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Supplementary Figure 1. XRD patterns of SrTi1-xRuxO3-δ, (x=0, 0.1, 0.2, 0.3, 0.4, 1) 

prepared at calcination temperatures of 900 and 1000 °C. SrTiO3, SrTi0.9Ru0.1O3-δ, 

SrTi0.8Ru0.2O3-δ, SrTi0.7Ru0.3O3-δ, SrTi0.6Ru0.4O3-δ, SrRuO3 are denoted as STO, 

STR0.1O, STR0.2O, STR(0.3)O, STR0.4O and SRO, respectively. In addition to the 

standard cubic phase in XRD patterns of STO-900, some impurity phases were also 

observed. To avoid complications from the effect of impurity phases on electrocatalytic 

activity, the calcination temperature for the formation of pure STO phase was chosen 

to be 1000 °C for study in this work. 
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Supplementary Figure 2. Polarization curves of SrTi1-xRuxO3-δ (x=0, 0.1, 0.2, 0.3, 0.4, 

1) in Ar-saturated 1 M KOH solution at a scan rate of 5 mV s-1. 
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Supplementary Figure 3. XRD patterns of STRO prepared at different calcination 

temperatures of 800, 900, and 1000 °C. 
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Supplementary Figure 4. Polarization curves of STRO samples at different 

calcination temperatures in Ar-saturated 1 M KOH solution at a scan rate of 5 mV s-1. 
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Supplementary Figure 5. SEM images with different magnifications. (a,b) STO, (c,d) 

STRO, and (e,f) SRO samples. Scale bar in (a,c,e) is 1 μm, in (b,d,f ) is 500 nm. 

  



 

 

Supplementary Figure 6. N2 adsorption-desorption isotherm. (a) STO, (b) STRO and 

(c) SRO and the corresponding specific surface areas as estimated from Brunauer-

Emmett-Teller (BET) measurements. 

  



 

Supplementary Figure 7. RHE calibration of the Hg|HgO reference electrode in 1 M 

KOH. The calibration process was performed in a high purity H2-saturated 1 M KOH 

with a platinum RDE (PINE, 0.126 cm2) as the working electrode, Pt foil as the counter 

electrode, and Hg|HgO (1 M KOH) as the reference electrode. Cyclic voltammetry (CV) 

was conducted at a scan rate of 1 mV s-1, and the average of the two potentials at which 

the current crossed zero was taken as the thermodynamic potential for the hydrogen 

electrode reaction. In 1 M KOH solution, ERHE = EHg|HgO +0.943 V. 

  



 

Supplementary Figure 8. The contact angle of hydrogen bubbles in 1 M KOH solution. 

(a) STRO and (b) Pt/C. 

  



 

Supplementary Figure 9. ECSA estimation determined from Cdl. The Cdl obtained 

from a cyclic voltammetry (CV) method is expected to be linearly proportional to the 

ECSA1-3. CV measurements in a non-faradic current region (0.1-0.2 V vs. RHE, no iR-

corrected) at scan rates of 20, 40, 60, 80 and 100 mV s-1 of (a) STO, (c) STRO and (e) 

SRO catalysts in 1 M KOH. Linear fitting of the capacitive currents versus CV scan 

rates for (b) STO, (d) STRO and (f) SRO. 

  



 

Supplementary Figure 10. Specific activity normalized to the real oxide surface area 

as a function of potential. 

  



 

Supplementary Figure 11. Unit cell of catalysts. (a) STO, (b) STRO and (c) SRO unit 

cell. Detailed TOF calculations are given in Supplementary Note 1. 

  



 

Supplementary Figure 12. Mass activity (MA) and price activity (PA) of SRO, 

STRO, and Pt/C at the overpotential of η = 0.1 V. 

  



  

Supplementary Figure 13. XRD patterns of STRO before and after HER. The XRD 

patterns show that there is no apparent variation in the peak pattern and position of 

STRO before and after HER, confirming that the crystal structure of STRO does not 

change during HER. 
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Supplementary Figure 14. XAS spectra. (a) Ru-L2,3 and (b) Ti-L2,3 for STRO before 

and after HER. The Ru-L2,3 and Ti-L2,3 spectra of STRO before and after HER show 

that there is no apparent variation, indicative of no electronic structure variation. The 

unchanged electronic structure therefore excludes the possibility of surface structure 

change during HER. 

  



 

Supplementary Figure 15. TEM image of STRO after HER. Neither surface 

amorphization nor lattice change was observed, demonstrating the stability of crystal 

structure of STRO during HER. The scale bar is 5 nm. 

  



 

Supplementary Figure 16. The UV-is spectroscopy of STO and STRO. 
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Supplementary Figure 17. Surface structural models and calculated sites of STRO for 

H* adsorption. 

  



 

Supplementary Figure 18. XRD patterns of STO and R-STO. The R-STO was 

prepared by treating STO in a reductive atmosphere of 10% H2/90% Ar at 500 °C for 

2h. The main peak of R-STO slightly shifts to a lower angle compared to the STO, 

implying the reduction of Ti oxidation state and generation of oxygen vacancies. 

  

20 40 60 80

In
te

n
s
it
y
 (

a
.u

.)

2 theta (degree)

 STO

 R-STO



 

Supplementary Figure 19. SEM images with different magnifications. (a,b) STO and 

(c,d) R-STO samples. Scale bar in (a,c) is 1 μm, in (b,d) is 500 nm. 

  



 

Supplementary Figure 20. The XPS spectra of O 1s for STO and R-STO. Much larger 

number of (O2
2-/O-) species was observed for STO relative to R-STO, implying the 

significantly increased oxygen vacancies. 
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Supplementary Figure 21. HER activities. (a) HER electrode activity and (b,c) 

specific activity of STO and R-STO. 

  



 

Supplementary Figure 22. Parameter-activity correlation. The relationship of (a) the 

kinetic reaction barriers (Eb), (b) the absolute binding energy for hydrogen(|ΔGH*|), and 

(c) the hydroxide desorption energetics (ΔGOH*) with the specific activity of STO, 

STRO and SRO. 



 

Supplementary Figure 23. Charge density redistribution upon the introduction of 

different metal dopants. From left to right: Ir, Mo, Nb and Pt. 

 

  



 

Supplementary Figure 24. XRD patterns of STO, SrTi0.7Mo0.3O3-δ (STMO), and 

SrMoO4 (SMO). Two weak peaks before the main peak of STMO could be indexed to 

the SMO.  



 

Supplementary Figure 25. Polarization curves of STO, STMO, and SMO catalysts in 

an Ar-saturated 1 M KOH solution. Scan rate, 5 mV s-1. 
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Supplementary Table 1. The refined lattice parameters and reliability factors of STO, 

STRO and SRO samples. 

Sample Phase type 
Space 

group 

Lattice parameters 
Rp(%) Rwp(%) GOF 

a (Å) b (Å) c (Å) α(º) β(º) γ(º) 

STO Cubic Pm-3m 3.9061 3.9061 3.9061 90 90 90 7.47 9.70 1.64 

STRO Cubic Pm-3m 3.9178 3.9178 3.9178 90 90 90 8.55 11.12 1.60 

SRO Orthorhombic Pnma 5.5610 7.8674 5.5606 90 90 90 12.19 14.85 2.07 

  



Supplementary Table 2. Summary of HER activity in alkaline media (1 M KOH) for 

various representative state-of-the-art catalysts, including metal oxides, synergistic 

hybrids, metal/alloy, single atoms, metal phosphides, metal sulfides, metal selenides, 

metal carbides, metal nitrides and functional carbon, etc. 

Catalysts Substrate 

Mass 

loading 

(mg·cm-2) 

η @10 mA 

cm-2 (mV) 

Tafel slope 

(mV dec-1) 
References 

STRO 
Glass 

carbon 
0.232 46 40 This work 

Metal oxides 

Sr2RuO4 
Glass 

carbon 
0.232 61 51 Ref 4 

Gd0.5 
Glass 

carbon 
0.232 210 29 Ref 5 

S-CoO NR 
Carbon fiber 

paper 
0.486 73 82 Ref 6 

2-Cylce NiFeOx 
Carbon fiber 

paper 
1.6 88 150 Ref 7 

LBSCOF 
Glass 

carbon 
0.157 ~180 44 Ref 8 

R-NCO Ni foam 2.5 135 52 Ref 9 

Co3O4-MTA Ni foam N.A.[a] ~150 98 Ref 10 

NiCo2O4 Ni foam ~1 ~100 50 Ref 11 

3D CoFeZr NS Ni foam N.A. 104 119 Ref 12 

Ni/Zn doped 

CoO NR 

Carbon fiber 

paper 
0.486 53 47 Ref 13 

SCFP Ni foam 0.034 110 94 Ref 14 

Pr0.5BSCF 
Glass 

carbon 
0.232 237 45 Ref 15 

P-Co3O4 Ti mesh 0.4 120 52 Ref 16 

SNCF-NR 
Glass 

carbon 
0.232 232 103 Ref 3 

CuCoO Ni foam 1.2 140 108 Ref 17 

NiO NRs-m-Ov 
Carbon fiber 

paper 
0.2 110 100 Ref 18 

Synergistic hybrids 

H2-CoCat FTO N.A. >385 140 Ref 19 

LSC&MoSe2 
Glass 

carbon 
0.385 ~250 34 Ref 20 

NiO@1T-MoS2 
Carbon fiber 

paper 
1.02 46 52 Ref 21 

PtNi/NiS NW 
Glass 

carbon 
N.A. 42 N.A. Ref 22 



Pt NW/SL 

-Ni(OH)2 

Glass 

carbon 
N.A. ~70 N.A. Ref 23 

Ni/NiO-CNT 
Glass 

carbon 
0.28 ~80 82 Ref 24 

MoS2/NiCo-

LDH 

Carbon fiber 

paper 
N.A. 78 77 Ref 25 

LixNiO/Ni 
Glass 

carbon 
0.6 36 50 Ref 26 

NiO/PtNi 
Glass 

carbon 
~0.06 40 79 Ref 27 

MoP@NCHS 
Glass 

carbon 
0.4 92 62 Ref 28 

sc-Ni2Pσ-/NiHO Ni foam N.A. 60 75 Ref 29 

Mo3P/Mo NB 
Glass 

carbon 
~1.01 78 56 Ref 30 

TiO2 ND/Co 

NSNT 

Carbon 

fibers 
0.75 108 62 Ref 31 

Ni5P4-Ru 
Glass 

carbon 
0.142 54 52 Ref 32 

MoS2/Ni(OH)2 
Glass 

carbon 
0.285 185 73 Ref 33 

Co0.85Se/NiFe-

LDH 

Exfoliated 

graphene 

(EG) foil 

4 260 160 Ref 34 

Co/Co3O4 NS Ni foam 0.85 95 44 Ref 35 

NiO@Ni/WS2 
Carbon 

cloth 
N.A. 40 83 Ref 36 

Ni3N/Pt Ni mesh 2 50 37 Ref 37 

MoS2@NiO 
Glass 

carbon 
0.68 406 43 Ref 38 

nPBA@ 

Co(OH)2 
Ni foam 3.1 258 46 Ref 39 

NiFe/NiCo2O4 Ni foam N.A. 105 88 Ref 40 

NiCo2O4/CuS 
Carbon fiber 

paper 
0.3 72 41 Ref 41 

MnO/hcp Ni 
Glass 

carbon 
2 80 68 Ref 42 

2D MoS2@ 

Co(OH)2 

Glass 

carbon 
0.2 89 53 Ref 43 

β-Ni(OH)2/Pt 
Glass 

carbon 
N.A 115 42 Ref 44 

MoSe2/SnS2 
Glass 

carbon 
0.2 285 109 Ref 45 



Ni(OH)2@CuS 
Glass 

carbon 
0.286 95 104 Ref 46 

Ni(OH)2/MoS2 
Carbon 

cloth 
N.A. 80 60 Ref 47 

Pt-Co(OH)2 
Carbon 

cloth 
6.9 32 70 Ref 48 

Metals/alloys 

Au-Ru-2 NW 
Glass 

carbon 
0.08 50 31 Ref 49 

Ni-Mo-N 
Carbon fiber 

cloth 
2.9 40 70 Ref 50 

Ni-BDT-A 
Carbon 

cloth 
1 80 70 Ref 51 

Ni-N0.19 
Carbon fiber 

paper 
N.A. 42 125 Ref 52 

CoSn2 Ni foam N.A. 103 78 Ref 53 

Pt3Ni3 NW 
Glass 

carbon 
N.A. 50 N.A. Ref 54 

NiCu@C 
Graphite 

plate 
0.384 74 94 Ref 55 

Ni3Fe@N-C 

NT/NF 

Glass 

carbon 
~0.57 72 96 Ref 56 

Cu-Ni-Al 
Glass 

carbon 
N.A. 139 110 Ref 57 

Ni42-300 N.A. N.A. 299 ~117 Ref 58 

Co@NG 
Glass 

carbon 
0.47 220 112 Ref 59 

MnNi 
Glass 

carbon 
0.28 360 N.A. Ref 60 

NiMo NW Ni foam 0.41 270 86 Ref 61 

CuNi NC 
Glass 

carbon 
N.A. 140 79 Ref 62 

Single atoms 

Co1/PCN 
Glass 

carbon 
0.5 89 59 Ref 63 

Pt@PCM 
Glass 

carbon 
N.A. ~150 74 Ref 64 

Pt1/N-C 
Glass 

carbon 
0.25 46 37 Ref 65 

Pt/np-Co0.85Se 
Glass 

carbon 
2.04 58 39 Ref 66 

Co1Nx/C 
Glass 

carbon 
2 247 75 Ref 67 



Co1/NG 
Glass 

carbon 
0.285 270 N.A. Ref 68 

Mo1/N1C2 
Glass 

carbon 
0.408 132 90 Ref 69 

Metal phosphides 

Holey NiCoP NS Ni foam 1 58 57 Ref 70 

CoP/NCNHP 
Glass 

carbon 
~0.39 115 66 Ref 71 

CoP 
Carbon 

cloth 
0.92 209 129 Ref 72 

RuP2@NPC 
Glass 

carbon 
1 52 69 Ref 73 

Ni5P4 Ni foil 25.8 150 53 Ref 74 

Fe-CoP Ti foil 1.03 78 75 Ref 75 

CoMoP@C 
Glass 

carbon 
0.354 81 56 Ref 76 

np-

(Co0.52Fe0.48)2P 
N.A. 2.5 79 40 Ref 77 

MoP 
Glass 

carbon 
0.86 ~150 48 Ref 78 

MoP@C 
Carbon 

cloth 
6 49 54 Ref 79 

ZnxCo1-xP 
Titanium 

mesh 
1.52 67 N.A. Ref 80 

. Cu0.3Co2.7P/NC 
Glass 

carbon 
0.4 220 122 Ref 81 

MoP/CNT 
Carbon fiber 

paper 
0.5 86 N.A. Ref 82 

NiCoP/rGO 
Carbon fiber 

paper 
0.15 209 124 Ref 83 

Ni-P 
Carbon 

paper 
N.A. 100 ~85 Ref 84 

CoP-MNA Ni foam 6.2 54 51 Ref 85 

Ce-doped CoP 

NW 
 

Ti plate 0.2 92 64 Ref 86 

Ni2P-Cu3P 
Porous 

NiCuC 
N.A. 78 173 Ref 87 

Metal sulfides 

C-MoS2 
Carbon 

cloth 
N.A. 45 46 Ref 88 

Cu ND/Ni3S2 NT 
Carbon 

fibers 
0.52 128 76 Ref 89 



Zn0.30Co2.70S4 
Glass 

carbon 
0.285 85 N.A. Ref 90 

Ni3S2 Ni foam 1.6 223 N.A. Ref 91 

MoS2/Ni3S2 Ni foam 9.7 110 83 Ref 92 

Ni-doped MoS2 N.A. 0.89 98 60 Ref 93 

N-doped Ni3S2 

NS 
Ni foam 0.59 155 133 Ref 94 

Ni0.33Co0.67S2 

NW 
Ti foil 0.3 88 118 Ref 95 

C, N-doped 

NiPS3 

Glass 

carbon 
0.408 53 38 

Ref 96 

NiCo2S4 Ni foam N.A. 80 59 Ref 97 

NiCo2S4 NW Ni foam N.A. 210 59 Ref 98 

Co-O-1T-

MoS2/SWNT 

Glass 

carbon 
N.A 113 50 

Ref 99 

V-doped NiS2 

NS 

Glass 

carbon 
0.272 110 90 

Ref 100 

a-Ni3S2@NPC Cu film N.A. 61 68 Ref 101 

Metal selenides 

o-CoSe2|P 
Glass 

carbon 
1.02 104 69 Ref 102 

Li-IrSe2 
Carbon fiber 

paper 
0.25 72 N.A. Ref 103 

Tubular CoSe2 

NS 
Ni foam N.A. 79 84 Ref 104 

NiSe Ni foam 2.8 96 120 Ref 105 

Ni0.89Co0.11Se2 

MNSN 
Ni foam 2.62 85 52 Ref 106 

c-CoSe2 
Carbon 

cloth 
0.5 200 85 Ref 107 

SWCNT/MoSe 
Glass 

carbon 
2 63 63 Ref 108 

Metal carbides 

MoCx NO 
Glass 

carbon 
0.8 151 59 Ref 109 

Mo2C 
Carbon 

paste 
0.8 ~190 54 Ref 110 

Fe3C@NCNT N.A. N.A. 154 N.A. Ref 111 

N@MoPCx NS 
Glass 

carbon 
0.14 139 87 Ref 112 

Mo2C/N-doped C 
Glass 

carbon 
0.28 100 65 Ref 113 



N,P-doped 

Mo2C@carbon 

NP 

Glass 

carbon 
0.9 50 71 Ref 114 

Mo2C/CLCN 
Glass 

carbon 
0.357 ~200 55 Ref 109 

Metal nitrides 

CoNx/C 
Glass 

carbon 
2 170 75 Ref 68 

NiCoN/C 
Glass 

carbon 
0.2 130 N.A. Ref 116 

Co-Ni3N 
Carbon 

cloth 
2.91 194 156 Ref 117 

NiMoN 
Carbon 

cloth 
~1.1 109 95 Ref 118 

Ni3N@CQD 
Glass 

carbon 
0.18 69 108 Ref 119 

Functional carbon materials 

C3N4@NG 
Glass 

carbon 
0.1 >600 N.A. Ref 120 

ONPPGC 
Carbon 

cloth 
0.1 446 154 Ref 121 

N, S-CN 
Glass 

carbon 
N.A. 380 103 Ref 122 

[a]: N. A.=Not available  

  



Supplementary Table 3. Results of Bader charge analysis. 

Samples Atoms Charges (|e|) 

STO Ti +2.2 

SRO Ru +1.51 

STRO 
Ti +2.1 

Ru +1.84 

  



Supplementary Table 4. O 1s XPS peak deconvolution results of STO and STRO. 

Electrocatalysts Lattice O2- O2
2-/O- -OH or O2 H2O or CO3

2- 

STO 64.56% / 27.39% 8.05% 

STRO 41.07% 19.17% 31.37% 8.39% 

 

  



Supplementary Table 5. Evaluation of STO, STRO and SRO catalysts based on four 

main key factors affecting the alkaline HER activity. 

 
Electronic 

conductivity 

Water 

dissociation 
OH desorption H adsorption 

STO × √ × × 

SRO √ × √ × 

STRO 

Ti site √ √ × √ 

Ru site √ × √ √ 

Ti+Ru 

site 
√ √ (on Ti) √ (on Ru) √ 

Note: √ means favorable; × means unfavorable. 

  



Supplementary Note 1. Turnover frequency calculations 

To calculate the per-site turnover frequency (TOF), we used the Supplementary 

Equation 1: 

TOF=
#number of total hydrogen turnovers/cmgeo

2

#number of active sites/cmgeo
2                                (1) 

The total number of hydrogen turnovers was calculated from the current density 

according to the Supplementary Equation 2: 

No. of H2= 

(j
mA

cmgeo
2 ) (

1 C s−1

1000 mA
) (

1 mol e−1

96485.3 C
) (

1 mol H2

2 mol e−) (
6.022×1023 H2 molecules

1 mol H2
) = 3.12 ×

1015  
H2 s−

cmgeo
2 per 

mA

cmgeo
2                                                  (2) 

We estimate the number of active sites as the number of surface active oxygen sites (as 

to be confirmed by the following calculations with H* more easily adsorbing in O than 

Ru) from the unit cell of the STO, STRO and SRO crystal structure. The active sites 

per real surface area are calculated from the Supplementary Equations 3: 

No. of active sites = (
No.of atoms/unit cell

No.of atoms/unit cell
)

2

3                                 (3) 

From Figure S10 we can calculate the number of active sites per real surface area for 

STO, STRO and SRO: 

No. of active sites (STO) = (
3

unit
cell

59.60
Å3

unit
cell

)

2

3

 = 1.361×1015 atoms cmreal
−2          (4) 

No. of active sites (STRO) =  (
3

unit
cell

60.14
Å3

unit
cell

)

2

3

= 1.355×1015 atoms cmreal
−2        (5) 

No. of active sites (SRO) = (
12

unit
cell

243.29
Å3

unit
cell

)

2

3

= 1.345×1015 atoms cmreal
−2          (6) 

The real surface area for HER is calculated from the electrochemical active surface area 

(ECSA), which can be converted from the specific capacitance. The specific 

capacitance for a flat surface is generally found to be in the range of 20-60 μF cmgeo
2 . 

In the following calculations of TOF we assume an average f 40 μF cmgeo
2 for STO, 

STRO and SRO123, 124. 

AECSA= 
specific capacitance

40 μF cmgeo
2  per cmECSA

2                                             (7) 

From Figure S8 we can calculate ECSA according to the Supplementary Equation 7 for 

STO, STRO and SRO: 

 AECSA(STO)= 
0.31 mF/0.196 cmgeo

2  

40 μF cmgeo
2  per cmECSA

2  = 39.5 cmECSA
2                           (8) 

AECSA(STRO)= 
3.26 mF/0.196 cmgeo

2

40 μf cmgeo
2  per cmECSA

2  = 415.8 cmECSA
2                         (9) 



AECSA(SRO)= 
1.90 mF/0.196 cmgeo

2

40 μF cmgeo
2  per cmECSA

2  = 242.3 cmECSA
2                        (10) 

Finally, the plot of current density can be converted into a TOF plot according to the 

Supplementary Equation 11: 

TOF=
3.12×1015 

H2 s−

cmgeo
2 per 

mA

cmgeo
2 ×|j|

No.of active sites×AECSA
                                            (11) 

  



Supplementary Note 2. Free energy calculations 

Free energies were calculated according to the Supplementary Equation 12: 

Δ𝐺𝑋 = Δ𝐸𝑋 + Δ𝑍𝑃𝐸 − 𝑇Δ𝑆                                           (12) 

Where Δ𝐸  is the binding energy of the intermediate 𝑋  ( 𝑋 = H∗, H∗ −

OH∗, OH∗ and H2O∗) , Δ𝑍𝑃𝐸  and 𝑇Δ𝑆  are the zero-point energy and entropic 

contributions at room temperature. The adsorption energies are calculated with respect 

to H2 and H2O, which are taken as reference and their energies are obtained from DFT 

calculations.  

More specifically, the binding energy of H* is obtained according to the Supplementary 

Equation 13: 

Δ𝐸H∗ = 𝐸H∗ − 𝐸∗ −
1

2
𝐸H2

                                             (13) 

Where 𝐸H∗, 𝐸∗ and 𝐸H2
 are the energies of the H* intermediate, the bare surface and 

the energy of a H2 molecule, respectively. The binding of H*-OH* is obtained via the 

Supplementary Equation 14: 

Δ𝐸H∗−OH∗ = 𝐸H∗−OH∗ − 𝐸∗ − 𝐸H2O                                     (14) 

Where 𝐸H∗−OH∗ and 𝐸H2O are the energies of the H*-OH* intermediate (dissociated 

water molecule) and the energy of a water molecule, respectively. 

Finally, the OH* binding energy is calculated according to the Supplementary Equation 

15: 

Δ𝐸H∗−OH∗ = 𝐸OH∗ − 𝐸∗ − 𝐸H2O +
1

2
𝐸H2

                                  (15) 

With 𝐸OH∗ being the total DFT energy of the OH* intermediate. 

The alkaline HER mechanism involves the adsorption and dissociation of H2O on the 

surface of the catalyst, followed by the release of OH-
 and the subsequent combination 

of H* with a water molecule (or an adsorbed H*) to release H2. 

Under the Heyrovsky mechanism the overall reaction is: 

H2O + e− +∗→ OH− + H∗ 

H∗ + H2O + e− → OH− + H2 +∗ 

Calculating the free energy of OH− in solution can be avoided by assuming that the 

free energies of the above two equations are the same at equilibrium potential of HER. 

The equation can be broken down into: 

𝐺0 = 𝐺∗ + 𝐺H2O                                                 (16) 

𝐺1 = 𝐺H∗−OH∗                                                    (17) 

𝐺2 = 𝐺H∗ + 𝐺OH−                                                 (18) 

𝐺3 = 𝐺∗ + 𝐺OH− +
1

2
𝐺H2

                                          (19) 

With 𝐺0 = 𝐺3. Hence the reaction energy profile can be constructed by considering the 

free energy changes using the total free energies defined above. This gives: 

Δ𝐺𝐻∗−𝑂𝐻∗ = 𝐺1 − 𝐺0 for the Volmer step, while the activity of the Heyrovsky step is 

described using Δ𝐺𝐻∗ = 𝐺2 − 𝐺3. 
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