACS) analysis of d5 hPGCLCs derived from 9A13 hiPSCs. The
percentages of cells in the indicated gates are shown.

k IF images of 9A13 hiPSC-derived d5 hPGCLCs (frozen sections) for TFAP2C (green), SOX17 (red),
POUS5F1 (green), NANOG (red) and DAPI (white). Merges are shown on the right. Data are representative of
two independent experiments. Bars, 20 ym.

Source data are provided as a Source Data file.
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Supplementary Fig. 3. Emergence of GCs with features characteristic of M-prospermatogonia
in d77 xrTestes

a Bright-field images of xrTestes from day (d) 7 to d120 in the air-liquid interphase (ALI) culture. Bar,
200 um.

b Immunofluorescence (IF) analysis of indicated key proteins (green: GFP and TFAP2C, red: TFAP2C
and SOX17) with LAMININ or SOX9 (cyan) (top) and of GC markers (red: TFAP2C, cyan: DDX4 and
DAZL) in hPGCLC-derived cells (green: GFP) (bottom) in d42 and d77 xrTestes. Bars, 20 um.

¢ The proportion of TFAP2C*DDX4-, TFAP2C*DDX4*, or TFAP2C-DDX4* cells in d77 xrTestes as
assessed by IF. Percentages with SEM are per section. Each dot represents the proportion in one
section. n, the total number of respective cells in all four sections.

d IF analysis (left) and a box plot showing the fluorescence intensity (right) of 5-methylcytosine (5mC,
red) in hPGCLC-derived cells (green: SOX17) and other somatic cells counterstained with DAPI
(white). Bar, 20 um. hPGCLC-derived cells are outlined by white dotted lines. Center line, median; box
limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Statistically significant differences
between GCs (Germ) and somatic cells (Soma) were identified by two-sided t-test assuming unequal
variances. P = 1.95 X 10-'®, n, the number of respective cells counted.

Source data are provided as a Source Data file.
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Supplementary Fig. 4. Characterization of GCs derived from hiPSCs

a Mapping results of six in vitro samples analyzed by scRNA-seq in this study.

b tSNE plot of in vitro derived GCs (same as Fig. 4a) colored based on the four main clusters (left). Cluster
identities were determined based on sample origin and by projecting the expression of known markers on the
tSNE plot (right). The dotted line denotes the cluster (cluster 4) used for subclassification in (c).

¢ tSNE plot for the subclassification of cluster 4 from (b). Three sub-clusters (4-1, 4-2, 4-3) were newly anno-
tated within this cluster and colored accordingly (left). Cluster identities were determined by expression levels
of markers for M (KHDC3L, POU5F1, NANOS3) and T1 (TEX15, MAGEC2, PIWIL4) defined in Fig. 1a.
Newly identified markers (ASB9, FZD8) for transitional cells (TCs; cluster 4-2) are also shown (right).

d Expression of ASB9, a marker for TCs, projected onto the tSNE plot of in vivo testicular samples used in
Fig. 1a. The dotted line denotes the border between the M and T1 cell clusters.

e Heatmap of the averaged expression values of genes that were differentially expressed between M and T1
(defined in Fig.1f) (top) or key markers (bottom) in indicated cell types. M and T1 were redefined as the
respective cell types defined in Fig.1a, excluding cells expressing ASB9. ASB9 denotes cells expressing
ASB9 among the cells in Fig.1a.

f Re-clustering of cluster 4, defined in (b), projected on the tSNE plot used for RNA velocity analysis in Fig.
4b (left). Expression levels of markers for M, T1 and TCs are projected on the tSNE plot (right).

g tSNE plot of in vitro-derived GCs colored based on sample origin. Dotted lines circumscribe cell clusters
defined in (b) and (c).

h Bar graph showing the proportion of samples in each cell cluster defined in (b) and (c).

i Scatter plot comparison of averaged transcriptome values for two biological replicates of hPGCLCs (hPG-
CLCs_1, hPGCLCs_2).

j Box plot of the averaged expression values of genes that were differentially expressed between hPGCLCs
and MLCs in two biological replicates of hPGCLC samples.
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Supplementary Fig. 5. Dissociation-induced gene expression in in vitro-derived cells

a Top 30 dissociation-induced genes defined in van den Brink et al., 2017%.

b Violin plot showing the expression of the top ten dissociation-induced genes in in vitro cell clusters.

¢ Dissociation-induced genes included among respective DEGs. DEGs were defined using a multi-group com-
parison for in vitro clusters (defined in Fig. 4e) and a pairwise comparison between M and T1 (defined in Fig. 1f).
The rank of each gene, defined as the position of each gene in the DEG list sorted by ascending FDR value, is
shown in parentheses.
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Supplementary Fig. 6. DEGs by pairwise comparison between in vitro derived cells

(left) Scatter plots showing DEGs between indicated samples. Genes upregulated by more than 4-fold (FDR <
0.01) in the indicated cell clusters are plotted using the colors in Fig. 4a. Key genes, the number of DEGs, and
the coefficient of determination (r?) are shown. (right) GO analyses of the DEGs. Representative genes in each
GO category are shown.
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Supplementary Fig. 7. Key markers of in vitro-derived GCs compared with in vivo GCs

Violin plots showing the expression levels of key DEGs, defined in Fig. 4e, in the indicated cell clusters.
Expression levels of the same genes in in vivo testicular GC clusters (M and T1) are shown on the right
for comparison. Color codes for cell clusters are same as Fig. 1a and 4a.
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Supplementary Fig. 8. Comparison of transcriptomes between cell clusters in this study and
neonatal prospermatogonia
a UHC of the averaged transcriptome values for cell clusters in this study and for neonatal prosper-
matogonia used in Sohni et al., 20198,
b PCA analysis of cells as in (a). Color codes for cell clusters are indicated.
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